JP2007105664A - Aeration equipment - Google Patents

Aeration equipment Download PDF

Info

Publication number
JP2007105664A
JP2007105664A JP2005300296A JP2005300296A JP2007105664A JP 2007105664 A JP2007105664 A JP 2007105664A JP 2005300296 A JP2005300296 A JP 2005300296A JP 2005300296 A JP2005300296 A JP 2005300296A JP 2007105664 A JP2007105664 A JP 2007105664A
Authority
JP
Japan
Prior art keywords
aeration
aeration tank
blowers
blower
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005300296A
Other languages
Japanese (ja)
Inventor
Tatsuya Nomura
達也 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Breweries Ltd
Original Assignee
Asahi Breweries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Breweries Ltd filed Critical Asahi Breweries Ltd
Priority to JP2005300296A priority Critical patent/JP2007105664A/en
Publication of JP2007105664A publication Critical patent/JP2007105664A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize optimization of aeration control at a low cost in aeration equipment for aerating a large aeration tank requiring a plurality of blowers. <P>SOLUTION: The aeration equipment 100 comprises the aeration tank 10, a measuring instrument 30 for measuring the dissolved oxygen concentration of sewage in the aeration tank 10, a plurality of on-off control blowers 42, 44, 46 for supplying air into the aeration tank 10, an inverter controlled blower 48 for supplying air into the aeration tank 10, and a controller 70. The controller 70 controls the number of the on-off control blowers 42, 44, 46 to be operated, and the revolution number of the inverter controlled blower 48 based on the dissolved oxygen concentration measured by the measuring instrument 30 so that the dissolved oxygen concentration of the sewage 20 in the aeration tank 10 is adjusted to a target dissolved oxygen concentration. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、曝気槽内の汚水を曝気する曝気設備に関する。   The present invention relates to an aeration facility for aeration of sewage in an aeration tank.

有機物を含む汚水を処理する方法として、活性汚泥処理法がある。有機物を含む汚水を曝気槽内に滞留させて曝気(エアレーション)することによって好気性のバクテリアや原生動物等の微生物が繁殖して活性汚泥が生成される。活性汚泥は、バクテリアとこれによって生成されるゼラチン状の粘着物質で構成されるフロックと、その周辺に棲息する原生動物とからなる。このような活性汚泥は、汚水中の有機物を補足してその酸化を促進し、これによって汚水中の有機物が分解される。   As a method for treating sewage containing organic matter, there is an activated sludge treatment method. Sewage containing organic matter is retained in the aeration tank and aerated (aeration), whereby microorganisms such as aerobic bacteria and protozoa are propagated to generate activated sludge. Activated sludge is composed of flocs composed of bacteria and gelatin-like adhesive substances produced thereby, and protozoa that live around them. Such activated sludge captures organic matter in the sewage and promotes its oxidation, whereby the organic matter in the sewage is decomposed.

このような活性汚泥処理法において、活性汚泥を構成する微生物の活性状態を最適に維持するために、曝気槽内の溶存酸素(DO)濃度を管理することが重要である。このために曝気槽内の溶存酸素濃度を測定して、その測定値に基づいて曝気槽内に対する空気(酸素)の供給が制御される。   In such an activated sludge treatment method, it is important to manage the dissolved oxygen (DO) concentration in the aeration tank in order to optimally maintain the activated state of microorganisms constituting the activated sludge. For this purpose, the dissolved oxygen concentration in the aeration tank is measured, and the supply of air (oxygen) to the aeration tank is controlled based on the measured value.

