JP7347304B2 - Aerobic biofilm treatment method and device - Google Patents

Aerobic biofilm treatment method and device Download PDF

Info

Publication number
JP7347304B2
JP7347304B2 JP2020064159A JP2020064159A JP7347304B2 JP 7347304 B2 JP7347304 B2 JP 7347304B2 JP 2020064159 A JP2020064159 A JP 2020064159A JP 2020064159 A JP2020064159 A JP 2020064159A JP 7347304 B2 JP7347304 B2 JP 7347304B2
Authority
JP
Japan
Prior art keywords
aeration
biofilm
cost
treatment
amount reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020064159A
Other languages
Japanese (ja)
Other versions
JP2021159860A (en
Inventor
孝之 大月
つばさ 鏡
幸一 藤江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2020064159A priority Critical patent/JP7347304B2/en
Publication of JP2021159860A publication Critical patent/JP2021159860A/en
Application granted granted Critical
Publication of JP7347304B2 publication Critical patent/JP7347304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)

Description

本発明は、生物学的に酸化できる汚濁物質を含む排水を、自己造粒グラニュールや流動床担体、固定床担体などにより生物膜処理する方法及び装置に係り、特にその曝気強度制御に関する。本発明においては微生物処理を行う生物膜の外部に存在する排水をバルク水と呼ぶ。 The present invention relates to a method and apparatus for biofilm treatment of wastewater containing biologically oxidizable pollutants using self-granulating granules, fluidized bed carriers, fixed bed carriers, etc., and particularly relates to control of aeration intensity. In the present invention, wastewater existing outside the biofilm that undergoes microbial treatment is referred to as bulk water.

生物学的に酸化できる汚濁物質を含む排水の処理方法として、浮遊汚泥を用いる活性汚泥法のほか、自己造粒グラニュール法や流動床担体法、固定床担体法など、微生物が生物膜とよばれる集積増殖した様態で処理を行う生物膜法などが利用されている。 Treatment methods for wastewater containing pollutants that can be biologically oxidized include the activated sludge method using suspended sludge, the self-granulation granule method, the fluidized bed carrier method, and the fixed bed carrier method, which allow microorganisms to form biofilms. The biofilm method, which treats bacteria in a state where they accumulate and proliferate, is used.

前者の浮遊汚泥を用いる活性汚泥法では、微生物フロックと称される典型的には1mm前後の微生物の凝集体内外において、微生物とバルク水相との接触面積が十分確保されているため、フロック内での酸素や汚濁物質の浸透性・拡散性が汚濁物除去速度の主要な処理性能の律速因子とならない。特許文献1には、汚濁物質の負荷を計器で計測し、これに比例して曝気風量を制御することが記載されている。 In the former activated sludge method, which uses suspended sludge, there is sufficient contact area between microorganisms and the bulk aqueous phase inside and outside of aggregates of microorganisms, typically around 1 mm in diameter, called microbial flocs. The permeability and diffusivity of oxygen and pollutants are not the main rate-limiting factors for pollutant removal rate. Patent Document 1 describes that the load of pollutants is measured with a meter and the aeration air volume is controlled in proportion to this.

浮遊汚泥を用いる活性汚泥法、および自己造粒グラニュール法、流動床担体法、固定床担体法などの生物膜法においては、原水の負荷に比例した酸素供給量調整を簡易に行う手法として、液中の溶存酸素濃度(以下DOと記載する)を一定に保つ風量制御を行ういわゆるDO制御システムが広く用いられている。 In activated sludge methods using suspended sludge, and biofilm methods such as self-granulation granule methods, fluidized bed carrier methods, and fixed bed carrier methods, as a method to easily adjust the oxygen supply amount in proportion to the load of raw water, BACKGROUND ART A so-called DO control system that performs air volume control to maintain a constant dissolved oxygen concentration (hereinafter referred to as DO) in a liquid is widely used.

自己造粒グラニュール法、流動床担体法に関して、特許文献2には、BOD容積負荷が所定値よりも小さいときは微生物担体の流動化を判断基準とし、BOD容積負荷が前記所定値よりも大きいときは廃水の酸素要求量を判断基準として廃水に対する曝気量を制御する廃水処理方法及び装置が記載されている。 Regarding the self-granulation granule method and the fluidized bed carrier method, Patent Document 2 states that when the BOD volume load is smaller than a predetermined value, fluidization of the microbial carrier is used as a criterion, and when the BOD volume load is larger than the predetermined value. A wastewater treatment method and apparatus are described in which the amount of aeration of wastewater is controlled based on the oxygen demand of the wastewater.

各種水処理プラントにおいて、運転管理従事者は受変電盤で受ける電力量や薬剤の購入量を管理しており、水処理プラント全体としての収支からコスト、原単位の状態を把握している(特許文献3~6)。 At various water treatment plants, operation management personnel manage the amount of electricity received at the power receiving and substation panels and the amount of chemicals purchased, and understand the status of costs and basic units from the balance of the water treatment plant as a whole (patent References 3-6).

特開2001-353496号公報Japanese Patent Application Publication No. 2001-353496 特開昭63-256185号公報Japanese Unexamined Patent Publication No. 63-256185 特開平9-318665号公報Japanese Patent Application Publication No. 9-318665 特開2000-339002号公報Japanese Patent Application Publication No. 2000-339002 特開2002-86131号公報Japanese Patent Application Publication No. 2002-86131 特開2006-260519号公報Japanese Patent Application Publication No. 2006-260519

自己造粒グラニュール法、流動床担体法、固定床担体法など生物膜を利用した処理を行う方法では、原水負荷の指標として一般的である、原水の単位時間あたりの流量と原水の汚濁物質濃度との積により求められる流入負荷や、流入負荷を反応槽の容積で除算して求められる槽負荷のみに基づいて適切な酸素供給量調整を行うことは、厳密には困難である。その理由として以下が挙げられる。 In treatment methods that utilize biofilm, such as the self-granulation granule method, fluidized bed carrier method, and fixed bed carrier method, the flow rate per unit time of raw water and pollutants in raw water are common indicators of raw water load. Strictly speaking, it is difficult to appropriately adjust the oxygen supply amount based only on the inflow load obtained by multiplying the inflow load by the concentration or the tank load obtained by dividing the inflow load by the volume of the reaction tank. The reasons for this are as follows.

(i) 原水負荷が同じで、原水中の有機物を酸化するために必要な酸素量が同じであっても、生物膜を利用した方法では、反応槽に生物膜の様態で保持されている微生物量が時間により変化するため、微生物自体の自己分解プロセスに起因して発生する酸素消費量が変化する。従って、装置に与える酸素供給量は同因子も考慮して決定する必要がある。 (i) Even if the raw water load is the same and the amount of oxygen required to oxidize the organic matter in the raw water is the same, in the method using a biofilm, the microorganisms retained in the reaction tank in the form of a biofilm As the amount changes over time, the amount of oxygen consumed due to the autolysis process of the microorganism itself changes. Therefore, the amount of oxygen supplied to the device must be determined by taking this factor into consideration.

(ii) 生物膜を利用した処理方法では、微生物が集積している生物膜内に酸素を拡散させる必要がある。生物膜内への酸素の拡散性に影響を与える主な因子としては、微生物膜とバルク水との接触面積およびバルク水のDOの高低、微生物膜内の汚泥保持濃度や無機成分蓄積濃度などが知られており、自己造粒グラニュール法ではグラニュールの保持量およびグラニュールサイズが変化するため、微生物とバルク水との接触面積が変化する。 (ii) Treatment methods using biofilms require oxygen to diffuse into the biofilm where microorganisms are accumulated. The main factors that affect the diffusivity of oxygen into the biofilm include the contact area between the microbial film and bulk water, the level of DO in the bulk water, the concentration of sludge retained in the microbial film, and the concentration of accumulated inorganic components. It is known that in the self-granulation granulation method, the amount of granules retained and the granule size change, so the contact area between microorganisms and bulk water changes.

(iii) 流動床担体法では担体内外での微生物付着量の変化により、生物膜とバルク水の接触面積が変化する。特に、担体内部に空隙部がある構造で生物膜が空隙部に増殖する場合、担体への生物膜付着量が増加し、空隙部が全て閉塞した場合には、バルク水と生物膜との接触面積は顕著に低減する。 (iii) In the fluidized bed carrier method, the contact area between the biofilm and bulk water changes due to changes in the amount of microorganisms attached inside and outside the carrier. In particular, if the carrier has a structure with voids and biofilm grows in the voids, the amount of biofilm adhering to the carrier will increase, and if all the voids are blocked, contact between bulk water and the biofilm will increase. The area is significantly reduced.

(iv) このようなバルク水と生物膜との接触面積の変化は、生物膜への酸素拡散性に大きな影響を与える。例えば、バルク水と生物膜との接触面積が低減した場合には、同一の酸素量を生物膜内に供給する場合でも、バルク水のDOを高める必要があり、バルク水の溶存酸素濃度を高めるためには、より大流量の空気吹き込みが必要となる。また、原水の負荷が高くなった場合、酸素消費量は増加する。そのため、必要な酸素を拡散現象で生物膜内に供給するためには、バルク水の溶存酸素濃度を高くする必要がある。 (iv) Such changes in the contact area between bulk water and biofilms have a significant effect on oxygen diffusivity into biofilms. For example, if the contact area between bulk water and biofilm decreases, it is necessary to increase the DO of bulk water even if the same amount of oxygen is supplied into the biofilm, increasing the dissolved oxygen concentration of bulk water. This requires a larger flow rate of air blowing. Furthermore, when the load of raw water increases, the amount of oxygen consumed increases. Therefore, in order to supply the necessary oxygen into the biofilm through a diffusion phenomenon, it is necessary to increase the dissolved oxygen concentration in the bulk water.

こういった要因により、負荷変動に応じて原水有機物の酸化に必要な酸素量は変化し、処理装置内に保持されている微生物膜の量により供給する必要がある酸素量は変化し、特に、酸素供給について拡散現象に依存している生物膜法の場合、生物膜に供給すべき酸素量に応じてバルク水のDOを調整する必要があり、バルク水のDOを維持するための曝気風量も調整する必要がある。 Due to these factors, the amount of oxygen required to oxidize raw water organic matter changes according to load fluctuations, and the amount of oxygen that needs to be supplied changes depending on the amount of microbial film retained in the treatment equipment. In the case of the biofilm method, which relies on diffusion phenomena for oxygen supply, it is necessary to adjust the DO of the bulk water according to the amount of oxygen to be supplied to the biofilm, and the amount of aeration air to maintain the DO of the bulk water must also be adjusted. Need to adjust.

なお、曝気風量の負荷に応じた調整・制御をしない運転を行う場合は、高負荷時においてもバルク水のDOを高く維持し酸素供給量を維持できるように曝気風量を過剰に多くした状態での風量一定運転をする必要がある。 In addition, when operating without adjusting or controlling the aeration air volume according to the load, the aeration air volume must be excessively increased so that the DO of bulk water can be maintained high and the oxygen supply amount can be maintained even during high loads. It is necessary to operate at a constant air volume.

高負荷時において必要な高いDOを維持できる風量一定運転下では、負荷低下時の酸素消費低下時の酸素消費低下に応じた風量抑制をしないためエネルギーの無駄が発生することになる。
また高負荷時の酸素供給を想定し高めのDO目標値を設定した曝気制御を行った場合も、生物膜処理装置では負荷低下維持にはDOレベルを低下することができるため曝気制御の目標DOレベルをさげればさらに曝気風量を絞ることが可能であるが、通常の曝気制御ではこのようなDO目標値低下による風量抑制をしないためエネルギー消費の無駄はなお発生することになる。
Under constant air volume operation that can maintain the required high DO during high loads, energy is wasted because the air volume is not suppressed in accordance with the decrease in oxygen consumption when the oxygen consumption decreases when the load decreases.
In addition, even if aeration control is performed with a high DO target value assuming oxygen supply during high loads, the biofilm treatment equipment can reduce the DO level to maintain load reduction, so the aeration control target DO Although it is possible to further reduce the aeration air volume by lowering the level, normal aeration control does not suppress the air volume by reducing the DO target value, so energy consumption will still be wasted.

