JP2010253400A - Device for controlling ph increase using photosynthesis - Google Patents

Device for controlling ph increase using photosynthesis Download PDF

Info

Publication number
JP2010253400A
JP2010253400A JP2009107275A JP2009107275A JP2010253400A JP 2010253400 A JP2010253400 A JP 2010253400A JP 2009107275 A JP2009107275 A JP 2009107275A JP 2009107275 A JP2009107275 A JP 2009107275A JP 2010253400 A JP2010253400 A JP 2010253400A
Authority
JP
Japan
Prior art keywords
container
illuminance
value
measuring
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009107275A
Other languages
Japanese (ja)
Inventor
Masaya Yamada
雅也 山田
Naoki Hara
直樹 原
Tsutomu Sawada
勉 沢田
晃治 ▲陰▼山
Koji Kageyama
Misaki Sumikura
みさき 隅倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009107275A priority Critical patent/JP2010253400A/en
Publication of JP2010253400A publication Critical patent/JP2010253400A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for controlling pH increase using photosynthesis which can safely control pH increase at a low cost without using chemicals. <P>SOLUTION: The device for controlling pH increase using photosynthesis includes: a container 2 in which aquatic plants having chloroplasts are fixed and into which sewage to be treated after a final sedimentation basin flows in a sewage treatment process; a pH measuring means 4 for measuring the pH value of the sewage to be treated flowing into the container 2; an opening/closing means 5 of the container 2; an illuminance measuring means 10 for measuring illuminance in the container 2; and a controller 3 for controlling lighting into the container 2 by controlling the opening/closing means 5 of the container 2 to control the opening/closing of the container 2 when the illuminance measured by the illuminance measuring means 10 is higher than a reference value and the pH value measured by the pH measuring means 4 is lower than a set value. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

葉緑体の光合成によるイオン濃度勾配を利用した下水の光合成を利用したpH上昇制御装置に関する。   The present invention relates to a pH increase control device using photosynthesis of sewage using an ion concentration gradient by photosynthesis of chloroplasts.

日本の公共下水道に排水される下水の水質基準においては、水素イオン濃度(pH値)の規定があり、下水水質の変動によりpH値が規定値より低くなった場合の解決方法として、pH調整用薬品の注入方法がある。この方法は、〔特許文献1〕に記載のように、pH実測値と、目標とする設定値との差分からpH調整用薬品の注入率を求め、注入率に基づき注入を行い、下水のpH値を最適化している。   In the quality standard of sewage drained into public sewers in Japan, there is a regulation of hydrogen ion concentration (pH value). As a solution when the pH value falls below the regulation value due to fluctuations in sewage water quality, it is for pH adjustment. There is a chemical injection method. In this method, as described in [Patent Document 1], the injection rate of the chemical for pH adjustment is obtained from the difference between the actually measured pH value and the target set value, and the injection is performed based on the injection rate. The value is optimized.

〔特許文献2〕には、沈殿槽または曝気第2室からの中間処理水を、処理汚泥に乳酸菌,光合成菌,放線菌,酵母等をバランスよく増殖させた汚泥改質機に導き、これらの有用微生物群によって汚水処理を効率よく行うようにした汚水処理方法が記載されている。   In [Patent Document 2], the intermediate treated water from the sedimentation tank or the aeration second chamber is led to a sludge reformer in which lactic acid bacteria, photosynthetic bacteria, actinomycetes, yeast, etc. are proliferated in a balanced manner in the treated sludge. A sewage treatment method is described in which sewage treatment is efficiently performed by a useful microorganism group.

特開2004−243277号公報JP 2004-243277 A 特開2008−6351号公報JP 2008-6351 A

〔特許文献1〕に記載の従来の技術は、pH調整のために薬品を投入しているので、ランニングコストが高いという問題がある。〔特許文献2〕に記載の従来の技術は、pH,MLSS,OPR計測値とSV等を参照しながら、沈殿槽汚液の引き抜き返送量を徐々に増加させるように制御して適当量の汚泥を返送し、有用微生物群の活性,増殖に適した環境となるように調整する必要があり、土壌細菌担体の交換等のメンテナンス作業が必要であり、中間処理水の処理量も多くないという問題がある。   The conventional technique described in [Patent Document 1] has a problem that the running cost is high because chemicals are added for pH adjustment. The conventional technology described in [Patent Document 2] is configured to control an amount of sludge to be gradually increased with reference to pH, MLSS, OPR measurement values, SV, and the like so as to gradually increase the amount of the sedimentation tank withdrawn and returned. Need to be adjusted so that the environment is suitable for the activity and growth of useful microorganisms, maintenance work such as soil bacterial carrier replacement is necessary, and the amount of intermediate treated water is not large There is.