なお、特許文献1、2には、曝気槽内の汚水をインバータ制御式ブロアで曝気することが記載されている。
特開平10−151477号公報 特開平06−126293号公報
Patent Documents 1 and 2 describe that the sewage in the aeration tank is aerated with an inverter-controlled blower.
JP-A-10-151477 Japanese Patent Laid-Open No. 06-126293

曝気槽が大型化すると、1台のブロアで曝気槽に空気を供給することは難しくなり、複数台のブロアが使用されうる。このような大型の曝気設備では、全てのブロアを特許文献1、2に記載されたようなインバータ制御式ブロアとすることが考えられる。しかしながら、このような方法では、全てのブロアの回転数を制御する必要があるし、設備のコストも増加する。一方で、全てのブロアをオンオフ制御式ブロアとし、動作させる個数を制御することによって曝気槽への空気の供給量を制御することも考えられる。しかしながら、このような方法では、曝気槽への空気の供給量を微調整することができず、活性汚泥の活性状態を最適に維持することが難しい。   When the aeration tank is enlarged, it becomes difficult to supply air to the aeration tank with one blower, and a plurality of blowers can be used. In such a large aeration facility, it is conceivable that all blowers are inverter-controlled blowers as described in Patent Documents 1 and 2. However, in such a method, it is necessary to control the rotation speed of all the blowers, and the cost of the equipment also increases. On the other hand, it is also conceivable to control the amount of air supplied to the aeration tank by controlling all the blowers to be on-off control type blowers and controlling the number to be operated. However, with such a method, it is difficult to finely adjust the amount of air supplied to the aeration tank, and it is difficult to optimally maintain the activated state of the activated sludge.

本発明は、上記の課題認識を基礎としてなされたものであり、例えば、複数台のブロアを必要とするような大型の曝気槽を曝気する設備において、低コストで曝気制御の最適化を実現することを目的とする。   The present invention has been made on the basis of recognition of the above-described problems. For example, in a facility for aeration of a large aeration tank that requires a plurality of blowers, optimization of aeration control is realized at low cost. For the purpose.

本発明に係る曝気設備は、汚水を曝気する設備として構成され、曝気槽と、前記曝気槽内の汚水の溶存酸素濃度を測定する測定器と、前記曝気槽内に空気を供給する複数のオンオフ制御式ブロアと、前記曝気槽内に空気を供給するインバータ制御式ブロアと、制御器とを備える。前記制御器は、前記測定器によって測定された溶存酸素濃度に基づいて、前記曝気槽内の汚水の溶存酸素濃度が目標溶存酸素濃度になるように、前記複数のオンオフ制御式ブロアを動作させる個数と前記インバータ制御式ブロアの回転数とを制御する。   The aeration equipment according to the present invention is configured as equipment for aeration of sewage, and includes an aeration tank, a measuring instrument for measuring dissolved oxygen concentration in the sewage in the aeration tank, and a plurality of on / off devices for supplying air into the aeration tank. A control type blower, an inverter control type blower for supplying air into the aeration tank, and a controller are provided. The controller is configured to operate the plurality of on-off control blowers so that the dissolved oxygen concentration of the sewage in the aeration tank becomes a target dissolved oxygen concentration based on the dissolved oxygen concentration measured by the measuring device. And the rotation speed of the inverter-controlled blower.

本発明の好適な実施形態によれば、前記制御器は、前記インバータ制御式ブロアを最大回転数で継続動作させた時間が規定時間を超えたときに、前記複数のオンオフ制御式ブロアを動作させる個数を増加させ、前記インバータ制御式ブロアを最小回転数で継続動作させた時間が規定時間を超えたときに、前記複数のオンオフ制御式ブロアを動作させる個数を減少させることが好ましい。   According to a preferred embodiment of the present invention, the controller operates the plurality of on / off control blowers when a time during which the inverter control blower is continuously operated at the maximum rotation speed exceeds a specified time. It is preferable that the number of the plurality of on / off control type blowers be decreased when the number of times increases and the time during which the inverter control type blowers are continuously operated at the minimum rotation speed exceeds a specified time.

本発明によれば、例えば、複数台のブロアを必要とするような大型の曝気槽を曝気する設備において、低コストで曝気制御の最適化を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the optimization of aeration control is realizable at low cost, for example in the facility which aerates a large aeration tank which requires a plurality of blowers.