一般的なDO一定の風量制御を行う場合も、高負荷時に生物膜内部への十分な酸素拡散量を確保することを想定したDO設定を行う必要がある。そのため、低負荷時には、必要な酸素供給量の維持に必要なDOレベル以上のDO設定に維持することになる。その結果、DOを維持するための曝気風量は必要量より多くなり、エネルギー消費の無駄が発生する。 Even when performing general air volume control with a constant DO, it is necessary to set the DO with a view to ensuring a sufficient amount of oxygen diffusion into the biofilm during high loads. Therefore, during low load, the DO setting is maintained at a DO level or higher required to maintain the required oxygen supply amount. As a result, the amount of aeration air required to maintain the DO is greater than the required amount, resulting in wasted energy consumption.

従って、エネルギー消費の無駄は、負荷変動が大きな場合に特に顕著となる。 Therefore, wasteful energy consumption becomes particularly noticeable when load fluctuations are large.

さらに、負荷変動に応じた適切な曝気制御をしていても、生物膜を活用した生物処理装置は長期間運転を継続すると処理水槽内の生物膜の保持量が増加する傾向にあり、生物膜の保持量が増加すると、生物膜とバルク水との接触面積が低下し、酸素透過性が低下し、生物膜への酸素供給量が低下し、処理水質が悪化する状況が発生する。生物膜の保持量の増加に伴い生物膜の処理水水質が所定値を逸脱したときに、曝気槽中の生物膜の保持量が必要以上に増加したと判定し、担体の生物膜保持量低減処理又はグラニュールの部分解体処理などの生物膜保持量低減処理を行うことが考えられる。しかし、生物膜保持量低減処理自体にも、実施の判断の手間と実施のためのコストがかかる。 Furthermore, even if appropriate aeration control is carried out according to load fluctuations, when biological treatment equipment that utilizes biofilm continues to operate for a long period of time, the amount of biofilm retained in the treated water tank tends to increase. When the retained amount of biofilm increases, the contact area between the biofilm and bulk water decreases, oxygen permeability decreases, the amount of oxygen supplied to the biofilm decreases, and the quality of treated water deteriorates. When the quality of biofilm treated water deviates from a predetermined value due to an increase in the amount of biofilm retained, it is determined that the amount of biofilm retained in the aeration tank has increased more than necessary, and the amount of biofilm retained on the carrier is reduced. It is conceivable to carry out treatment to reduce the amount of biofilm retained, such as treatment or partial dismantling treatment of granules. However, the biofilm retention amount reduction treatment itself requires time and effort to decide whether to implement it and costs to implement it.

本発明は、生物膜保持量低減処理を行う場合と行わない場合との電力費用を比較し、電力費用が安価な方を選択する好気性生物膜処理方法及び装置を提供することを目的とする。 An object of the present invention is to provide an aerobic biofilm treatment method and device that compares the power costs when performing and not performing biofilm retention amount reduction treatment and selects the one with lower power cost. .

本発明の好気性生物膜処理方法は、原水を曝気槽に供給し、曝気槽に充填された生物膜保持担体またはグラニュールにより原水中の除去対象物質を好気性生物膜処理する方法において、生物膜保持量低減処理を行わない場合における、その後の所定期間内の曝気電力費用Aを算出し、生物膜保持量低減処理を行った場合における、その後の所定期間内の曝気電力費用Bと生物膜保持量低減処理費用Cとの合計費用(B+C)を算出し、(B+C)とAとを比較し、(B+C)がAよりも小さいならば前記生物膜保持量低減処理を好適とする判定を行うことを特徴とする。 The aerobic biofilm treatment method of the present invention is a method in which raw water is supplied to an aeration tank, and a substance to be removed in the raw water is treated with an aerobic biofilm using a biofilm retention carrier or granules filled in the aeration tank. Calculate the aeration power cost A within the subsequent predetermined period when the membrane retention amount reduction treatment is not performed, and calculate the aeration power cost B and biofilm within the subsequent predetermined period when the biofilm retention amount reduction treatment is performed. Calculate the total cost (B + C) with the retained amount reduction treatment cost C, compare (B + C) and A, and if (B + C) is smaller than A, determine that the biofilm retained amount reduction treatment is suitable. It is characterized by doing.

本発明の好気性生物膜処理装置は、原水が供給される曝気槽と、該曝気槽に充填された生物膜保持担体またはグラニュールと、該曝気槽を曝気する曝気装置とを有する好気性生物膜処理装置において、生物膜保持量低減処理を行わない場合における、その後の所定期間内の曝気電力費用Aを算出する手段と、生物膜保持量低減処理を行った場合における、その後の所定期間内の曝気電力費用Bと生物膜保持量低減処理費用Cとの合計費用(B+C)を算出する手段と、(B+C)とAとを比較し、(B+C)がAよりも小さいならば前記生物膜保持量低減処理を好適とする判定を行う手段とを有することを特徴とする。 The aerobic biofilm treatment device of the present invention comprises an aeration tank to which raw water is supplied, a biofilm holding carrier or granules filled in the aeration tank, and an aeration device for aerating the aeration tank. In a membrane treatment device, means for calculating aeration power cost A within a subsequent predetermined period when biofilm retention amount reduction processing is not performed, and within a subsequent predetermined period when biofilm retention amount reduction processing is performed. A means for calculating the total cost (B+C) of the aeration power cost B and biofilm retention amount reduction processing cost C, and comparing (B+C) and A, and if (B+C) is smaller than A, the biofilm The method is characterized by comprising means for determining whether retention amount reduction processing is appropriate.

本発明の一態様では、前記A,(B+C)の算出及び比較を定期的に又は実行指令が与えられたときに行う。 In one aspect of the present invention, the calculation and comparison of A and (B+C) are performed periodically or when an execution command is given.

本発明の一態様では、前記(B+C)がAよりも所定金額以上小さいときに前記生物膜保持量低減処理を好適とする判定を行う。 In one aspect of the present invention, when the above (B+C) is smaller than A by a predetermined amount or more, it is determined that the biofilm retention amount reduction process is suitable.

本発明の一態様では、前記生物膜保持量低減処理費用は、前記担体の生物膜保持量低減処理又はグラニュールの部分解体処理の操作を行う費用と、該操作により生じた排出汚泥を処理する費用とを含む。 In one aspect of the present invention, the cost of the biofilm retention reduction treatment includes the cost of performing the biofilm retention reduction treatment of the carrier or the partial disassembly treatment of the granules, and the cost of treating the discharged sludge generated by the operation. including costs.

本発明の一態様では、前記コストの算定時の前の規定期間における曝気電力消費量から単位時間の電力消費量Hを求め、該算定時以降は、予め設定した逓増パターンに従って単位時間電力消費量が逓増するものとし、この逓増した単位時間電力消費量H’と、前記所定期間と、電力単価との積とによって前記曝気電力コストAを算出し、該単位時間電力消費量H’に、予め設定した規定比率α(ただしα<1)を乗じたα・H’を、生物膜保持量低減処理を行った後の単位時間電力消費量とみなして、α・Aを前記曝気電力コストBとする。 In one aspect of the present invention, the power consumption per unit time H is calculated from the aeration power consumption in a specified period before the cost calculation time, and after the calculation time, the power consumption per unit time H is determined according to a preset increasing pattern. The aeration power cost A is calculated by the product of the increased unit time power consumption H', the predetermined period, and the power unit price, and the unit time power consumption H' is calculated in advance. α・H′ multiplied by the set specified ratio α (α < 1) is regarded as the unit time power consumption after the biofilm retention amount reduction treatment, and α・A is the aeration power cost B. do.

本発明の一態様では、前記曝気槽内のDO目標値及び/又は曝気強度設定値から曝気動力にかかる電力使用量を算出する数式モデルと、電力使用量に対応する単価データと、原水負荷または酸素消費速度と、DO目標値及び/または曝気強度設定値と、の相関関係を、酸素透過性の良否に関係づけて決定した2つ以上の相関関係グループとを設定しておき、原水負荷または酸素消費速度の計測値(別の測定項目の実測値から算出したものを含む)の変動に応じて、前記相関関係の1つに基づいて、該計測値に対応するDO目標値及び/または曝気強度設定値を調整して曝気制御を行う。 In one aspect of the present invention, a mathematical model that calculates the amount of power used for aeration power from the DO target value and/or aeration intensity set value in the aeration tank, unit price data corresponding to the amount of power used, and raw water load or Two or more correlation groups determined by relating the correlation between the oxygen consumption rate and the DO target value and/or the aeration intensity setting value to the quality of oxygen permeability are set, and the raw water load or Depending on the variation in the measured value of the oxygen consumption rate (including that calculated from the actual measured value of another measurement item), the DO target value and/or aeration corresponding to the measured value is determined based on one of the correlations. Aeration control is performed by adjusting the intensity setting value.

本発明の一態様では、選定した前記相関関係のDO目標値あるいはその実測値、及び/又は曝気強度設定値あるいはその実測値から、現状の単位期間当たりの曝気動力にかかる電力使用量の算出値を求め、今後の前記所定期間の曝気動力が該算出値で一定であるとするか、曝気動力の経時的な上昇を予測する数式モデルによって今後の曝気動力の予測値を求め、該算出値または予測値と、電力使用量の単価データとに基づいて、前記電力費用Aを算出し、使用していた前記相関関係よりも相対的に酸素透過性の良い相関関係を相関関係グループから選定し、この相関関係における曝気作用に基づいて今後の前記所定期間の前記費用Bを算出する。 In one aspect of the present invention, a calculated value of the amount of power used for the current aeration power per unit period is obtained from the DO target value or its actual value of the selected correlation and/or the aeration intensity setting value or its actual value. Assume that the aeration power for the predetermined period in the future is constant at the calculated value, or calculate the predicted value of the future aeration power using a mathematical model that predicts the increase in aeration power over time, and calculate the calculated value or Calculating the power cost A based on the predicted value and unit price data of power usage, and selecting a correlation with relatively better oxygen permeability than the correlation that was being used from the correlation group; The cost B for the future predetermined period is calculated based on the aeration effect in this correlation.

本発明の一態様では、前記生物膜保持量低減処理を、回転撹拌羽根又は逆洗による強撹拌、強曝気、高流速循環、及び槽内水の破砕ポンプへの通水のいずれか1又は2以上により行う。 In one aspect of the present invention, the biofilm retention amount reduction treatment is performed by any one or two of strong agitation using a rotating stirring blade or backwashing, strong aeration, high-flow circulation, and passing water in the tank to a crushing pump. Perform the above steps.

本発明の一態様では、前記生物膜保持量低減処理費用Cを定数として設定しておく。 In one aspect of the present invention, the biofilm retention amount reduction treatment cost C is set as a constant.

本発明の一態様では、前記費用Aが前記費用(B+C)よりも小さい場合、費用Aと費用(B+C)とが等しくなるまでの期間を求める。 In one aspect of the present invention, when the cost A is smaller than the cost (B+C), a period until cost A and cost (B+C) become equal is determined.

本発明によれば、原水負荷あたりの曝気動力効率が低下した場合に、流動床担体の性能向上策の実施の提案や、担体の更新、固定担体の強逆洗等のメンテナンス作業で得られる省エネルギー効果や、メンテナンス費用に対する費用対効果を定量的に示すことができる。 According to the present invention, when the aeration power efficiency per raw water load decreases, energy savings can be achieved through maintenance work such as proposing measures to improve the performance of the fluidized bed carrier, updating the carrier, and strong backwashing of the fixed carrier. It is possible to quantitatively demonstrate the effectiveness and cost-effectiveness of maintenance costs.