本発明の目的は、薬品を使用しないでもよく、低コストで、安全にpH上昇を制御できる光合成を利用したpH上昇制御装置を提供することにある。   An object of the present invention is to provide a pH increase control device using photosynthesis that does not require the use of chemicals and that can control pH increase safely at low cost.

上記目的を達成するために、本発明の光合成を利用したpH上昇制御装置は、下水処理工程において、最終沈殿池後の被処理下水が流入する、葉緑体を有する水中植物を固定化した容器と、容器への流入する被処理下水のpH値を計測するpH計測手段と、容器の開閉手段と、容器内の照度を計測する照度計測手段と、照度計測手段により計測された照度が基準値より高く、pH計測手段により計測されたpH値が設定値より低いときに、容器の開閉手段を制御して容器を開閉制御して、容器内への採光を制御するコントローラを備えたものである。   In order to achieve the above object, the pH increase control device using photosynthesis of the present invention is a container in which an underwater plant having a chloroplast flows into which treated sewage after the final sedimentation basin flows in a sewage treatment step. And a pH measuring means for measuring the pH value of the treated sewage flowing into the container, a container opening / closing means, an illuminance measuring means for measuring the illuminance in the container, and the illuminance measured by the illuminance measuring means is a reference value When the pH value measured by the pH measuring means is lower than the set value, the controller is provided with a controller that controls the opening and closing means of the container to control the opening and closing of the container, thereby controlling the lighting in the container. .

又、照度計測手段により計測された照度が基準値より高く、pH計測手段により計測されたpH値が設定値より低いときに、容器の開閉手段を制御して容器を開閉制御して、容器内への採光及び炭酸ガス注入手段により炭酸ガスの注入量を制御するものである。   In addition, when the illuminance measured by the illuminance measuring means is higher than the reference value and the pH value measured by the pH measuring means is lower than the set value, the container opening / closing means is controlled to control the opening and closing of the container. The amount of carbon dioxide injected is controlled by means of daylighting and carbon dioxide injection means.

又、pH計測手段によって計測したpH値が設定値より低いときに、バッテリを備えた太陽光発電装置により蓄電されたエネルギーを用いて前記照明装置を点灯させ、容器内への採光を制御するものである。   Further, when the pH value measured by the pH measuring means is lower than the set value, the lighting device is turned on using the energy stored by the solar power generation device provided with the battery, and the lighting in the container is controlled. It is.

又、pH計測手段によって計測したpH値が設定値より低いときに、バッテリを備えた太陽光発電装置により蓄電されたエネルギーを用いて照明装置を点灯させ、容器内への採光及び前記炭酸ガス注入手により炭酸ガスの注入量を制御するものである。   Further, when the pH value measured by the pH measuring means is lower than the set value, the lighting device is turned on using the energy stored by the solar power generation device provided with the battery, and the lighting in the container and the carbon dioxide injection are performed. The amount of carbon dioxide injection is controlled by availability.

又、照度計測手段により計測された照度が基準値より高く、pH計測手段によって計測したpH値が設定値より低いときに、容器の開閉手段を制御して容器を開閉制御し、バッテリを備えた太陽光発電装置により蓄電されたエネルギーを用いて前記照明装置を点灯させ、容器内への採光を制御するものである。   When the illuminance measured by the illuminance measuring means is higher than the reference value and the pH value measured by the pH measuring means is lower than the set value, the container opening / closing means is controlled to control the opening / closing of the container, and the battery is provided. The lighting device is turned on using the energy stored by the solar power generation device, and the lighting in the container is controlled.

又、照度計測手段により計測された照度が基準値より高く、pH計測手段によって計測したpH値が設定値より低いときに、容器の開閉手段により容器の開閉制御し、バッテリを備えた太陽光発電装置により蓄電されたエネルギーを用いて照明装置を点灯させ、容器内への採光及び前記炭酸ガス注入手段により炭酸ガスの注入量を制御するものである。   In addition, when the illuminance measured by the illuminance measuring means is higher than the reference value and the pH value measured by the pH measuring means is lower than the set value, the container opening / closing means controls the opening / closing of the container, and the solar power generation provided with the battery. The lighting device is turned on using the energy stored in the device, and the amount of carbon dioxide injected is controlled by the lighting into the container and the carbon dioxide injection means.