以下、添付図面を参照しながら本発明の好適な実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の好適な実施形態の曝気設備を模式的に示す図である。本発明の好適な実施形態の曝気設備100は、汚水20を一時的に滞留させる曝気槽10を備えている。曝気槽10には、例えば、工場設備からポート12を通して生産設備からの排水(汚水)が供給される。この汚水には、有機物が含まれる。曝気槽10で曝気された水(曝気水)は、典型的には、ポート14を通して沈殿槽(不図示)に排出される。曝気水には、曝気槽10で生成された活性汚泥が含まれ、この活性汚泥は沈殿槽で沈殿する。沈殿槽の上澄み水が浄化水として下水道等に排出されうる。   FIG. 1 is a diagram schematically showing an aeration facility according to a preferred embodiment of the present invention. The aeration equipment 100 according to a preferred embodiment of the present invention includes an aeration tank 10 in which sewage 20 is temporarily retained. For example, waste water (sewage) from the production facility is supplied to the aeration tank 10 through the port 12 from the factory facility. This sewage contains organic matter. The water aerated in the aeration tank 10 (aerated water) is typically discharged through a port 14 to a settling tank (not shown). The aerated water includes activated sludge generated in the aeration tank 10, and this activated sludge is precipitated in the settling tank. The supernatant water of the sedimentation tank can be discharged to the sewer as purified water.

曝気設備100は、更に、曝気槽10内の汚水20の溶存酸素濃度を測定する測定器(DO濃度計)30と、曝気槽10内に空気を供給する複数のオンオフ制御式ブロア42、44、46並びに少なくとも1つのインバータ制御式ブロア48と、ブロア42、44、44、46を制御することによって汚水20中の溶存酸素濃度を制御する制御器70とを備えている。   The aeration equipment 100 further includes a measuring device (DO concentration meter) 30 for measuring the dissolved oxygen concentration of the sewage 20 in the aeration tank 10 and a plurality of on / off control type blowers 42 and 44 for supplying air into the aeration tank 10. 46, at least one inverter-controlled blower 48, and a controller 70 that controls the concentration of dissolved oxygen in the sewage 20 by controlling the blowers 42, 44, 44, 46.

ブロア42、44、46、48によって散気管(エアレータ)80に空気を送り込むことによって曝気槽10内の汚水20が曝気される。曝気によって曝気層10内の汚水20中の溶存酸素濃度が高まる。   The sewage 20 in the aeration tank 10 is aerated by sending air to the air diffuser (aerator) 80 by the blowers 42, 44, 46 and 48. The dissolved oxygen concentration in the sewage 20 in the aeration layer 10 is increased by aeration.

制御器70は、測定器30によって測定された溶存酸素濃度(以下、測定DO値)に基づいて、曝気槽10内の汚水20の溶存酸素濃度が目標溶存酸素濃度(以下、目標DO値)になるように、複数のオンオフ制御式ブロア42、44、46を動作させる個数と、少なくとも1つのインバータ制御式ブロア48の回転数とを制御する。このような制御によれば、全てのブロアをインバータ制御式ブロアにしなくても汚水20中の溶存酸素濃度を微調整することができる。したがって、低コストで曝気制御(溶存酸素濃度制御)を最適化することができる。   The controller 70 sets the dissolved oxygen concentration of the sewage 20 in the aeration tank 10 to the target dissolved oxygen concentration (hereinafter, target DO value) based on the dissolved oxygen concentration (hereinafter, measured DO value) measured by the measuring device 30. In this manner, the number of operating the plurality of on / off control blowers 42, 44, 46 and the rotation speed of at least one inverter control blower 48 are controlled. According to such control, it is possible to finely adjust the dissolved oxygen concentration in the sewage 20 without using all the blowers as inverter-controlled blowers. Therefore, aeration control (dissolved oxygen concentration control) can be optimized at low cost.