本発明が適用される生物処理装置の構成図である。1 is a configuration diagram of a biological treatment device to which the present invention is applied. 本発明が適用される生物処理装置の構成図である。1 is a configuration diagram of a biological treatment device to which the present invention is applied. 本発明が適用される生物処理装置の構成図である。1 is a configuration diagram of a biological treatment device to which the present invention is applied. 生物処理装置の構成図である。FIG. 2 is a configuration diagram of a biological treatment device. 生物処理装置の構成図である。FIG. 2 is a configuration diagram of a biological treatment device.

本発明では、現時点で生物膜保持量低減処理を行う方が、所定期間経過後に生物膜保持量低減処理を行うよりも電力費用が安価であると判定されるならば、担体の生物膜保持量低減処理(例えば、担体からの生物膜剥離、グラニュールの部分解体など)が適切との判断を行う。 In the present invention, if it is determined that the electricity cost is cheaper to perform the biofilm retention amount reduction treatment at this point than to perform the biofilm retention amount reduction treatment after a predetermined period of time, the biofilm retention amount of the carrier It is determined that reduction treatment (e.g., detachment of biofilm from the carrier, partial disassembly of granules, etc.) is appropriate.

すなわち、生物膜保持量低減処理を行わず現状の曝気制御を継続するときの費用(費用A:現状の単位時間の電力使用量に電力単価を乗じた単位時間の電力費を所定期間分だけ累積して算出した費用)と、生物膜保持量低減処理を行った後に曝気制御を継続するときの費用(費用B:現状よりも酸素透過性指標が良好である場合の単位時間の電力使用量に電力単価を乗じた単位時間の電力費を所定期間分だけ累積して算出した費用)に生物膜保持量低減処理費用Cを加算した費用(B+C)とを比較する。 In other words, the cost of continuing the current aeration control without performing biofilm retention reduction treatment (Cost A: The current unit time power consumption multiplied by the power unit price, accumulated over a predetermined period of time) (Cost B: Cost calculated based on the amount of electricity used per unit time when the oxygen permeability index is better than the current one) and the cost of continuing aeration control after performing biofilm retention reduction treatment (Cost B: The cost (B+C) is calculated by adding the biofilm retention amount reduction treatment cost C to the cost calculated by accumulating the power cost per unit time multiplied by the power unit price for a predetermined period.

そして、費用Aと費用(B+C)の大小を比較してコストメリットに基づいて生物膜保持量低減処理の実行の要否を決定する。 Then, the magnitude of the cost A and the cost (B+C) is compared to determine whether or not to execute the biofilm retention amount reduction process based on the cost merit.

なお、費用(B+C)が費用Aを下回るまでの期間を求めるべく所定期間を変数とし、費用Aと費用(B+C)とが等しくなる(あるいは差が小額となる)までの期間の長短を比較してコストメリットを判定してもよい。 In addition, in order to find the period until cost (B + C) falls below cost A, we use a predetermined period as a variable and compare the length of the period until cost A and cost (B + C) become equal (or the difference becomes small). The cost benefit may be determined by

生物膜剥離やグラニュール部分解体の操作としては、以下の(1)~(4)のように剪断力を付与して強制的に汚泥を低減する操作が好適である。
(1) 回転撹拌羽根や逆洗により強撹拌する。
(2) 強曝気する。
(3) 高流速循環する。
(4) 槽内水を槽内又は槽外で破砕ポンプに通水する。
As operations for biofilm peeling and partial granule disassembly, operations that forcefully reduce sludge by applying shearing force as shown in (1) to (4) below are suitable.
(1) Strongly stir using rotating stirring blades or backwashing.
(2) Strong aeration.
(3) High flow rate circulation.
(4) Pass the tank water to the crushing pump inside or outside the tank.

なお、担体から剥離された生物膜やグラニュールを部分解体することにより生じた汚泥は、SSとして処理水と共に槽外に排出され、固液分離(凝集沈殿、凝集加圧浮上、凝集濾過など)処理後、系外排出される。 In addition, the sludge generated by partially dismantling the biofilm and granules peeled off from the carrier is discharged as SS to the outside of the tank together with the treated water, and solid-liquid separation (coagulation sedimentation, coagulation pressure flotation, coagulation filtration, etc.) After treatment, it is discharged from the system.

生物膜の剥離手段、部分解体手段は、剥離又は部分解体の処理業務を行うときに仮設してもよく、常設の設備として設置してもよい。 The biofilm stripping means and partial disassembly means may be temporarily installed when stripping or partial disassembly is performed, or may be installed as permanent equipment.

生物膜保持量低減処理費用には、追加使用部材の単価データ、処理作業の労務費データ、ポンプの動力費用、強曝気時のブロワの増強分の動力費用などが含まれる。 The biofilm retention amount reduction processing cost includes unit price data for additionally used parts, labor cost data for processing work, pump power cost, power cost for blower reinforcement during strong aeration, etc.

以下に、図面を参照して流動床担体からの付着生物膜の剥離手段又は自己造粒グラニュール部分解体手段を備えた好気性生物処理装置の構成について説明する。 Hereinafter, the configuration of an aerobic biological treatment apparatus equipped with a means for removing attached biofilm from a fluidized bed carrier or a means for partially dismantling self-granulating granules will be explained with reference to the drawings.

図1の生物処理装置では、被処理排水(原水)は、配管1を通じて曝気槽2に導入される。曝気槽2内には、グラニュール又は生物膜を担持した担体Cが充填されている。曝気槽2内の底部には散気管3が設置されており、ブロア4から配管5を通じて空気が供給され、曝気が行われる。 In the biological treatment apparatus shown in FIG. 1, wastewater to be treated (raw water) is introduced into an aeration tank 2 through a pipe 1. The aeration tank 2 is filled with a carrier C carrying granules or biofilm. An aeration pipe 3 is installed at the bottom of the aeration tank 2, and air is supplied from a blower 4 through a pipe 5 to perform aeration.

生物膜によって好気的に生物処理された水は、スクリーン6を通り抜け、配管7から処理水として取り出される。 The water that has been aerobically treated by the biofilm passes through the screen 6 and is taken out from the pipe 7 as treated water.

この生物処理装置では、生物膜剥離手段として、曝気槽2のグラニュールや担体を吸引ポンプ11で引き抜き、撹拌水槽12に導入し、攪拌機13により強撹拌してグラニュール部分解体または担体付着生物膜剥離を実施した後、配管14を通じて曝気槽2に返送する。 In this biological treatment equipment, the granules and carriers in the aeration tank 2 are pulled out with a suction pump 11, and are introduced into a stirring water tank 12, and strongly stirred with an agitator 13 to partially dismantle the granules or remove the biofilm attached to the carrier. After the stripping is carried out, it is returned to the aeration tank 2 through the piping 14.

グラニュールの部分解体又は担体付着生物膜の剥離の程度は、次の(a),(b),(c)などにより調整される。
(a) 吸引ポンプ11の吐出量を調節して、撹拌水槽12の滞留時間を調整する。
(b) 攪拌機13の回転速度を調節して、生物膜解体/剥離の強度を調整する。
(c) 上記2つを共に調整する。
The degree of partial disassembly of the granules or peeling of the biofilm attached to the carrier is adjusted by the following (a), (b), (c), etc.
(a) Adjust the discharge amount of the suction pump 11 to adjust the residence time in the stirring water tank 12.
(b) Adjust the rotational speed of the stirrer 13 to adjust the intensity of biofilm disassembly/peeling.
(c) Adjust the above two together.

なお、撹拌水槽12と攪拌機13を設ける代わりに、水中破砕ポンプを設置して代替することもできる。 Note that instead of providing the stirring water tank 12 and the stirrer 13, an underwater crushing pump may be installed instead.

図1では、吸引ポンプ11からの送水をそのまま撹拌水槽12に供給しているが、図2のように、吸引ポンプ11からの送水を、サイクロン等の沈降速度による処理対象担体の選別装置15に供給し、生物膜保持量が多く沈降速度が大きい担体やグラニュールのみを選択的に撹拌水槽12に供給してグラニュールの部分解体又は生物膜剥離処理を行うようにしてもよい。生物膜保持量が少なく、沈降速度が小さい担体やグラニュールは配管16を通じて曝気槽2に返送する。 In FIG. 1, the water from the suction pump 11 is directly supplied to the stirring water tank 12, but as shown in FIG. Alternatively, only carriers and granules with a large amount of biofilm retained and a high sedimentation rate may be selectively supplied to the stirring water tank 12 to perform partial disassembly of the granules or biofilm peeling treatment. Carriers and granules that have a small amount of biofilm retained and a low sedimentation rate are returned to the aeration tank 2 through the pipe 16.

図3は、強曝気により、グラニュールの部分解体又は担体付着生物膜の剥離を行うようにした生物処理装置を示している。 FIG. 3 shows a biological treatment device that uses strong aeration to partially dismantle granules or peel off biofilms attached to carriers.

図3の生物処理装置では、被処理排水(原水)は、配管1を通じて曝気槽2に導入される。曝気槽2内には、グラニュール又は生物膜を担持した担体Cが充填されている。曝気槽2内の底部には散気管3が設置されており、ブロア4から配管5を通じて空気が供給され、曝気が行われる。配管5には、強曝気用のブロア17からも空気が供給可能とされている。 In the biological treatment apparatus shown in FIG. 3, wastewater to be treated (raw water) is introduced into an aeration tank 2 through a pipe 1. The aeration tank 2 is filled with a carrier C carrying granules or biofilm. An aeration pipe 3 is installed at the bottom of the aeration tank 2, and air is supplied from a blower 4 through a pipe 5 to perform aeration. Air can also be supplied to the pipe 5 from a blower 17 for strong aeration.

生物膜によって好気的に生物処理された水は、スクリーン6を通り抜け、配管7から処理水として取り出される。 The water that has been aerobically treated by the biofilm passes through the screen 6 and is taken out from the pipe 7 as treated water.

この生物処理装置では、曝気槽2内のDOを測定するDO計19と、ブロア4から配管5へ供給される空気量を測定する風量計20が設けられており、これらの検出値が制御器21に入力される。制御器21によってブロア4が制御されることにより曝気強度が制御される。 This biological treatment equipment is provided with a DO meter 19 that measures the DO in the aeration tank 2, and an air flow meter 20 that measures the amount of air supplied from the blower 4 to the piping 5, and these detected values are sent to the controller. 21. The aeration intensity is controlled by controlling the blower 4 by the controller 21.

グラニュールの部分解体又は担体付着生物膜の剥離を行うときには、ブロア17を作動させて強曝気する。 When partially dismantling the granules or peeling off the biofilm attached to the carrier, the blower 17 is operated to provide strong aeration.

<酸素拡散性指標>
汚濁物質除去のために自己造粒微生物グラニュールや流動床もしくは固定床担体に付着させた生物膜を利用する生物膜処理の場合、浮遊法と比較して流動状態の液相と微生物とが接触する表面積が少なく、汚濁物質の生分解のためには生物膜の内部へ(厚み方向へ)酸素や汚濁物質が拡散浸透する必要があり、この拡散浸透プロセスの速度は微生物の増殖速度・酸素消費速度と比較して遅いため、拡散浸透プロセスが処理性能を決定する主要な要因の一つである。
<Oxygen diffusivity index>
In the case of biofilm treatment that uses self-granulating microbial granules or biofilm attached to a fluidized bed or fixed bed carrier to remove pollutants, compared to the floating method, the microorganisms come into contact with the fluidized liquid phase. To biodegrade pollutants, it is necessary for oxygen and pollutants to diffuse into the biofilm (in the thickness direction), and the speed of this diffusion and osmosis process depends on the growth rate and oxygen consumption of microorganisms. The diffusion-osmosis process is one of the main factors determining treatment performance because it is slow compared to the speed.