本発明によれば、pH調整用薬品を使用することなく、pHの上昇制御を行うことができ、ランニングコストを低くすることができる。また、太陽光発電装置を備えることによって、二酸化炭素を排出しない装置を構成できる。   According to the present invention, it is possible to control the increase in pH without using a chemical for pH adjustment, and it is possible to reduce the running cost. Moreover, the apparatus which does not discharge | emit carbon dioxide can be comprised by providing a solar power generation device.

本発明の一実施例である光合成を利用したpH上昇制御装置の構成図。The block diagram of the pH rise control apparatus using the photosynthesis which is one Example of this invention. 本実施例のメインプロセスフロー図。The main process flow figure of a present Example. 本実施例の炭酸ガス注入プロセスフロー図。The carbon dioxide injection process flow figure of a present Example. 本実施例の照明点灯プロセスフロー図。The lighting lighting process flow figure of a present Example.

本実施例は、下水処理工程において、最終沈殿池後の被処理下水のpH値が基準値より低くなった場合の対策として、葉緑体をもつ水中植物の光合成反応によるpH上昇を利用してpH制御する装置である。以下、図面を用いて本発明の一実施例を説明する。   In this example, in the sewage treatment step, as a countermeasure when the pH value of the treated sewage after the final sedimentation basin is lower than the reference value, the pH increase due to the photosynthesis reaction of the underwater plant with chloroplasts is used. It is a device for pH control. Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施例の光合成を利用したpH上昇制御装置の構成図である。図1に示すように、最終沈殿池より流入する被処理下水1は、pH計測手段4を経て、葉緑体を有する水中植物を固定した容器2へ流入する。pH計測手段4はコントローラ3に接続されている。   FIG. 1 is a configuration diagram of a pH increase control device using photosynthesis of the present embodiment. As shown in FIG. 1, the treated sewage 1 flowing from the final sedimentation basin passes through the pH measuring means 4 and flows into a container 2 in which an underwater plant having a chloroplast is fixed. The pH measuring means 4 is connected to the controller 3.

容器2内には、照明装置7と照度計測手段10が設置され、照明装置7は太陽光発電装置9に、照度計測手段10はコントローラ3に接続されている。太陽光発電装置9にはバッテリ残量計測手段8が設けられ、バッテリ残量計測手段8はコントローラ3に接続されている。   An illuminating device 7 and an illuminance measuring means 10 are installed in the container 2, and the illuminating device 7 is connected to the solar power generator 9 and the illuminance measuring means 10 is connected to the controller 3. The solar power generation device 9 is provided with battery remaining amount measuring means 8, and the battery remaining amount measuring means 8 is connected to the controller 3.

容器2には、炭酸ガス注入手段6が接続され、炭酸ガス注入手段6には炭酸ガス残量計測手段11が設けられ、炭酸ガス残量計測手段11はコントローラ3に接続され、コントローラ3からの制御信号が炭酸ガス注入手段6に入力されるようになっている。容器2の上部には容器開閉手段5が設置され、コントローラ3からの制御信号により開閉制御されるようになっている。   Carbon dioxide gas injection means 6 is connected to the container 2, carbon dioxide gas injection means 6 is provided with carbon dioxide remaining amount measurement means 11, and carbon dioxide gas residual amount measurement means 11 is connected to controller 3, A control signal is input to the carbon dioxide gas injection means 6. A container opening / closing means 5 is installed in the upper part of the container 2 and is controlled to be opened and closed by a control signal from the controller 3.

コントローラ3では、pH計測手段4にて計測したpH値と、バッテリ残量計測手段8にて計測したバッテリ残量と、炭酸ガス残量計測手段11にて計測した炭酸ガス残量と、照度計測手段10にて計測された容器の照度を入力値として計算を行い、容器開閉手段5と、炭酸ガス注入手段6と、照明装置7を制御し、葉緑体を有する水中植物を固定した容器2内への採光及び炭酸ガス注入を行う。容器2内への採光量及び炭酸ガス注入量を制御することにより、水中植物の葉緑体で生じる光合成反応により起こるpH値上昇を促進または停止させている。pH上昇制御装置により処理された被処理下水1は、消毒槽へと送水される。   In the controller 3, the pH value measured by the pH measuring unit 4, the remaining battery level measured by the remaining battery level measuring unit 8, the remaining carbon dioxide level measured by the remaining carbon dioxide level measuring unit 11, and the illuminance measurement The container 2 in which the illuminance of the container measured by the means 10 is calculated as an input value, the container opening / closing means 5, the carbon dioxide gas injecting means 6, and the lighting device 7 are controlled to fix the underwater plant having chloroplasts. Perform daylighting and carbon dioxide injection. By controlling the amount of light collected into the container 2 and the amount of carbon dioxide injected, the increase in pH value caused by the photosynthetic reaction occurring in the chloroplasts of the underwater plant is promoted or stopped. The treated sewage 1 treated by the pH increase control device is sent to the disinfection tank.