オンオフ制御式ブロア42、44、46の動作(オンオフ動作)は、主制御器60がオンオフ制御器(スイッチ)52、54、56に対してオン又はオフを指令することによってなされうる。インバータ制御式ブロア48の回転数は、主制御器60が、インバータ制御式ブロア48の回転数を制御するインバータ58に対して回転数(周波数)を指令することによってなされうる。ここで、主制御器60は、測定DO値に基づいて曝気槽10内の汚水20の溶存酸素濃度が目標DO値になるように、オンオフ制御器52、54、56(ブロア42、44、46のオンオフ)及びインバータ58(ブロア48の回転数)を制御する。ここで、典型的には、オンオフ制御式ブロア42、44、46に優先順位が定められて、オンオフ制御式ブロア42、44、46のうち動作させるべきブロアの個数と優先順位によって動作させるべきブロアが決定される。   The operation (on / off operation) of the on / off control type blowers 42, 44, 46 can be performed by the main controller 60 instructing the on / off controllers (switches) 52, 54, 56 to be turned on or off. The rotation speed of the inverter-controlled blower 48 can be determined by the main controller 60 instructing the rotation speed (frequency) to the inverter 58 that controls the rotation speed of the inverter-controlled blower 48. Here, the main controller 60 controls the on / off controllers 52, 54, and 56 (the blowers 42, 44, and 46 so that the dissolved oxygen concentration of the sewage 20 in the aeration tank 10 becomes the target DO value based on the measured DO value. And the inverter 58 (the rotation speed of the blower 48). Here, typically, priorities are determined for the on / off controlled blowers 42, 44, and 46, and the blowers to be operated according to the number of blowers to be operated and the priorities among the on / off controlled blowers 42, 44, and 46. Is determined.

図2は、図1に示す曝気設備100における制御器70による曝気制御(溶存酸素濃度制御)を模式的に示す図である。図2の横軸は時間、縦軸はブロアによる曝気槽10への空気供給量を示している。また、図2において、"1"は第1ブロア(オンオフ制御式)42、"2"は第2ブロア(オンオフ制御式)44、"3"は第3ブロア(オンオフ制御式)46、"4"は第4ブロア(インバータ制御式)48が動作していることを示す。例えば、図2において、"1+4"が付された区間では、第1ブロア(オンオフ制御式)42が動作するとともに、第4ブロア(インバータ制御式)48が主制御器60によって指示された回転数(出力)で動作していることを示す。   FIG. 2 is a diagram schematically showing aeration control (dissolved oxygen concentration control) by the controller 70 in the aeration equipment 100 shown in FIG. The horizontal axis in FIG. 2 indicates time, and the vertical axis indicates the amount of air supplied to the aeration tank 10 by the blower. In FIG. 2, "1" is the first blower (on / off control type) 42, "2" is the second blower (on / off control type) 44, "3" is the third blower (on / off control type) 46, "4" "" Indicates that the fourth blower (inverter control type) 48 is operating. For example, in FIG. 2, in a section marked with “1 + 4”, the first blower (on / off control type) 42 operates and the fourth blower (inverter control type) 48 rotates at the rotation speed designated by the main controller 60. (Output) indicates that it is operating.

図2において、"酸素不足"が付された区間は、測定DO値が目標DO値より小さい区間(すなわち、空気供給量を増加させるべき区間)を示している。図2において、"適正"が付された区間は、測定DO値が目標DO値に一致している区間(すなわち、空気供給量を維持すべき区間)を示している。図2において、"酸素過剰"が付された区間は、測定DO値が目標DO値より大きい区間(すなわち、空気供給量を減少させるべき区間)を示している。   In FIG. 2, a section with “oxygen deficiency” indicates a section where the measured DO value is smaller than the target DO value (that is, a section where the air supply amount should be increased). In FIG. 2, a section with “appropriate” indicates a section where the measured DO value matches the target DO value (that is, a section where the air supply amount should be maintained). In FIG. 2, a section with “oxygen excess” indicates a section where the measured DO value is larger than the target DO value (that is, a section where the air supply amount should be reduced).

図2に示す例では、まず、第4ブロア(インバータ制御式)48を起動し、最大回転数まで徐々に回転数を増加させている(区間A)。そして、第4ブロア(インバータ制御式)48を最大回転数で継続動作させた時間が規定時間Tを超えたら(すなわち、第4ブロア(インバータ制御式)48のみでは空気供給量が不十分な場合)、第1ブロア(オンオフ制御式)42を起動する(区間B)。   In the example shown in FIG. 2, first, the fourth blower (inverter control type) 48 is activated, and the rotational speed is gradually increased to the maximum rotational speed (section A). If the time for which the fourth blower (inverter control type) 48 is continuously operated at the maximum rotational speed exceeds the specified time T (that is, the fourth blower (inverter control type) 48 alone is insufficient in the air supply amount). ), The first blower (on / off control type) 42 is activated (section B).