生物膜がバルク水と接触する表面積は拡散浸透プロセスに影響を与える因子である。表面積が狭くなると、バルク水のDOが同じであっても、相対的に生物膜への酸素拡散総量が減り、処理性能が低下して処理水水質が悪化する傾向となる。逆に、表面積が広くなると、バルク水のDOが同じであっても、相対的に生物膜への酸素拡散総量が増加し、処理能力が上がり、処理水質が良好となる傾向となる。また、低いDOであっても十分な処理性能を発揮することができ、曝気量、曝気に関わる電力を削減できる。 The surface area of biofilm contact with bulk water is a factor that influences the diffusion-osmosis process. When the surface area becomes narrower, even if the DO of the bulk water is the same, the total amount of oxygen diffused into the biofilm will be relatively reduced, the treatment performance will decrease, and the quality of the treated water will tend to deteriorate. Conversely, as the surface area increases, even if the DO of the bulk water is the same, the total amount of oxygen diffused into the biofilm will relatively increase, the treatment capacity will increase, and the quality of the treated water will tend to improve. In addition, sufficient processing performance can be achieved even at low DO, and the amount of aeration and electric power involved in aeration can be reduced.

自己造粒微生物グラニュールを利用する装置の場合、長期的な運用によりグラニュールが肥大した場合、自己造粒微生物グラニュールの充填容積あたりのバルク水と接触する比表面積が低下し、装置容積あたりのバルク水と接触する表面積が低下する。 In the case of equipment that uses self-granulating microbial granules, if the granules enlarge due to long-term operation, the specific surface area of the self-granulating microbial granules in contact with bulk water per filling volume decreases, and the surface area in contact with bulk water is reduced.

担体を利用する装置の場合、特に担体内部に空隙部がある構造の担体を利用した場合、長期的な運用により担体が保持する生物膜保持量が増加すると、担体内部の空隙空間が微生物膜自体およびスケール成分等の生物活性のない固形分により閉塞するため、バルク水と生物膜の接触面積が低下する。この結果、担体充填容積あたりのバルク水と接触する比表面積が低下し、曝気槽容積あたりのバルク水と接触する表面積が低下する。また担体内部の空隙部の有無にかかわらず、長期間の運用を行った場合、生物膜内の汚泥密度が上昇する、もしくは、スケール成分等の生物活性のない固形物の蓄積により微生物膜の固形物密度が上昇することにより、酸素の拡散速度が低下する。 In the case of a device that uses a carrier, especially when using a carrier with a structure that has voids inside the carrier, if the amount of biofilm retained by the carrier increases due to long-term operation, the void space inside the carrier will become larger than the microbial film itself. The contact area between bulk water and biofilm decreases due to blockage due to non-biologically active solids such as scale components. As a result, the specific surface area in contact with bulk water per carrier filling volume decreases, and the surface area in contact with bulk water per aeration tank volume decreases. In addition, regardless of the presence or absence of voids inside the carrier, if it is operated for a long period of time, the sludge density within the biofilm will increase, or the solids in the microbial film may increase due to the accumulation of non-biologically active solids such as scale components. As the physical density increases, the oxygen diffusion rate decreases.

さらに、固定担体に付着させた生物膜を利用する処理の場合は、運用期間が長期に渡ると担体間の空間に過剰な生物膜が保持されていく傾向がある。このような状況では、生物膜保持量の増加に応じバルク水相の容量が相対的に低下する。また、この状態がさらに進むと、担体間の空間が生物膜により閉塞し、バルク水が流入できない空間が発生する。この結果、バルク水相と生物膜との接触面積が徐々に低下し、生物膜への酸素や汚濁物質の浸透透過性が経時的に低下する傾向がある。 Furthermore, in the case of a treatment that utilizes biofilm attached to fixed carriers, over a long period of operation, there is a tendency for excessive biofilm to be retained in the spaces between the carriers. In such a situation, the capacity of the bulk aqueous phase decreases relatively as the biofilm retention increases. Furthermore, if this condition progresses further, the spaces between the carriers become blocked by biofilms, creating spaces into which bulk water cannot flow. As a result, the contact area between the bulk water phase and the biofilm gradually decreases, and the permeability of oxygen and pollutants to the biofilm tends to decrease over time.

<制御ロジックの構築例>
本発明で使用する曝気制御の手法として、高負荷時には一般的なDO制御を行い、低負荷時には弱曝気と強曝気を交互に繰り返すいわゆる間欠曝気を組み合わせた場合の事例を説明する。本事例の間欠曝気では、一定時間サイクル毎に、所定時間最低限の一定風量で曝風量の抑制を行う弱曝気工程と、残りの時間DO制御を行う強曝気工程をくりかえす。本事例の間欠曝気の説明では、弱曝気工程を状曝気工程から構成される制御サイクルの合計工程時間をサイクル時間と称し、弱曝気工程の工程時間を弱曝気工程時間、強曝気工程の工程時間を強曝気工程時間と称する。
<Example of control logic construction>
As an aeration control method used in the present invention, a case will be described in which general DO control is performed at high loads, and so-called intermittent aeration is combined, in which weak aeration and strong aeration are alternately repeated at low loads. In the intermittent aeration of this example, a weak aeration process in which the aeration volume is suppressed at a minimum constant air volume for a predetermined time period, and a strong aeration process in which DO control is performed for the remaining time are repeated every fixed time cycle. In the explanation of intermittent aeration in this example, the total process time of the control cycle consisting of the weak aeration process is called the cycle time, and the process time of the weak aeration process is called the weak aeration process time, and the process time of the strong aeration process. is called the strong aeration process time.

原水負荷や反応槽の酸素消費速度と、DO目標値や曝気強度設定値(本事例では弱曝気工程時間の設定値)の適正値との相関関係を、複数の酸素拡散性指標において予め作成する。原水負荷とDO目標値および弱曝気工程時間との相関を制御表で整理した下記の表1を例に説明する。 Create in advance the correlation between the raw water load and oxygen consumption rate of the reaction tank and the appropriate values of the DO target value and aeration intensity setting value (in this example, the setting value of the weak aeration process time) using multiple oxygen diffusivity indicators. . The following Table 1, in which the correlation between raw water load, DO target value, and weak aeration process time is arranged in a control table, will be explained as an example.

下記の表1では、上から順番に5個の制御表(相関関係表)が示されている。各表は、それぞれ生物膜における酸素拡散性が異なる条件を想定して作成されており、1番目の表が最も酸素拡散性が高い条件で作成され、順次酸素拡散性が低下し、5番目の表がもっとも酸素拡散性が悪い想定での表となっている。各々の表はTOC担体容積負荷とDO目標値及び弱曝気工程時間設定値との関係を表わしている。 In Table 1 below, five control tables (correlation tables) are shown in order from the top. Each table has been created assuming different conditions for oxygen diffusivity in biofilms, with the first table being created under conditions with the highest oxygen diffusivity, the oxygen diffusivity decreasing sequentially, and the fifth table being created under conditions with the highest oxygen diffusivity. The table assumes the worst oxygen diffusivity. Each table represents the relationship between TOC carrier volume load, DO target value, and weak aeration process time setting value.

例えば、上から3番目の表では、担体充填容積当りTOC負荷[kgC/(m・d)。以下、単位を省略する場合がある。]が0.1以上~0.6未満の負荷条件では強曝気工程におけるDO目標値を3.1mg/Lとし、TOC負荷0.1以上~0.2未満の場合は弱曝気工程時間を2時間ごとに110分、TOC負荷0.2以上0.3未満の場合は弱曝気工程時間を2時間ごとに90分、TOC負荷0.3以上0.4未満の場合は弱曝気工程時間を2時間ごとに80分、TOC負荷0.4以上0.5未満の場合は弱曝気工程時間を2時間ごとに60分、TOC負荷0.5以上0.6未満の場合は弱曝気工程時間を2時間ごとに40分をそれぞれ適正値として設定しており、TOC負荷0.6以上0.7未満の場合は強曝気工程でのDO目標値を3.8mg/L弱曝気工程時間を2時間ごとに20分、TOC負荷0.7以上の場合は、間欠曝気を行わず(弱曝気時間を0分として)TOC負荷0.7以上0.9未満の場合はDO目標値を3.9とし、TOC負荷0.9以上1.0未満の場合はDO目標値を4.4、TOC負荷1.0以上の場合はDO目標値を4.8をそれぞれ適正値として設定している。他の表も同様である。 For example, in the third table from the top, TOC load per carrier filling volume [kgC/(m 3 d). Below, units may be omitted. ] is 0.1 or more and less than 0.6, the DO target value in the strong aeration process is set to 3.1 mg/L, and when the TOC load is 0.1 or more and less than 0.2, the weak aeration process time is set to 2. 110 minutes per hour, if the TOC load is 0.2 or more and less than 0.3, the weak aeration process time is 90 minutes every 2 hours, and if the TOC load is 0.3 or more and less than 0.4, the weak aeration process time is 2 hours. 80 minutes per hour, if the TOC load is 0.4 or more and less than 0.5, the weak aeration process time is 60 minutes every 2 hours, and if the TOC load is 0.5 or more and less than 0.6, the weak aeration process time is 2 hours. 40 minutes is set as the appropriate value for each hour, and if the TOC load is 0.6 or more and less than 0.7, the DO target value in the strong aeration process is set to 3.8 mg/L every 2 hours during the weak aeration process. If the TOC load is 0.7 or more, do not perform intermittent aeration (weak aeration time is set to 0 minutes), and if the TOC load is 0.7 or more and less than 0.9, set the DO target value to 3.9. When the TOC load is 0.9 or more and less than 1.0, the DO target value is set to 4.4, and when the TOC load is 1.0 or more, the DO target value is set to 4.8. The same applies to other tables.

処理水水質(例えばTOC濃度)が所定時間にわたって良好なときは、1つ上の制御表に移行し、逆に処理水水質が所定時間にわたって不良なときは、1つ下の制御表に移行する。例えば、標準の制御表(上から3番目の表)を用いて適切に曝気制御を継続していたにも拘わらず処理水水質が悪化したときは酸素拡散性が悪化したとみなし、1つ下側の制御表(上から4番目の表)を用いた曝気制御に切り替える。逆に処理水水質が過度に良くなったときは曝気を弱めても安定処理できるとみなして1つ上側の制御表(上から2番目の表)を用いた曝気制御に切り替える。本制御手順の適用により、実機の生物膜の状態に応じた酸素拡散性を想定した制御表が自動的に選択されることになり、結果として酸素拡散性指標を推定していることになる。 When the quality of the treated water (for example, TOC concentration) is good for a predetermined period of time, the control table moves to the next higher control table, and conversely, when the quality of the treated water is poor for a predetermined period of time, the control table moves to the next lower control table. . For example, if the quality of the treated water deteriorates despite continued appropriate aeration control using the standard control table (third table from the top), it is assumed that the oxygen diffusivity has deteriorated, and the level is lowered. Switch to aeration control using the side control table (fourth table from the top). On the other hand, when the quality of the treated water becomes excessively good, it is assumed that stable treatment can be achieved even if the aeration is weakened, and the aeration control is switched to using the control table one level above (the second table from the top). By applying this control procedure, a control table that assumes oxygen diffusivity according to the state of the actual biofilm will be automatically selected, and as a result, the oxygen diffusivity index will be estimated.

なお酸素拡散性指標は実機で直接計測することは困難であるが、上記の操作により通常の運転データから推定することが可能となる。 Although it is difficult to directly measure the oxygen diffusivity index with an actual machine, the above operation makes it possible to estimate it from normal operation data.