図2は、コントローラ3における制御のメインプロセスフロー図である。このメインプロセスフロー図は、pH計測手段4にて計測された被処理下水1のpH値を入力値として、容器開閉手段5を開閉して外光を取り込むか否かを制御する流れ図である。   FIG. 2 is a main process flow chart of control in the controller 3. This main process flow chart is a flowchart for controlling whether or not to take in external light by opening and closing the container opening / closing means 5 with the pH value of the treated sewage 1 measured by the pH measuring means 4 as an input value.

ステップ201で、pH計測手段4にて計測されたpH実測値が、pH目標値より小さくなったか否かを判断し、pH実測値が、pH目標値より小さくなった場合には、ステップ202及び208に進む。   In step 201, it is determined whether or not the measured pH value measured by the pH measuring means 4 is smaller than the pH target value. If the measured pH value is smaller than the pH target value, step 202 and Proceed to 208.

ステップ208では、照度計測手段10にて計測された照度実測値が、照度基準値よりも小さいか否かを判断し、照度実測値が、照度基準値よりも小さくなった場合は、ステップ202からステップ205のプロセスを実行中であっても、ステップ206に進む。   In step 208, it is determined whether or not the actual illuminance value measured by the illuminance measuring means 10 is smaller than the illuminance reference value. If the actual illuminance value is smaller than the illuminance reference value, the process starts from step 202. Even if the process of step 205 is being executed, the process proceeds to step 206.

ステップ202では、コントローラ3から容器開閉手段5へ容器開指令が出力され、ステップ203にて容器開閉手段5により容器開動作を行い、ステップ204にて容器全開と判定されると、ステップ205に進む。容器開閉手段5により葉緑体を有する水中植物を固定化した容器2内へ外光を取り込み、水中植物の光合成反応を行わせることで、被処理下水1のpHを上昇させる。   In step 202, a container opening command is output from the controller 3 to the container opening / closing means 5, the container opening / closing means 5 performs a container opening operation in step 203, and if it is determined in step 204 that the container is fully opened, the process proceeds to step 205. . The pH of the sewage 1 to be treated is increased by taking outside light into the container 2 in which the underwater plants having chloroplasts are immobilized by the container opening / closing means 5 and causing the underwater plants to undergo photosynthesis reaction.

ステップ205では、pH計測手段4にて計測されたpH実測値がpH目標値よりも大きいか否かを判定し、pH実測値がpH目標値よりも大きくなった場合にステップ206に進む。つまり、被処理下水1のpH値が正常値範囲内となるまで、容器開閉手段5を開き、光合成反応によるpH上昇を継続する。   In step 205, it is determined whether the measured pH value measured by the pH measuring means 4 is larger than the pH target value. If the measured pH value is larger than the pH target value, the process proceeds to step 206. That is, the container opening / closing means 5 is opened until the pH value of the treated sewage 1 falls within the normal value range, and the pH increase due to the photosynthesis reaction is continued.

ステップ206で、コントローラ3から容器開閉手段5へ容器閉指令が出力されると、ステップ207にて容器開閉手段5が容器閉動作を行い、ステップ208にて容器全閉と判定されると、プロセス終了となる。   In step 206, when a container closing command is output from the controller 3 to the container opening / closing means 5, the container opening / closing means 5 performs a container closing operation in step 207, and if it is determined in step 208 that the container is fully closed, End.

容器全閉となると、葉緑体を有する水中植物を固定化した容器2は外光が遮断され、光合成を抑止することでpHの上昇を抑止する。メインプロセスを繰り返すことで、pHが低下して、水質が酸性に傾いた被処理下水1を、薬品を使用することなくpH上昇させ、pH実測値を適切な範囲内に保つことができる。   When the container is fully closed, the external light is blocked in the container 2 in which the underwater plant having chloroplasts is immobilized, and the increase in pH is suppressed by inhibiting photosynthesis. By repeating the main process, it is possible to increase the pH of the treated sewage 1 whose pH is lowered and the water quality is inclined to be acidic without using chemicals, and to maintain the measured pH value within an appropriate range.

このような容器開閉手段5の開閉を制御するメインプロセスフローに加え、光合成反応に必要なCO2の注入を行うことで、pH上昇を促進させることができる。 In addition to the main process flow for controlling the opening and closing of the container opening and closing means 5, injection of CO 2 required for the photosynthesis reaction can promote the pH increase.