更に、区間Bにおいて第4ブロア(インバータ制御式)48を最大回転数で継続動作させた時間が規定時間Tを超えたら(すなわち、依然として空気供給量が不足している場合)、第2ブロア(オンオフ制御式)44を起動する(区間C)。   Further, when the time during which the fourth blower (inverter control type) 48 is continuously operated at the maximum rotation speed in the section B exceeds the specified time T (that is, when the air supply amount is still insufficient), the second blower ( On-off control formula) 44 is activated (section C).

更に、区間Cにおいて第4ブロア(インバータ制御式)48を最大回転数で継続動作させた時間が規定時間Tを超えたら(すなわち、依然として空気供給量が不足している場合)、第3ブロア(オンオフ制御式)46を起動する(区間D)。   Further, if the time during which the fourth blower (inverter control type) 48 is continuously operated at the maximum rotation speed exceeds the specified time T in the section C (that is, when the air supply amount is still insufficient), the third blower ( On-off control formula) 46 is activated (section D).

このようにして、制御器70は、第4ブロア(インバータ制御式)48を最大回転数で継続動作させた時間が規定時間Tを超える度に、第1〜第3ブロア(オンオフ制御式)42、44、46のうち動作させるブロアの個数を増やす。   In this way, the controller 70 causes the first to third blowers (on / off control type) 42 each time the time during which the fourth blower (inverter control type) 48 is continuously operated at the maximum rotational speed exceeds the specified time T. , 44 and 46, the number of blowers to be operated is increased.

図2に示す例では、区間Dの初期の区間では、測定DO値が目標DO値に一致していて("適正")、その後に、測定DO値が目標DO値よりも大きくなっている("酸素過剰")。そのために、第4ブロア(インバータ制御式)48の回転数が最小回転数まで落とされている。   In the example shown in FIG. 2, in the initial section of section D, the measured DO value matches the target DO value (“proper”), and then the measured DO value is larger than the target DO value ( "Oxygen excess"). Therefore, the rotation speed of the fourth blower (inverter control type) 48 is reduced to the minimum rotation speed.

区間Dにおいて第4ブロア(インバータ制御式)48を最小回転数で継続動作させた時間が規定時間Tを超えたら(すなわち、空気供給量が過剰な場合)は、第3ブロア(オンオフ制御式)46を停止させる(区間E)。   If the time during which the fourth blower (inverter control type) 48 is continuously operated at the minimum rotation speed exceeds the specified time T in the section D (that is, when the air supply amount is excessive), the third blower (on / off control type) 46 is stopped (section E).

このようにして、制御器70は、第4ブロア(インバータ制御式)48を最小回転数で継続動作させた時間が規定時間Tを超える度に、第1〜第3ブロア(オンオフ制御式)42、44、46のうち動作させるブロアの個数を減らす。   In this way, the controller 70 causes the first to third blowers (on / off control type) 42 each time the time when the fourth blower (inverter control type) 48 is continuously operated at the minimum rotational speed exceeds the specified time T. , 44 and 46, the number of blowers to be operated is reduced.

以上のように、規定時間Tを経た後に第1〜第3ブロア(オンオフ制御式)42、44、46の動作数を変更(増減)することによって制御量(溶存酸素濃度)のハンチングを防止することができる。   As described above, hunting of the control amount (dissolved oxygen concentration) is prevented by changing (increasing or decreasing) the number of operations of the first to third blowers (on / off control type) 42, 44, 46 after the specified time T has elapsed. be able to.

図2に示す例では、区間Eにおいて、第1ブロア(オンオフ制御式)42及び第2ブロア(オンオフ制御式)44が動作した状態で、測定DO値と目標DO値とが一致するように第4ブロア(インバータ制御式)48の回転数が制御されている。   In the example shown in FIG. 2, in the section E, in a state where the first blower (on / off control type) 42 and the second blower (on / off control type) 44 are operated, the measured DO value and the target DO value are matched. The rotational speed of the 4 blower (inverter control type) 48 is controlled.