Figure 0007347304000001
Figure 0007347304000001

最も処理性能が低下した状況を想定した制御表(表1では最下段の制御表)を選択して制御しているときに処理水のTOCが制御目標のTOC上限値よりも高い場合、それよりも曝気強度を大きくした制御表は設定されていないので、生物膜保持量低減処理を行って性能を回復させる。 If the TOC of the treated water is higher than the TOC upper limit value of the control target when controlling by selecting the control table assuming the situation where the treatment performance has deteriorated the most (the lowest control table in Table 1), However, since no control table has been set for increasing the aeration intensity, performance is restored by performing biofilm retention reduction treatment.

なお、処理性能が若干低下した段階(例えば上から4番目の制御表の状態)であっても、曝気強化のエネルギー効率やコストなどを考慮して、生物膜保持量低減処理を行うことにより性能を回復させるようにしてもよい。 Even if the treatment performance is at a stage where it has slightly decreased (for example, the state shown in the fourth control table from the top), performance can be improved by performing biofilm retention reduction treatment, taking into consideration the energy efficiency and cost of strengthening aeration. It may be possible to recover the .

<制御の管理指標>
原水負荷を管理指標とする場合の原水担体負荷の計算方法について、図4を用いて次に説明する。
<Control management indicators>
A method of calculating the raw water carrier load when the raw water load is used as a management index will be explained next using FIG. 4.

[TOC計と流量計から原水負荷を算出する方法]
図4に示す生物処理装置は、原水のTOC濃度の計測値を利用した原水負荷に基づく曝気制御を行うものである。
[How to calculate raw water load from TOC meter and flow meter]
The biological treatment apparatus shown in FIG. 4 performs aeration control based on the raw water load using the measured value of the TOC concentration of the raw water.

図4の生物処理装置では、被処理排水(原水)は、配管1を通じて曝気槽2に導入される。曝気槽2内には、生物膜を担持した担体Cが充填されている。曝気槽2内の底部には散気管3が設置されており、ブロア4から配管5を通じて空気が供給され、曝気が行われる。 In the biological treatment apparatus shown in FIG. 4, wastewater to be treated (raw water) is introduced into an aeration tank 2 through a pipe 1. The aeration tank 2 is filled with a carrier C carrying a biofilm. An aeration pipe 3 is installed at the bottom of the aeration tank 2, and air is supplied from a blower 4 through a pipe 5 to perform aeration.

生物膜によって好気的に生物処理された水は、スクリーン6を通り抜け、配管7から処理水として取り出される。 The water that has been aerobically treated by the biofilm passes through the screen 6 and is taken out from the pipe 7 as treated water.

この生物処理装置では、計測手段として、配管1を流れる原水の流量及びTOC濃度を測定する流量計22及びTOC計23と、曝気槽2内のDOを測定するDO計19と、ブロア14から散気管13へ供給される空気量を測定する風量計20が設けられており、これらの検出値が制御器21に入力される。制御器21によってブロア14が制御されることにより曝気強度が制御される。 In this biological treatment device, as measuring means, a flow meter 22 and a TOC meter 23 that measure the flow rate and TOC concentration of raw water flowing through the pipe 1, a DO meter 19 that measures DO in the aeration tank 2, and a DO meter 23 that measures the DO in the aeration tank 2, and a An airflow meter 20 is provided to measure the amount of air supplied to the trachea 13, and these detected values are input to the controller 21. The blower 14 is controlled by the controller 21, thereby controlling the aeration intensity.

原水流量を流量計22で測定し、TOC計23で原水のTOC濃度を測定することで、TOC負荷を算出する。 TOC load is calculated by measuring the raw water flow rate with a flow meter 22 and measuring the TOC concentration of the raw water with a TOC meter 23.

<原水負荷>
原水負荷は次式によって算出される。
<Raw water load>
The raw water load is calculated using the following formula.

Load=Q・Conc
Load:原水負荷[kg/d]
Q:原水流量[m/d]
Conc:原水濃度[kg/m
原水濃度としてはTOCに限らず、微生物による酸化処理の対象となる物質の濃度であれば処理目的に応じて他の指標を利用してもよい。典型的にはCODCr、CODMn、亜硝酸性窒素、アンモニア性窒素、有機アミン類等の特定化学物質の濃度を利用することが可能である。
Load=Q・Conc
Load: Raw water load [kg/d]
Q: Raw water flow rate [m 3 /d]
Conc: Raw water concentration [kg/m 3 ]
The raw water concentration is not limited to TOC, but other indicators may be used depending on the purpose of treatment as long as it is the concentration of a substance to be oxidized by microorganisms. Typically, concentrations of specific chemical substances such as COD Cr , CODMn , nitrite nitrogen, ammonia nitrogen, organic amines, etc. can be utilized.

<担体容積負荷>
担体容積負荷は次式によって算出される。
<Carrier volume load>
The carrier volume load is calculated by the following formula.

LoadCarrierVol=Load/VCarrier
LoadCarrierVol:担体容積負荷[kg/(m・d)]
Carrier:曝気槽内の担体充填容積[m
Load Carrier Vol = Load/V Carrier
Load CarrierVol : Carrier volume load [kg/( m3・d)]
V Carrier : carrier filling volume in the aeration tank [m 3 ]

<担体表面積負荷>
担体表面積負荷は次式によって算出される。
<Surface area load of carrier>
The carrier surface area loading is calculated by the following formula.

LoadCarrierSurf=Load/SCarrier
LoadCarrierSurf:担体表面積負荷[kg/(m・d)]
Carrier:曝気槽内の担体群の総表面積[m
Load CarrierSurf = Load/S Carrier
Load CarrierSurf : Carrier surface area load [kg/( m2・d)]
S Carrier : Total surface area of the carrier group in the aeration tank [m 2 ]

なお、曝気槽においては、原水負荷は経時的に分単位で急速に変動することがあるが、担体の性状(曝気槽内の担体充填容積又は曝気槽内の担体群の総表面積)の経時的変化は日から月単位で比較的緩慢に変化する。そのため、原水負荷の計算値は頻繁に更新するのが好ましい。また、曝気槽内の担体充填容積又は曝気槽内の担体群の総表面積については、担体を定期的に(例えば1~3ヶ月に1回程度の頻度で)サンプリングして解析し、担体充填容積、担体群の総表面積データを更新すればよい。 In addition, in an aeration tank, the raw water load may change rapidly on a minute-by-minute basis over time, but the characteristics of the carrier (the carrier filling volume in the aeration tank or the total surface area of the carrier group in the aeration tank) change over time. Changes occur relatively slowly, from days to months. Therefore, it is preferable to update the calculated raw water load frequently. In addition, the carrier filling volume in the aeration tank or the total surface area of the carrier group in the aeration tank is determined by sampling and analyzing the carriers periodically (for example, once every 1 to 3 months). , the total surface area data of the carrier group may be updated.

[酸素消費速度を管理指標とした制御]
[酸素消費速度の演算方法]
本発明の一態様では、酸素消費速度を管理指標として曝気制御を行う。即ち、酸素消費速度が所定値以下となる低負荷条件下において曝気強度を規定強度以上とする。このように酸素消費速度を管理指標とする場合の酸素消費速度の演算方法について、図5を用いて説明する。
[Control using oxygen consumption rate as a management index]
[How to calculate oxygen consumption rate]
In one aspect of the present invention, aeration control is performed using the oxygen consumption rate as a management index. That is, under low load conditions where the oxygen consumption rate is below a predetermined value, the aeration intensity is set to be above the specified intensity. A method of calculating the oxygen consumption rate when the oxygen consumption rate is used as a management index in this way will be explained using FIG. 5.

図5の生物処理装置では、被処理排水(原水)は、配管1を通じて曝気槽2に導入される。曝気槽2内には、生物膜を担持した担体Cが充填されている。曝気槽2内の底部には散気管3a,3b,3cが設置されており、ブロア4から配管5及び分岐配管5a,5b,5cを通じて空気が供給され、曝気が行われる。曝気槽2には天蓋2rが設けられている。 In the biological treatment apparatus shown in FIG. 5, wastewater to be treated (raw water) is introduced into an aeration tank 2 through a pipe 1. The aeration tank 2 is filled with a carrier C carrying a biofilm. Aeration pipes 3a, 3b, and 3c are installed at the bottom of the aeration tank 2, and air is supplied from the blower 4 through the pipe 5 and branch pipes 5a, 5b, and 5c, and aeration is performed. The aeration tank 2 is provided with a canopy 2r.

生物膜によって好気的に生物処理された水は、スクリーン6を通り抜け、配管7から処理水として取り出される。 The water that has been aerobically treated by the biofilm passes through the screen 6 and is taken out from the pipe 7 as treated water.

この生物処理装置では、計測手段として、曝気槽2上部かつ天蓋2r下側の気相部ガス中の酸素濃度を測定する排ガス計24と、曝気槽2内のDOを測定するDO計19と、ブロア4から散気管3a~3cへ供給される空気量を測定する風量計20が設けられている。 In this biological treatment device, as measurement means, an exhaust gas meter 24 that measures the oxygen concentration in the gas phase gas above the aeration tank 2 and below the canopy 2r, and a DO meter 19 that measures DO in the aeration tank 2. An airflow meter 20 is provided to measure the amount of air supplied from the blower 4 to the diffuser pipes 3a to 3c.

<ケース1:風量計と排ガス計から酸素消費速度を演算する方法>
曝気風量と排ガス中の酸素濃度を計測し、酸素消費速度qOを次式により直接的に演算する。
<Case 1: Method of calculating oxygen consumption rate from airflow meter and exhaust gas meter>
The aeration air volume and the oxygen concentration in the exhaust gas are measured, and the oxygen consumption rate qO 2 is directly calculated using the following equation.

Figure 0007347304000002
Figure 0007347304000002

Figure 0007347304000003
Figure 0007347304000003

OTE:酸素移動効率[-]
:吹き込み空気中の酸素モル分率[-]
Z:排ガス中の酸素モル分率[-]
qO:酸素消費速度[kg/d]
Gν:標準状態換算の曝気空気の吹き込み流量[Nm/d]
ν:酸素の比容[Nm/kg]
OTE: Oxygen transfer efficiency [-]
Z 0 : Oxygen molar fraction in blown air [-]
Z: Oxygen mole fraction in exhaust gas [-]
qO 2 : Oxygen consumption rate [kg/d]
Gν: Aeration air blowing flow rate converted to standard conditions [Nm 3 /d]
ν m : Specific volume of oxygen [Nm 3 /kg]

<ケース2:DO計と曝気風量とから酸素消費速度を計算する方法>
曝気風量とDOを計測し、酸素消費速度qOを間接的に推算する。
(i) (制御装置実装前の準備)酸素消費速度の推算に必要な酸素溶解性指標φを次式により算出する。
<Case 2: Method of calculating oxygen consumption rate from DO meter and aeration air volume>
The aeration air volume and DO are measured to indirectly estimate the oxygen consumption rate qO2 .
(i) (Preparation before installing the control device) Calculate the oxygen solubility index φ necessary for estimating the oxygen consumption rate using the following formula.

Figure 0007347304000004
Figure 0007347304000004

Figure 0007347304000005
Figure 0007347304000005

OTE:酸素移動効率[-]
:吹き込み空気中の酸素モル分率[-]
Z:排ガス中の酸素モル分率[-]
φ:酸素溶解性指標[m]
ν:酸素の比容[Nm/kg]
h:散気装置の水深[m]
Cs:飽和溶存酸素濃度[kg/m
C:混合液中の溶存酸素濃度[kg/m
OTE: Oxygen transfer efficiency [-]
Z 0 : Oxygen molar fraction in blown air [-]
Z: Oxygen mole fraction in exhaust gas [-]
φ: Oxygen solubility index [m]
ν m : Specific volume of oxygen [Nm 3 /kg]
h: Water depth of the air diffuser [m]
Cs: Saturated dissolved oxygen concentration [kg/m 3 ]
C: Dissolved oxygen concentration in the mixed liquid [kg/m 3 ]

(ii) (装置稼働時)酸素消費速度の経時変化を連続計測する。 (ii) (During equipment operation) Continuously measure changes in oxygen consumption rate over time.