図3は、CO2注入によりpH上昇を促進させるための炭酸ガス注入プロセスフロー図である。ステップ301では、操作員により炭酸ガス注入が指示されると、コントローラ3から炭酸ガス注入手段6へ炭酸ガス注入指令が出力され、ステップ302,305,304に進む。 FIG. 3 is a carbon dioxide injection process flow diagram for promoting pH increase by CO 2 injection. In step 301, when the operator instructs carbon dioxide injection, the controller 3 outputs a carbon dioxide injection command to the carbon dioxide injection means 6, and the process proceeds to steps 302, 305, and 304.

ステップ304では、炭酸ガス注入手段6が炭酸ガスの注入を開始する。炭酸ガスの注入は、ガス残量が下限値を上回っている限り続けることができる。   In step 304, the carbon dioxide injection means 6 starts carbon dioxide injection. Carbon dioxide injection can be continued as long as the remaining amount of gas exceeds the lower limit.

ステップ305では、炭酸ガス残量計測手段11にて計測されたガス残量実測値が、ガス残量下限値よりも小さいか否かを判断し、ガス残量実測値が、ガス残量下限値よりも小さくなった場合、ステップ302のプロセスを実行中であっても、ステップ303に進む。   In step 305, it is determined whether or not the gas remaining amount actual measurement value measured by the carbon dioxide remaining amount measuring means 11 is smaller than the gas remaining amount lower limit value. If it is smaller, the process proceeds to step 303 even if the process of step 302 is being executed.

ステップ302では、pH計測手段4にて計測されたpH実測値が、pH目標値より大きいか否かを判断し、pH実測値が、pH目標値より大きくなった場合にステップ303へ進む。つまり、被処理下水1のpH値が正常値範囲内となるまで、炭酸ガスの注入を行い、炭酸ガスを注入しない場合よりも効率的な光合成反応によるpH上昇を継続する。   In step 302, it is determined whether or not the measured pH value measured by the pH measuring means 4 is larger than the pH target value. If the measured pH value is larger than the pH target value, the process proceeds to step 303. That is, carbon dioxide gas is injected until the pH value of the treated sewage 1 falls within the normal value range, and the pH increase due to a more efficient photosynthesis reaction is continued than when carbon dioxide gas is not injected.

ステップ303では、コントローラ3から炭酸ガス注入手段6へ炭酸ガス停止指令が出力され、ステップ306にて炭酸ガス注入が停止されると、プロセス終了となる。尚、炭酸ガス注入プロセスフローは照度計測手段10によって計測された照度実測値が、照度基準値よりも大きい場合に実行される。   In step 303, a carbon dioxide gas stop command is output from the controller 3 to the carbon dioxide gas injection means 6, and when the carbon dioxide gas injection is stopped in step 306, the process ends. The carbon dioxide gas injection process flow is executed when the measured illuminance value measured by the illuminance measuring means 10 is larger than the illuminance reference value.

図4は、照明装置点灯プロセスフロー図である。図2で示したメインプロセスによる処理でもpHの上昇が進まない場合や、短時間でpH上昇させたい場合、または悪天候時や夜間など、自然光の採光が難しい時に、照明装置7を点灯させる。   FIG. 4 is a lighting device lighting process flow diagram. The illumination device 7 is turned on when the pH does not increase even in the processing by the main process shown in FIG. 2, when it is desired to increase the pH in a short time, or when natural light is difficult to collect such as in bad weather or at night.

光合成反応には、光エネルギーが必要であり、照度が不足すると反応が行われないため、照明装置7の点灯により光合成反応を促進させる。また、照明装置7を点灯させるための電源は、バッテリを備えた太陽光発電装置9により供給することにより、二酸化炭素を排出しない給電を実現する。   The photosynthesis reaction requires light energy, and the reaction is not performed if the illuminance is insufficient. Therefore, the photosynthesis reaction is promoted by turning on the lighting device 7. Moreover, the power supply for lighting the illuminating device 7 is supplied by a solar power generation device 9 provided with a battery, thereby realizing power feeding that does not discharge carbon dioxide.

ステップ401では、操作員により照明点灯が指示されると、コントローラ3から照明装置7へ照明点灯指令が出力され、ステップ404,405,402に進む。   In step 401, when the lighting is instructed by the operator, an illumination lighting command is output from the controller 3 to the lighting device 7, and the process proceeds to steps 404, 405 and 402.