なお、第3ブロア(オンオフ制御式)46を停止させる場合には、それに同期して第4ブロア(インバータ制御式)48の回転数を高めても良い。同様に、第1ブロア(オンオフ制御式)42、第2ブロア(オンオフ制御式)44を停止させる場合にも、それに同期して第4ブロア(インバータ制御式)48の回転数を高めても良い。   When the third blower (on / off control type) 46 is stopped, the rotation speed of the fourth blower (inverter control type) 48 may be increased in synchronization therewith. Similarly, when the first blower (on / off control type) 42 and the second blower (on / off control type) 44 are stopped, the rotation speed of the fourth blower (inverter control type) 48 may be increased in synchronism therewith. .

上記の規定時間Tは、曝気設備100におけるフィードバック制御系の時定数を考慮して決定されうる。時定数は、オンオフ制御式ブロア42、44、46のオンオフに対する溶存酸素濃度の変化の遅れ時間、及び、インバータ制御式ブロア48の回転数制御に対する溶存酸素濃度の変化の遅れ時間として評価されうる。   The specified time T can be determined in consideration of the time constant of the feedback control system in the aeration equipment 100. The time constant can be evaluated as a delay time of a change in dissolved oxygen concentration with respect to on / off of the on / off controlled blowers 42, 44, 46 and a delay time of a change in dissolved oxygen concentration with respect to rotation speed control of the inverter controlled blower 48.

なお、インバータ制御式ブロアを2台以上備えた場合には、空気供給量の微調整幅が広がる。   When two or more inverter-controlled blowers are provided, the fine adjustment range of the air supply amount is widened.

本発明の好適な実施形態の曝気設備を模式的に示す図である。It is a figure which shows typically the aeration equipment of suitable embodiment of this invention. 図1に示す曝気設備100における曝気制御(溶存酸素濃度制御)を模式的に示す図である。It is a figure which shows typically aeration control (dissolved oxygen concentration control) in the aeration equipment 100 shown in FIG.

符号の説明Explanation of symbols

10 曝気槽
20 汚水
30 測定器
42、44、46 オンオフ制御式ブロア
48 インバータ制御式ブロア
52、54、56 オンオフ制御器(スイッチ)
58 インバータ
60 主制御器
70 制御器
80 散気管(エアレータ)
10 Aeration tank 20 Sewage 30 Measuring instrument 42, 44, 46 On-off control blower 48 Inverter-controlled blower 52, 54, 56 On-off controller (switch)
58 Inverter 60 Main controller 70 Controller 80 Air diffuser (aerator)

Claims (2)

汚水を曝気する曝気設備であって、
曝気槽と、
前記曝気槽内の汚水の溶存酸素濃度を測定する測定器と、
前記曝気槽内に空気を供給する複数のオンオフ制御式ブロアと、
前記曝気槽内に空気を供給するインバータ制御式ブロアと、
前記測定器によって測定された溶存酸素濃度に基づいて、前記曝気槽内の汚水の溶存酸素濃度が目標溶存酸素濃度になるように、前記複数のオンオフ制御式ブロアを動作させる個数と前記インバータ制御式ブロアの回転数とを制御する制御器と、
を備えることを特徴とする曝気設備。
An aeration facility for aeration of sewage,
An aeration tank;
A measuring instrument for measuring the dissolved oxygen concentration of sewage in the aeration tank;
A plurality of on-off control type blowers for supplying air into the aeration tank;
An inverter-controlled blower for supplying air into the aeration tank;
Based on the dissolved oxygen concentration measured by the measuring device, the number of the plurality of on / off control blowers to be operated and the inverter control formula so that the dissolved oxygen concentration of the sewage in the aeration tank becomes the target dissolved oxygen concentration. A controller for controlling the rotational speed of the blower;
An aeration facility characterized by comprising:
前記制御器は、前記インバータ制御式ブロアを最大回転数で継続動作させた時間が規定時間を超えたときに、前記複数のオンオフ制御式ブロアを動作させる個数を増加させ、前記インバータ制御式ブロアを最小回転数で継続動作させた時間が規定時間を超えたときに、前記複数のオンオフ制御式ブロアを動作させる個数を減少させることを特徴とする請求項1に記載の曝気設備。   The controller increases the number of the plurality of on / off control type blowers to be operated when the time during which the inverter control type blower is continuously operated at the maximum rotational speed exceeds a predetermined time, The aeration equipment according to claim 1, wherein the number of operating the plurality of on / off control blowers is reduced when the time of continuous operation at the minimum number of rotations exceeds a specified time.
JP2005300296A 2005-10-14 2005-10-14 Aeration equipment Pending JP2007105664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005300296A JP2007105664A (en) 2005-10-14 2005-10-14 Aeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005300296A JP2007105664A (en) 2005-10-14 2005-10-14 Aeration equipment