DO計と曝気風量の連続計測データ、および予め求めた酸素溶解性指標φから酸素消費速度qOを次式により連続推算する。 The oxygen consumption rate qO 2 is continuously estimated from the DO meter, continuous measurement data of the aeration air volume, and the oxygen solubility index φ determined in advance using the following equation.

Figure 0007347304000006
Figure 0007347304000006

qO:酸素消費速度[kg/d]
Gν:標準状態換算の曝気空気の吹き込み流量[Nm/h]
h:散気装置の水深[m]
Cs:飽和溶存酸素濃度[kg/m
C:混合液中の溶存酸素濃度[kg/m
φ:酸素溶解性指標[m]
qO 2 : Oxygen consumption rate [kg/d]
Gν: Aeration air blowing flow rate converted to standard conditions [Nm 3 /h]
h: Water depth of the air diffuser [m]
Cs: Saturated dissolved oxygen concentration [kg/m 3 ]
C: Dissolved oxygen concentration in the mixed liquid [kg/m 3 ]
φ: Oxygen solubility index [m]

[原水負荷又は酸素消費速度と、DO濃度目標値及び/又は曝気強度設定値との相関関係]
原水負荷又は酸素消費速度と、DO濃度目標値及び/または曝気強度設定値との相関関係は、予備実験の結果データ、実機の運転実績データ、生物膜における酸素の拡散性を考慮した機構モデルのシミュレーション結果などを用いて設定される。
[Correlation between raw water load or oxygen consumption rate and DO concentration target value and/or aeration intensity setting value]
The correlation between the raw water load or oxygen consumption rate and the DO concentration target value and/or aeration intensity setting value is determined based on preliminary experiment result data, actual operating performance data, and a mechanistic model that takes into account the diffusivity of oxygen in biofilms. It is set using simulation results, etc.

この相関関係は、原水負荷とDO目標値および/又は曝気強度設定値の適正値との関数関係を記述した関数式、あるいは、制御表などで整理し利用する。 This correlation is organized and utilized in a functional formula or a control table that describes the functional relationship between the raw water load and the DO target value and/or the appropriate value of the aeration intensity setting value.

[制御表を作成するための生物膜機構モデル]
制御表を構築するための1手法として、汚濁物質と酸素を含む流動状態にあるバルク水相に生物膜が接したときの、汚濁物質の減少や生物膜中の活性汚泥菌体量の増減を推定する動力学モデル(以降、生物膜機構モデルと称する場合がある。)を利用することができる。このような動力学モデルは、菌体増殖と汚濁物質の消費・酸素消費が生物膜内で同時に発生する状況、バルク水相中の溶存酸素の生物膜への拡散およびエアレーションにより酸素がバルク水量に溶解する現象も考慮して構築する必要がある。また、生物膜の増加や縮小は、菌体の増殖および死滅に伴った菌体群の体積の増加および減少やバルク水からの菌体の付着およびバルク水への菌体の剥離により発生する。生物膜利用処理に動力学モデルを利用する場合これらの現象を数学モデル化する必要がある。このような現象は本来3次元空間で発生する現象のため、モデル化は複雑なものとなるが、生物膜の増加・縮小を厚さ方向のみの変化を考慮する1次元モデルで表現することでシミュレーションを比較的容易に行うことができる。活性汚泥による排水処理をシミュレーションするための数学モデルとしては、例えばInternational Water AssociationのTask groupが提案している一連の数学モデルが活用できる(下記報文1)。生物膜を対象とした数学モデル例としては、下記報文2などが報告されている。
[Biofilm mechanism model for creating control table]
One method for constructing a control table is to measure the decrease in pollutants and the increase or decrease in the amount of activated sludge bacteria in the biofilm when the biofilm comes into contact with the bulk water phase in a fluid state containing pollutants and oxygen. A dynamic model to estimate (hereinafter sometimes referred to as a biofilm mechanism model) can be used. Such a dynamic model assumes a situation in which bacterial growth, contaminant consumption, and oxygen consumption occur simultaneously within a biofilm, and a situation in which dissolved oxygen in the bulk water phase diffuses into the biofilm and oxygen increases in bulk water volume due to aeration. It is necessary to consider the phenomenon of dissolution when constructing the system. Furthermore, the increase or shrinkage of the biofilm occurs due to an increase or decrease in the volume of a bacterial group due to proliferation and death of bacterial cells, adhesion of bacterial cells from bulk water, or detachment of bacterial cells to bulk water. When using a dynamic model for biofilm treatment, it is necessary to mathematically model these phenomena. Since such phenomena originally occur in three-dimensional space, modeling is complicated, but it is possible to express the increase and shrinkage of biofilms using a one-dimensional model that takes into account changes only in the thickness direction. Simulations can be performed relatively easily. As a mathematical model for simulating wastewater treatment using activated sludge, for example, a series of mathematical models proposed by the International Water Association's Task Group can be used (Report 1 below). As an example of a mathematical model targeting biofilms, the following paper 2 has been reported.

1. M Henze; IWA. Task Group on Mathematical Modelling for Design andoperaton of Biological Wastewater Treatment; et al
2.Boltz, J. P., Johnson, B.R., Daigger, G.T., Sandino, J., (2009a). “Modeling Integrated Fixed-Film Activated Sludge and Moving Bed Biofilm Reactor Systems I: Mathematical Treatment and Model Development”. Water Environment Research, 81(6), 555-575
1. M Henze; IWA. Task Group on Mathematical Modeling for Design and operation of Biological Wastewater Treatment; et al
2. Boltz, JP, Johnson, BR, Daigger, GT, Sandino, J., (2009a). “Modeling Integrated Fixed-Film Activated Sludge and Moving Bed Biofilm Reactor Systems I: Mathematical Treatment and Model Development”. Water Environment Research, 81( 6), 555-575

前項のような数学モデルを利用することで、例えば流動床担体の数学モデルを構築することができる。一般にこのような数学モデルは連立常微分方程式の形式で記述されることが多く、連立常微分方程式の数値積分ソフトウエアを利用して同プロセスの動的な挙動をシミュレーションすることができる。例えば、特定の装置構成、負荷想定、曝気強度により変化するバルク水相のDOの条件に応じた処理水質の予想を行うことが可能である。 By using the mathematical model as described in the previous section, for example, a mathematical model of a fluidized bed carrier can be constructed. Generally, such mathematical models are often described in the form of simultaneous ordinary differential equations, and the dynamic behavior of the same process can be simulated using numerical integration software for simultaneous ordinary differential equations. For example, it is possible to predict the quality of treated water according to the DO conditions of the bulk water phase, which vary depending on the specific equipment configuration, load assumption, and aeration intensity.

前項のような数学モデルを利用することで、様々な負荷条件に対して、様々な曝気強度で処理を行った際の、例えば処理水のTOC濃度を予想することができる。シミュレーション結果を整理した表を作成し、本発明の制御システムで利用する制御表に活用できる。 By using a mathematical model such as that described in the previous section, it is possible to predict, for example, the TOC concentration of treated water when treatment is performed at various aeration intensities under various load conditions. A table organizing the simulation results can be created and utilized as a control table used in the control system of the present invention.

[曝気強度の制御]
本特許実装の一様態として、高負荷時には一般的なDO制御を行い、低負荷時には弱曝気と強曝気を交互に繰り返すいわゆる間欠曝気を組み合わせた事例を説明する。本事例の間欠曝気では、一定の時間サイクル毎に、所定時間必要最低限の一定風量で曝気風量を抑制もしくは曝気停止を行う弱曝気工程と、残りの時間DO制御を行う強曝気工程とを繰り返す。曝気停止時間はいわゆる間欠曝気における一定の時間サイクルの内曝気を停止する時間を示す。曝気抑制時間とは、強曝気と弱曝気を交互に繰り返す運転における弱曝気の時間である。本事例の間欠曝気の説明では、弱曝気工程と強曝気工程から構成される制御サイクルの合計工程時間をサイクル時間と称し、弱曝気工程の工程時間を弱曝気工程時間、強気工程の工程時間を強曝気工程時間と称する。弱曝気工程の時間および強曝気工程におけるDO目標値は、原水負荷に応じて連続的又は段階的に制御する。強曝気工程時間はサイクル時間から弱曝気工程時間を引いた時間として自動的に決定される。また、弱曝気工程時間を調整する場合の最長時間を最長弱曝気工程時間と称する。
[Control of aeration intensity]
As one aspect of the implementation of this patent, a case will be described in which general DO control is performed at high loads, and so-called intermittent aeration is performed in which weak aeration and strong aeration are alternately repeated at low loads. In the intermittent aeration in this case, a weak aeration process in which the aeration air volume is suppressed or aeration is stopped at a constant minimum required air volume for a predetermined time period is repeated every fixed time cycle, and a strong aeration process in which DO control is performed for the remaining time. . The aeration stop time indicates the time during which aeration is stopped within a certain time cycle in so-called intermittent aeration. The aeration suppression time is the time for weak aeration in an operation in which strong aeration and weak aeration are alternately repeated. In the explanation of intermittent aeration in this case, the total process time of the control cycle consisting of the weak aeration process and the strong aeration process is referred to as cycle time, and the process time of the weak aeration process is called the weak aeration process time, and the process time of the strong process is called the cycle time. This is called strong aeration process time. The time of the weak aeration step and the DO target value in the strong aeration step are controlled continuously or stepwise depending on the raw water load. The strong aeration process time is automatically determined as the cycle time minus the weak aeration process time. Further, the longest time when adjusting the weak aeration process time is referred to as the longest weak aeration process time.

DO目標値、弱曝気工程時間は、原水負荷に応じて連続的又は段階的に制御する。 The DO target value and weak aeration process time are controlled continuously or stepwise depending on the raw water load.

〔コスト対比〕
本発明では、生物膜保持量低減処理を現時点で行う場合と、現時点では行わず、その後所定期間f経過後に行う場合とについて、電力コスト及び生物膜保持量低減処理コストを対比する。
[Cost comparison]
In the present invention, the electric power cost and the biofilm retention amount reduction processing cost are compared between the case where the biofilm retention amount reduction process is performed at the present time and the case where it is not performed at the present time and is performed after a predetermined period f has passed.

[所定期間]
所定期間fは、任意に設定できるが、通常は1カ月~36カ月、特に12カ月~24カ月の間から選定されることが好ましい。
[Predetermined period]
The predetermined period f can be set arbitrarily, but it is usually selected from 1 month to 36 months, particularly preferably from 12 months to 24 months.

[生物膜保持量低減処理を行わない場合の電力費用(コスト)Aの算定]
現時点で生物膜保持量低減処理を行わない場合の電力使用量予測を行うには、現時点と、現時点から規定時間遡った過去との間の規定期間における電力消費実績に基づいて単位時間当りの電力消費量H(該規定期間における平均実績値)を求める。
[Calculation of electricity cost (cost) A when biofilm retention amount reduction treatment is not performed]
In order to predict the amount of electricity used in the case where biofilm retention amount reduction treatment is not performed at the present time, it is necessary to calculate the amount of electricity per unit time based on the actual electricity consumption in a specified period between the present moment and the past specified time from the present moment. The consumption amount H (average actual value in the specified period) is determined.