ステップ404では、照明装置7が点灯する。照明の点灯は、バッテリ残量が下限値を上回っている限り続けることができる。ステップ405では、バッテリ残量計測手段8にて計測されたバッテリ残量実測値が、バッテリ残量下限値よりも小さいか否かを判断し、バッテリ残量実測値が、バッテリ残量下限値よりも小さくなった場合、ステップ402のプロセスを実行中であっても、ステップ403に進む。   In step 404, the lighting device 7 is turned on. The lighting can be continued as long as the remaining battery level exceeds the lower limit. In step 405, it is determined whether or not the battery remaining amount measured value measured by the battery remaining amount measuring means 8 is smaller than the battery remaining amount lower limit value. If it becomes smaller, the process proceeds to step 403 even if the process of step 402 is being executed.

ステップ402では、pH計測手段4にて計測されたpH実測値が、pH目標値より大きいか否かを判断し、pH実測値が、pH目標値より大きくなった場合にステップ403へ進む。つまり、被処理下水1のpH値が正常値範囲内となるまで、照明の点灯を行い、光合成反応によるpH上昇を継続する。   In step 402, it is determined whether or not the measured pH value measured by the pH measuring means 4 is larger than the pH target value. If the measured pH value is larger than the pH target value, the process proceeds to step 403. That is, the lighting is turned on until the pH value of the treated sewage 1 falls within the normal value range, and the pH increase due to the photosynthesis reaction is continued.

ステップ403では、コントローラ3から照明装置7へ照明消灯指令が出力され、ステップ406にて照明が消灯されると、プロセス終了となる。   In step 403, an illumination extinction command is output from the controller 3 to the illumination device 7, and when the illumination is extinguished in step 406, the process ends.

1 被処理下水
2 容器
3 コントローラ
4 pH計測手段
5 容器開閉手段
6 炭酸ガス注入手段
7 照明装置
8 バッテリ残量計測手段
9 太陽光発電装置
10 照度計測手段
11 炭酸ガス残量計測手段
1 treated sewage 2 container 3 controller 4 pH measuring means 5 container opening / closing means 6 carbon dioxide injecting means 7 lighting device 8 battery remaining amount measuring means 9 solar power generation device 10 illuminance measuring means 11 carbon dioxide remaining amount measuring means

Claims (6)