Publications (1)

Publication Number Publication Date
JP2007105664A true JP2007105664A (en) 2007-04-26

Family

ID=38031937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005300296A Pending JP2007105664A (en) 2005-10-14 2005-10-14 Aeration equipment

Country Status (1)

Country Link
JP (1) JP2007105664A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039680A (en) * 2007-08-10 2009-02-26 Jfe Engineering Kk Apparatus for treating ballast water
WO2014035110A1 (en) * 2012-08-27 2014-03-06 (주)티에스케이워터 Control system for reducing the amount of energy used in blower
KR101370595B1 (en) * 2012-08-27 2014-03-06 (주)티에스케이워터 Control system for saving air blower energy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179196A (en) * 1984-02-27 1985-09-13 Toyota Motor Corp Device for controlling aeration blower in waste water treating equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179196A (en) * 1984-02-27 1985-09-13 Toyota Motor Corp Device for controlling aeration blower in waste water treating equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039680A (en) * 2007-08-10 2009-02-26 Jfe Engineering Kk Apparatus for treating ballast water
WO2014035110A1 (en) * 2012-08-27 2014-03-06 (주)티에스케이워터 Control system for reducing the amount of energy used in blower
KR101370595B1 (en) * 2012-08-27 2014-03-06 (주)티에스케이워터 Control system for saving air blower energy

Similar Documents

Publication Publication Date Title
US7208090B2 (en) Wastewater treatment control
US20140360933A1 (en) Methods and apparatus for nitrogen removal from wastewater
JP5698025B2 (en) Waste water treatment apparatus and waste water treatment method
RU2015113376A (en) METHOD AND DEVICE FOR REMOVING NITROGEN DURING WASTE WATER TREATMENT
JP2012066231A (en) Water treatment system and aeration air flow control method therefor
WO2014157488A1 (en) Operation method for organic-waste-water treatment device, and organic-waste-water treatment device
WO2016103707A1 (en) Water treatment system and method for controlling aeration air quantity thereof
JP2007105664A (en) Aeration equipment
JP2011104585A (en) Wastewater treatment method and wastewater treatment apparatus
US20200238229A1 (en) Wastewater treatment with independently controlled aeration and mixing
JP6158691B2 (en) Organic wastewater treatment apparatus, organic wastewater treatment method, and organic wastewater treatment apparatus control program
JP2007275847A (en) Wastewater treating apparatus and wastewater treating method
JP2012066186A (en) Water treatment apparatus
JP5854743B2 (en) Operation control device and control method for sewage treatment plant
JP7194628B2 (en) Wastewater treatment equipment and wastewater treatment method
JP4403495B2 (en) Wastewater treatment equipment
JP2015192949A (en) Installation and method for water treatment
JP6893546B2 (en) Sewage treatment system and sewage treatment method
JP6822833B2 (en) Wastewater treatment system and wastewater treatment method
JP2010253400A (en) Device for controlling ph increase using photosynthesis
KR20030079435A (en) inner flow control system of apparatus for treating water
JPH06328094A (en) Method for soil water treatment and device therefor
JP2006314884A (en) Sludge treatment method
JP2019171235A (en) Wastewater treatment apparatus
JP2004000986A (en) Method for controlling biological water treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101206