現時点からその後の所定期間fの間の電力消費量を予測する第1の予測方法は、所定期間fの間中、単位時間当りの電力消費量はそれまでと同じHで推移するとみなすものである。この場合、所定期間fの累計電力消費量はH・fとして算出され、これに電力単価aを乗じたH・f・aが所定期間fにおける電力費用Aとなる。 The first prediction method for predicting the power consumption from the current moment to the subsequent predetermined period f is to assume that the power consumption per unit time changes at the same H as before during the predetermined period f. . In this case, the cumulative power consumption for the predetermined period f is calculated as H·f, and H·f·a obtained by multiplying this by the power unit price a becomes the power cost A for the predetermined period f.

第2の予測方法は、所定期間fの間中、単位時間当りの電力消費量は予め設定した逓増パターンに従って逓増するとみなすものである。 The second prediction method assumes that power consumption per unit time increases gradually during a predetermined period f according to a preset increasing pattern.

この逓増パターンは、数式モデルであってもよく、生物処理装置の運転実績から求めた平均増加率にて単位時間当りの電力消費量が増加するパターンであってもよい。 This increasing pattern may be a mathematical model, or may be a pattern in which the power consumption per unit time increases at an average rate of increase determined from the operational history of the biological treatment device.

いずれの逓増パターンの場合であっても、所定期間fにおける累計電力所定期間に電力単価aを乗算することにより、所定期間fにおける電力費用Aが算出される。 Regardless of the increasing pattern, the electric power cost A for the predetermined period f is calculated by multiplying the cumulative electric power predetermined period for the predetermined period f by the electric power unit price a.

[生物膜保持量低減処理を行った場合の電力費用(コスト)Bの算定]
生物膜保持量低減処理を行うと、生物膜の酸素拡散性が向上するので、曝気量を少なくしてもTOCを良好に処理することができる。曝気量を減少させることにより、ブロア電力消費量が減少する。
[Calculation of electricity cost (cost) B when biofilm retention amount reduction treatment is performed]
When the biofilm retention amount reduction treatment is performed, the oxygen diffusivity of the biofilm is improved, so TOC can be treated satisfactorily even if the amount of aeration is reduced. By reducing the amount of aeration, blower power consumption is reduced.

電力消費量がどの程度減少するかは、生物膜保持量低減処理により上記制御表が何段階上のものにシフトするかに依存する。そこで、生物処理装置の運転実績から、制御表が生物膜保持量低減処理により何段階シフトするかを求めておくのが好ましい。 The extent to which the power consumption is reduced depends on how many levels the control table is shifted to by the biofilm retention amount reduction process. Therefore, it is preferable to determine in advance how many stages the control table should be shifted by the biofilm retention amount reduction process based on the operational history of the biological treatment device.

例えば、生物膜保持量低減処理により制御表が上位の表にシフトする場合、シフト後の制御表に従って制御したときの単位時間当りの平均電力消費量と、シフト前の制御表に従って制御したときの単位時間当りの平均電力消費量との比αを実績データから求めるか、又は予想値として設定しておく。そして、このαを上記金額Aに乗算することにより(すなわちB=α・Aとして)、Bを算出することができる。 For example, when the control table is shifted to a higher table due to biofilm retention reduction processing, the average power consumption per unit time when controlled according to the control table after the shift, and the average power consumption when controlled according to the control table before the shift. The ratio α to the average power consumption per unit time is determined from actual data or is set as an expected value. Then, B can be calculated by multiplying the amount A by this α (ie, B=α·A).

[生物膜保持量低減処理費用C]
生物膜保持量低減処理費用Cには、処理作業で使用する部材の単価データ、処理作業の労務費データ、ポンプの動力費用、強曝気時のブロワの増強分の動力費用などが含まれる。
[Biofilm retention amount reduction treatment cost C]
The biofilm retention amount reduction processing cost C includes unit price data of members used in the processing work, labor cost data for the processing work, power cost for the pump, power cost for increasing the blower during strong aeration, etc.

これらのデータは実績データから分かるが、初期には各費用の予測値の合計として設定しておけばよい。 Although these data can be known from the actual data, it is sufficient to initially set them as the sum of the predicted values of each cost.

[費用Aと費用(B+C)との対比]
費用(B+C)が費用Aよりも低い場合に生物膜保持量低減処理が好適と判断し、この処理を行う。なお、費用(B+C)が費用Aよりも予め設定した規定金額以上低い場合に、生物膜保持量低減処理が好適と判断し、この処理を行うようにしてもよい。
[Comparison between cost A and cost (B+C)]
When the cost (B+C) is lower than the cost A, it is determined that the biofilm retention amount reduction treatment is suitable, and this treatment is performed. Note that if the cost (B+C) is lower than the cost A by a predetermined amount or more, it may be determined that the biofilm retention amount reduction process is suitable, and this process may be performed.

制御器21がこの対比を行い、生物膜保持量低減処理開始信号をポンプ11及び撹拌機13や強曝気用ブロア17等の生物膜保持量低減処理装置に作動信号を与えるようにしてもよく、別途設置したコスト比較回路が生物膜保持量低減処理開始信号を出力してもよく、作業員が比較結果に基づいて生物膜保持量低減処理操作を実行させてもよい。 The controller 21 may perform this comparison and give an activation signal to the biofilm retention amount reduction processing device such as the pump 11, the stirrer 13, or the strong aeration blower 17, A separately installed cost comparison circuit may output a biofilm retention amount reduction processing start signal, or an operator may execute the biofilm retention amount reduction processing operation based on the comparison result.

コストAと(B+C)の算出及び対比は、連続的に行ってもよく、間欠的に行ってもよく、算出・対比指令信号が与えられたときに行ってもよい。 The calculation and comparison of costs A and (B+C) may be performed continuously, intermittently, or when a calculation/comparison command signal is given.

[流動床以外の生物処理]
図1では、流動床担体を用いた生物処理について説明したが、固定床担体やグラニュールを用いる場合も同様の手法で本発明を実施することができる。
[Biological treatment other than fluidized bed]
In FIG. 1, biological treatment using a fluidized bed carrier has been described, but the present invention can be carried out in a similar manner when using a fixed bed carrier or granules.

本実施形態では、有機物を含む排水を、曝気を伴う好気性生物膜処理により処理するときに用いることを説明したが、他にも生物膜を用いた生物学的硝化脱窒処理など、曝気槽にて生物膜を用いた好気処理工程を含む生物処理を行う場合にも同じ手法で本発明を実施することができる。 In this embodiment, it has been explained that it is used when wastewater containing organic matter is treated by aerobic biofilm treatment accompanied by aeration. The present invention can also be carried out using the same method when performing biological treatment including an aerobic treatment step using biofilm.

[実施例1]
図1に示す、下記構成条件を有した流動床担体の好気性生物処理装置を用いる場合について上記費用を対比する。なお、所定期間fは1年間とする。
曝気槽の容量:2000m、水深5m、底面積400m
担体の充填率:50%
担体充填容積:反応槽容積2000m×担体充填率50%=1000m
平均TOC負荷:1000kgC/比
TOC担体容積負荷
=TOC負荷1000[kgC/日]÷担体充填容積1000[m
=1.0[kgC/(m・d)]
使用する制御表:下記の表2,3
[Example 1]
The above costs will be compared for the case of using an aerobic biological treatment device using a fluidized bed carrier shown in FIG. 1 and having the following structural conditions. Note that the predetermined period f is one year.
Aeration tank capacity: 2000m 3 , water depth 5m, bottom area 400m 2
Carrier filling rate: 50%
Carrier filling volume: Reaction tank volume 2000 m 3 × carrier filling rate 50% = 1000 m 3
Average TOC load: 1000kgC/specific TOC carrier volume load
= TOC load 1000 [kgC/day] ÷ carrier filling volume 1000 [m 3 ]
=1.0[kgC/( m3・d)]
Control table used: Tables 2 and 3 below

表2は、現状の制御システムの設定から直接的に抽出した運転条件に基づいて作成した制御テーブルである。 Table 2 is a control table created based on operating conditions directly extracted from the current control system settings.

表3は、生物膜保持量低減処理により生物膜保持量が低減されて酸素拡散の性能指標が高い状況、すなわち生物処理性能の良い状況を想定した制御表である。 Table 3 is a control table assuming a situation where the biofilm retention amount is reduced by the biofilm retention amount reduction treatment and the oxygen diffusion performance index is high, that is, a situation where the biological treatment performance is good.

生物膜保持量低減処理を行うことによって、底面積あたりの風量は、担体容積負荷1.0kgC/(m・d)において、風量が20.0m/(m・h)から14.0m/(m・h)に大幅に削減される。 By performing biofilm retention reduction treatment, the air volume per bottom area is reduced from 20.0 m 3 /(m 2 ·h) to 14.0 m at a carrier volume load of 1.0 kgC/(m 3 ·d). 3 / (m 2 · h).

Figure 0007347304000007
Figure 0007347304000007

Figure 0007347304000008
Figure 0007347304000008

風量1N-mあたりの電力消費を0.017[kWh/風量m]とし、原水負荷が向こう1年間一定であると仮定すると、表4の通り、現時点で生物膜保持量低減処理を行った場合、年間消費電力は、生物膜保持量低減処理を1年間行わない場合に比べて、1.19GWh/年から0.83GWh/年に削減される。 Assuming that the power consumption per air volume of 1N- m3 is 0.017 [kWh/air volume m3 ] and that the raw water load remains constant for the next one year, as shown in Table 4, the amount of biofilm retention is currently being reduced. In this case, the annual power consumption will be reduced from 1.19 GWh/year to 0.83 GWh/year compared to the case where the biofilm retention amount reduction treatment is not performed for one year.

Figure 0007347304000009
Figure 0007347304000009

生物膜保持量低減処理を行わなかった場合と生物膜保持量低減処理を行ったときのトータル費用はそれぞれ次の通りである。 The total costs when the biofilm retention amount reduction treatment is not performed and when the biofilm retention amount reduction treatment is performed are as follows.

A=[生物膜保持量低減処理を行わない場合の年間電力費用]
=1.19GWh/年×電力単価
B=[生物膜保持量低減処理した場合の年間電力費用]
=0.83GWh/年×電力単価
C=[生物膜保持量低減処理費用]
B+C= 0.83GWh/年×電力単価+[生物膜保持量低減処理費用]
A = [Annual electricity cost without biofilm retention reduction treatment]
= 1.19GWh/year x electricity unit price B = [annual electricity cost when biofilm retention amount reduction treatment is performed]
= 0.83GWh/year x electricity unit price C = [Biofilm retention amount reduction treatment cost]
B + C = 0.83GWh/year x electricity unit price + [biofilm retention amount reduction treatment cost]

このようにして算出したトータル費用を比較することにより、生物膜保持量低減処理を行った場合のコストメリットを知ることができ、生物膜保持量低減処理を実施することがコストメリット面から好適と判断できた。 By comparing the total costs calculated in this way, it is possible to know the cost benefit of performing biofilm retention amount reduction treatment, and it is possible to know that implementing biofilm retention amount reduction treatment is preferable from a cost merit perspective. I was able to judge.