下水処理工程において、最終沈殿池後の被処理下水が流入する、葉緑体を有する水中植物を固定化した容器と、該容器への流入する被処理下水のpH値を計測するpH計測手段と、前記容器の開閉手段と、前記容器内の照度を計測する照度計測手段と、前記照度計測手段により計測された照度が基準値より高く、前記pH計測手段により計測されたpH値が設定値より低いときに、前記容器の開閉手段を制御して容器を開閉制御して、前記容器内への採光を制御するコントローラを備えた光合成を利用したpH上昇制御装置。   In the sewage treatment step, a container in which an underwater plant having chloroplasts flows into which treated sewage after the final sedimentation basin flows, and a pH measuring means for measuring the pH value of the treated sewage flowing into the container The container opening / closing means, the illuminance measuring means for measuring the illuminance in the container, the illuminance measured by the illuminance measuring means is higher than a reference value, and the pH value measured by the pH measuring means is higher than a set value. A pH increase control device using photosynthesis, comprising a controller that controls the opening and closing of the container to control the opening and closing of the container and controlling the daylighting into the container when the temperature is low. 下水処理工程において、最終沈殿池後の被処理下水が流入する、葉緑体を有する水中植物を固定化した容器と、該容器内への炭酸ガス注入手段と、該容器の開閉手段と、前記容器の照度を計測する照度計測手段と、前記容器へ流入する被処理下水のpH値を計測するpH計測手段と、前記照度計測手段により計測された照度が基準値より高く、前記pH計測手段により計測されたpH値が設定値より低いときに、前記容器の開閉手段を制御して容器を開閉制御して、前記容器内への採光及び炭酸ガス注入手段により炭酸ガスの注入量を制御するコントローラを備えた光合成を利用したpH上昇制御装置。   In the sewage treatment step, the container in which the treated sewage after the final sedimentation basin flows, the chloroplast-containing underwater plant immobilized thereon, the carbon dioxide gas injection means into the container, the container opening and closing means, Illuminance measuring means for measuring the illuminance of the container, pH measuring means for measuring the pH value of the treated sewage flowing into the container, and the illuminance measured by the illuminance measuring means is higher than a reference value, and the pH measuring means When the measured pH value is lower than a set value, the controller controls the opening and closing means of the container to control the opening and closing of the container, and controls the amount of carbon dioxide injected by the lighting and carbon dioxide injection means into the container PH increase control device using photosynthesis provided with. 下水処理工程において、最終沈殿池後の被処理下水が流入する、葉緑体を有する水中植物を固定化した容器と、バッテリを備えた太陽光発電装置と、前記容器内を照明する照明装置と、前記容器へ流入する被処理下水のpH値を計測するpH計測手段と、前記pH計測手段によって計測したpH値が設定値より低いときに、前記バッテリを備えた太陽光発電装置により蓄電されたエネルギーを用いて前記照明装置を点灯させ、前記容器内への採光を制御するコントローラを備えた光合成を利用したpH上昇制御装置。   In a sewage treatment process, a container in which an underwater plant having a chloroplast flows into which treated sewage after the final sedimentation basin flows, a solar power generation device including a battery, and an illumination device that illuminates the inside of the container PH measurement means for measuring the pH value of the sewage to be treated flowing into the container, and when the pH value measured by the pH measurement means is lower than a set value, is stored by the solar power generation device provided with the battery A pH increase control device using photosynthesis, comprising a controller for lighting the lighting device using energy and controlling the daylighting into the container. 下水処理工程において、最終沈殿池後の被処理下水が流入する、葉緑体を有する水中植物を固定化した容器と、バッテリを備えた太陽光発電装置と、前記容器内を照明する照明装置と、前記容器へ流入する被処理下水のpH値を計測するpH計測手段と、前記容器の照度を計測する照度計測手段と、炭酸ガス注入手段と、前記pH計測手段によって計測したpH値が設定値より低いときに、バッテリを備えた太陽光発電装置により蓄電されたエネルギーを用いて照明装置を点灯させ、前記容器内への採光及び前記炭酸ガス注入手により炭酸ガスの注入量を制御するコントローラを備えた光合成を利用したpH上昇制御装置。   In a sewage treatment process, a container in which an underwater plant having a chloroplast flows into which treated sewage after the final sedimentation basin flows, a solar power generation device including a battery, and an illumination device that illuminates the inside of the container The pH value measured by the pH measuring means for measuring the pH value of the treated sewage flowing into the container, the illuminance measuring means for measuring the illuminance of the container, the carbon dioxide injection means, and the pH value measured by the pH measuring means is a set value. A controller for turning on the lighting device using energy stored by a solar power generation device equipped with a battery and controlling the amount of carbon dioxide injected by the daylight into the container and the carbon dioxide injecting hand when lower PH increase control device using photosynthesis provided. 下水処理工程において、最終沈殿池後の被処理下水が流入する、葉緑体を有する水中植物を固定化した容器と、前記容器の開閉手段と、バッテリを備えた太陽光発電装置と、前記容器内を照明する照明装置と、前記容器へ流入する被処理下水のpH値を計測するpH計測手段と、前記容器の照度を計測する照度計測手段と、該照度計測手段により計測された照度が基準値より高く、前記pH計測手段によって計測したpH値が設定値より低いときに、前記容器の開閉手段を制御して容器を開閉制御し、前記バッテリを備えた太陽光発電装置により蓄電されたエネルギーを用いて前記照明装置を点灯させ、前記容器内への採光を制御するコントローラを備えた光合成を利用したpH上昇制御装置。   In a sewage treatment process, a container in which an underwater plant having chloroplasts flows into which treated sewage after the final sedimentation basin flows, a container opening / closing means, a solar power generation device including a battery, and the container An illumination device that illuminates the interior, a pH measurement unit that measures the pH value of the treated sewage flowing into the container, an illuminance measurement unit that measures the illuminance of the container, and the illuminance measured by the illuminance measurement unit is a reference When the pH value measured by the pH measurement means is lower than a set value, the energy stored by the solar power generation apparatus including the battery is controlled by controlling the container opening and closing means to open and close the container. The pH increase control apparatus using photosynthesis provided with the controller which lights the said illuminating device using and controls the lighting in the said container. 下水処理工程において、最終沈殿池後の被処理下水が流入する、葉緑体を有する水中植物を固定化した容器と、前記容器の開閉手段と、バッテリを備えた太陽光発電装置と、前記容器内を照明する照明装置と、容器への流入水のpH計測手段と、前記容器の照度を計測する照度計測手段と、炭酸ガス注入手段と、前記照度計測手段により計測された照度が基準値より高く、前記pH計測手段によって計測したpH値が設定値より低いときに、容器の開閉手段により容器の開閉制御し、前記バッテリを備えた太陽光発電装置により蓄電されたエネルギーを用いて照明装置を点灯させ、前記容器内への採光及び前記炭酸ガス注入手段により炭酸ガスの注入量を制御するコントローラを備えた光合成を利用したpH上昇制御装置。   In a sewage treatment process, a container in which an underwater plant having chloroplasts flows into which treated sewage after the final sedimentation basin flows, a container opening / closing means, a solar power generation device including a battery, and the container The illuminance measured by the illumination device for illuminating the interior, the pH measurement means for the inflow water to the container, the illuminance measurement means for measuring the illuminance of the container, the carbon dioxide injection means, and the illuminance measurement means is more than the reference value. When the pH value measured by the pH measuring means is lower than a set value, the opening / closing control of the container is performed by the container opening / closing means, and the lighting device is operated using the energy stored by the solar power generation device including the battery. A pH increase control device using photosynthesis, which is provided with a controller that is lit and controls the amount of light in the container and the amount of carbon dioxide injected by the carbon dioxide injection means.
JP2009107275A 2009-04-27 2009-04-27 Device for controlling ph increase using photosynthesis Pending JP2010253400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107275A JP2010253400A (en) 2009-04-27 2009-04-27 Device for controlling ph increase using photosynthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009107275A JP2010253400A (en) 2009-04-27 2009-04-27 Device for controlling ph increase using photosynthesis

Publications (1)

Publication Number Publication Date
JP2010253400A true JP2010253400A (en) 2010-11-11

Family

ID=43314960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107275A Pending JP2010253400A (en) 2009-04-27 2009-04-27 Device for controlling ph increase using photosynthesis

Country Status (1)

Country Link
JP (1) JP2010253400A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITCE20100008A1 (en) * 2010-06-22 2011-12-23 Luigi Antonio Pezone PURIFICATION SYSTEMS COVERED FOR RIVER AND URBAN WATERS WITH CO2 RECOVERY AND NEUTRALIZATION AND SOLAR ELECTRIC ENERGY PRODUCTION
RU2656029C1 (en) * 2014-08-20 2018-05-30 Эррера Артуро Солис Use of melanine in water
CN110615576A (en) * 2019-09-04 2019-12-27 生态环境部华南环境科学研究所 Compound ecological remediation system of farmland tail water with nitrogen phosphorus reduces function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITCE20100008A1 (en) * 2010-06-22 2011-12-23 Luigi Antonio Pezone PURIFICATION SYSTEMS COVERED FOR RIVER AND URBAN WATERS WITH CO2 RECOVERY AND NEUTRALIZATION AND SOLAR ELECTRIC ENERGY PRODUCTION
RU2656029C1 (en) * 2014-08-20 2018-05-30 Эррера Артуро Солис Use of melanine in water
CN110615576A (en) * 2019-09-04 2019-12-27 生态环境部华南环境科学研究所 Compound ecological remediation system of farmland tail water with nitrogen phosphorus reduces function
CN110615576B (en) * 2019-09-04 2021-10-08 生态环境部华南环境科学研究所 Compound ecological remediation system of farmland tail water with nitrogen phosphorus reduces function

Similar Documents

Publication Publication Date Title
US20140360933A1 (en) Methods and apparatus for nitrogen removal from wastewater
ES2739919T3 (en) System and procedure to monitor an integrated system
JP2010209706A (en) Biogas power generation apparatus
CN104275343A (en) Garbage-drying and deodorization and percolate-disposing system and method
CN114677119A (en) Intelligent aeration method and system for sewage treatment
CN105152359A (en) Equipment and method for culturing and storing active flora used for sewage treatment
CN104221946B (en) A kind of closed aquaculture seed rearing system
JP2010253400A (en) Device for controlling ph increase using photosynthesis
JP2010088368A (en) Algae culturing apparatus and algae culturing method
WO2012019338A1 (en) Aerobic and anaerobic system for treating wastewater
KR101464281B1 (en) Electric power generation system linked to biogas
KR101459376B1 (en) Water treatment apparatus having control system and water treatment process using thereof
JP5166014B2 (en) Equipment for removing dissolved hydrogen sulfide in anaerobic treatment
CN112374605B (en) Microbial fuel cell and algae photosynthetic biological system series test device
JP2009114886A (en) Biogas power generation system and method for controlling biogas power generation
KR102275541B1 (en) Aquaculture facility Management System for Energy fusion type
JP2012066186A (en) Water treatment apparatus
CN103466897B (en) Waste water processing method
CA2881911A1 (en) A method and an apparatus for simultaneous removal of thiosalt and nitrogen compounds in waste water
JP7441078B2 (en) Sewage treatment system and method
CN202430086U (en) Device for synthesizing and treating landfill leachate
US20140305852A1 (en) Anaerobic treatment system and anaerobic treatment method
CN205241354U (en) Round --clock running purifies rural domestic sewage&#39;s high -efficient alga pool system of accuse temperature
JP2015003312A (en) Methane fermentation apparatus
CN205275400U (en) Sewage magnetic treatment device