2 曝気槽
3,3a,3b,3c 散気管
4,17 ブロア
12 撹拌水槽
13 撹拌機
15 選別装置
2 Aeration tank 3, 3a, 3b, 3c Aeration pipe 4, 17 Blower 12 Stirring water tank 13 Stirrer 15 Sorting device

Claims (11)

原水を曝気槽に供給し、曝気槽に充填された生物膜保持担体またはグラニュールにより原水中の除去対象物質を好気性生物膜処理する方法において、
生物膜保持量低減処理を行わない場合における、その後の所定期間内の曝気電力費用Aを算出し、
生物膜保持量低減処理を行った場合における、その後の所定期間内の曝気電力費用Bと生物膜保持量低減処理費用Cとの合計費用(B+C)を算出し、
(B+C)とAとを比較し、(B+C)がAよりも小さいならば前記生物膜保持量低減処理を好適とする判定を行うことを特徴とする好気性生物膜処理方法。
In a method in which raw water is supplied to an aeration tank and a substance to be removed in the raw water is treated with an aerobic biofilm using a biofilm retention carrier or granules filled in the aeration tank,
Calculate the aeration power cost A within the subsequent predetermined period in the case where the biofilm retention amount reduction treatment is not performed,
Calculate the total cost (B + C) of aeration power cost B and biofilm retention amount reduction treatment cost C within a subsequent predetermined period when biofilm retention amount reduction treatment is performed,
(B+C) and A are compared, and if (B+C) is smaller than A, it is determined that the biofilm retention amount reduction treatment is suitable.
前記A,(B+C)の算出及び比較を定期的に又は実行指令が与えられたときに行う請求項1の好気性生物膜処理方法。 2. The aerobic biofilm treatment method according to claim 1, wherein the calculation and comparison of A and (B+C) are performed periodically or when an execution command is given. 前記(B+C)がAよりも所定金額以上小さいときに前記生物膜保持量低減処理を好適とする判定を行う請求項1又は2の好気性生物膜処理方法。 The aerobic biofilm treatment method according to claim 1 or 2, wherein when the (B+C) is smaller than A by a predetermined amount or more, it is determined that the biofilm retention amount reduction treatment is suitable. 前記生物膜保持量低減処理費用は、前記担体の生物膜保持量低減処理又はグラニュールの部分解体処理の操作を行う費用と、該操作により生じた排出汚泥を処理する費用とを含む請求項1~3のいずれかの好気性生物膜処理方法。 Claim 1: The biofilm retention amount reduction treatment cost includes the cost of performing the biofilm retention amount reduction treatment of the carrier or the partial disassembly treatment of the granules, and the cost of treating the discharged sludge generated by the operation. The aerobic biofilm treatment method according to any one of ~3. 前記コストの算定時前の規定期間における曝気電力消費量から単位時間の電力消費量Hを求め、
該算定時以降は、予め設定した逓増パターンに従って単位時間電力消費量が逓増するものとし、
この逓増した単位時間電力消費量H’と、前記所定期間と、電力単価との積とによって前記曝気電力コストAを算出し、
該単位時間電力消費量H’に、予め設定した規定比率α(ただしα<1)を乗じたα・H’を、生物膜保持量低減処理を行った後の単位時間電力消費量とみなして、α・Aを前記曝気電力コストBとする、請求項1~4のいずれかの好気性生物膜処理方法。
Determine the power consumption H per unit time from the aeration power consumption in a specified period before the time of calculating the cost,
After the calculation, the unit time power consumption shall gradually increase according to the preset increasing pattern,
Calculate the aeration power cost A by the product of this increased unit time power consumption H', the predetermined period, and the power unit price,
The unit time power consumption H' is multiplied by a preset specified ratio α (however, α<1), which is αH', which is regarded as the unit time power consumption after the biofilm retention amount reduction process is performed. , α·A is the aeration power cost B, the aerobic biofilm treatment method according to any one of claims 1 to 4.
前記曝気槽内のDOの目標値及び/又は曝気強度設定値から曝気動力にかかる電力使用量を算出する数式モデルと、
電力使用量に対応する単価データと、
原水負荷または酸素消費速度と、DOの目標値及び/または曝気強度設定値と、の相関関係を、酸素透過性の良否に関係づけて決定した2つ以上の相関関係グループと
を設定しておき、
原水負荷または酸素消費速度の計測値(別の測定項目の実測値から算出したものを含む)の変動に応じて、前記相関関係の1つに基づいて、該計測値に対応するDOの目標値及び/または曝気強度設定値を調整して曝気制御を行う請求項1~5のいずれかの好気性生物膜処理方法。
a mathematical model that calculates the amount of electricity used for aeration power from the target value of DO in the aeration tank and/or the aeration intensity setting value;
Unit price data corresponding to electricity usage,
Two or more correlation groups are set in which the correlation between the raw water load or oxygen consumption rate and the DO target value and/or aeration intensity setting value is determined in relation to the quality of oxygen permeability. ,
In response to fluctuations in the measured value of raw water load or oxygen consumption rate (including those calculated from actual measured values of other measurement items), the target value of DO corresponding to the measured value is determined based on one of the correlations. The aerobic biofilm treatment method according to any one of claims 1 to 5, wherein aeration control is performed by adjusting and/or an aeration intensity setting value.
選定した前記相関関係のDOの目標値あるいはその実測値、及び/又は曝気強度設定値あるいはその実測値から、現状の単位期間当たりの曝気動力にかかる電力使用量の算出値を求め、
今後の前記所定期間の曝気動力が該算出値で一定であるとするか、曝気動力の経時的な上昇を予測する数式モデルによって今後の曝気動力の予測値を求め、
該算出値または予測値と、電力使用量の単価データとに基づいて、前記電力費用Aを算出し、
使用していた前記相関関係よりも相対的に酸素透過性の良い相関関係を相関関係グループから選定し、この相関関係における曝気作用に基づいて今後の前記所定期間の前記費用Bを算出する請求項6の好気性生物膜処理方法。
From the selected DO target value or its actual value of the correlation and/or the aeration intensity setting value or its actual value, calculate the calculated value of the amount of electricity used for the current aeration power per unit period,
Assuming that the aeration power for the predetermined period in the future is constant at the calculated value, or calculating a predicted value of the future aeration power using a mathematical model that predicts an increase in the aeration power over time,
Calculating the power cost A based on the calculated value or predicted value and unit price data of power consumption;
A correlation having relatively better oxygen permeability than the correlation that was used is selected from a correlation group, and the cost B for the future predetermined period is calculated based on the aeration effect in this correlation. 6 aerobic biofilm treatment method.
前記生物膜保持量低減処理を、回転撹拌羽根又は逆洗による強撹拌、強曝気、高流速循環、及び槽内水の破砕ポンプへの通水のいずれか1又は2以上により行う請求項1~7のいずれかの好気性生物膜処理方法。 Claims 1 to 3 in which the biofilm retention amount reduction treatment is carried out by one or more of strong agitation by rotating stirring blades or backwashing, strong aeration, high flow rate circulation, and passing water in the tank to a crushing pump. 7. The aerobic biofilm treatment method according to any one of 7. 前記生物膜保持量低減処理費用Cを定数として設定しておく請求項1~8のいずれかの好気性生物膜処理方法。 The aerobic biofilm treatment method according to claim 1, wherein the biofilm retention amount reduction treatment cost C is set as a constant. 前記費用Aが前記費用(B+C)よりも小さい場合、費用Aと費用(B+C)とが等しくなるまでの期間を求める請求項1~9のいずれかの好気性生物膜処理方法。 The aerobic biofilm treatment method according to any one of claims 1 to 9, wherein when the cost A is smaller than the cost (B+C), a period until the cost A and the cost (B+C) become equal is determined. 原水が供給される曝気槽と、該曝気槽に充填された生物膜保持担体またはグラニュールと、該曝気槽を曝気する曝気装置とを有する好気性生物膜処理装置において、
生物膜保持量低減処理を行わない場合における、その後の所定期間内の曝気電力費用Aを算出する手段と、
生物膜保持量低減処理を行った場合における、その後の所定期間内の曝気電力費用Bと生物膜保持量低減処理費用Cとの合計費用(B+C)を算出する手段と、
(B+C)とAとを比較し、(B+C)がAよりも小さいならば前記生物膜保持量低減処理を好適とする判定を行う手段と
を有することを特徴とする好気性生物膜処理装置。
An aerobic biofilm treatment device having an aeration tank to which raw water is supplied, a biofilm holding carrier or granules filled in the aeration tank, and an aeration device for aerating the aeration tank,
means for calculating the aeration power cost A within a subsequent predetermined period in the case where the biofilm retention amount reduction treatment is not performed;
means for calculating the total cost (B+C) of the aeration power cost B and the biofilm retention amount reduction treatment cost C within a subsequent predetermined period when the biofilm retention amount reduction treatment is performed;
An aerobic biofilm treatment device comprising means for comparing (B+C) and A, and determining that the biofilm retention amount reduction treatment is suitable if (B+C) is smaller than A.
JP2020064159A 2020-03-31 2020-03-31 Aerobic biofilm treatment method and device Active JP7347304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020064159A JP7347304B2 (en) 2020-03-31 2020-03-31 Aerobic biofilm treatment method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020064159A JP7347304B2 (en) 2020-03-31 2020-03-31 Aerobic biofilm treatment method and device

Publications (2)

Publication Number Publication Date
JP2021159860A JP2021159860A (en) 2021-10-11
JP7347304B2 true JP7347304B2 (en) 2023-09-20

Family

ID=78004204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020064159A Active JP7347304B2 (en) 2020-03-31 2020-03-31 Aerobic biofilm treatment method and device

Country Status (1)

Country Link
JP (1) JP7347304B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244718A1 (en) 2018-06-18 2019-12-26 三菱電機株式会社 Operation-assisting device and operation assistance method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60232295A (en) * 1984-04-28 1985-11-18 Kurita Water Ind Ltd Anaerobic fluidized bed type waste water treatment apparatus
JPS61494A (en) * 1984-06-14 1986-01-06 Hotsukoku Setsubi Kogyo Kk Operational control of purification tank
JP3175480B2 (en) * 1994-06-14 2001-06-11 栗田工業株式会社 Anaerobic treatment equipment
JPH1052694A (en) * 1996-08-09 1998-02-24 Mitsubishi Heavy Ind Ltd Method and apparatus for purification of running water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244718A1 (en) 2018-06-18 2019-12-26 三菱電機株式会社 Operation-assisting device and operation assistance method

Also Published As

Publication number Publication date
JP2021159860A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
Hreiz et al. Optimal design and operation of activated sludge processes: State-of-the-art
Pittoors et al. Modeling dissolved oxygen concentration for optimizing aeration systems and reducing oxygen consumption in activated sludge processes: a review
Verrecht et al. Model-based energy optimisation of a small-scale decentralised membrane bioreactor for urban reuse
US9475714B2 (en) Method and system for treating waste material
JP4788182B2 (en) Organic waste water treatment apparatus and organic waste water treatment method
JP6659404B2 (en) Wastewater treatment control device and wastewater treatment system
Liu et al. Formation of filamentous microorganisms impedes oxygen transfer and decreases aeration efficiency for wastewater treatment
Ahmed et al. Dynamic impact of cellulose and readily biodegradable substrate on oxygen transfer efficiency in sequencing batch reactors
WO2021200968A1 (en) Aerobic organism treatment method and device
JP4304453B2 (en) Operation control device for nitrogen removal system
JP6619242B2 (en) Water treatment system
WO2021199885A1 (en) Aerobic biofilm treatment method and device
KR20220024245A (en) Integrated control system for sewage treatment plant
JP3823863B2 (en) Operation support system and control system for water treatment process
JP7347304B2 (en) Aerobic biofilm treatment method and device
JP7435196B2 (en) Aerobic biofilm treatment method and device
WO2021240968A1 (en) Aerobic biological processing method and device
JP2023001308A (en) Treatment method and apparatus for organic waste water
Ahmed et al. Influence of substrates concentrations on the dynamics of oxygen demand and aeration performance in ideal bioreactors
JP4180773B2 (en) Design support device for sewage treatment plant that treats sewage by activated sludge process.
JP4620391B2 (en) Sewage treatment equipment
JPH0938683A (en) Biological water treating device
JP2001334286A (en) Simulation apparatus of oxidation ditch method
JP4146491B2 (en) Water treatment using activated sludge
JP2021186696A (en) Method and device of aeration tank maintenance management

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7347304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150