WO2016103707A1 - Water treatment system and method for controlling aeration air quantity thereof - Google Patents

Water treatment system and method for controlling aeration air quantity thereof Download PDF

Info

Publication number
WO2016103707A1
WO2016103707A1 PCT/JP2015/006444 JP2015006444W WO2016103707A1 WO 2016103707 A1 WO2016103707 A1 WO 2016103707A1 JP 2015006444 W JP2015006444 W JP 2015006444W WO 2016103707 A1 WO2016103707 A1 WO 2016103707A1
Authority
WO
WIPO (PCT)
Prior art keywords
operation amount
manipulated variable
aeration
nitrogen concentration
ammonia nitrogen
Prior art date
Application number
PCT/JP2015/006444
Other languages
French (fr)
Japanese (ja)
Inventor
洋士 山本
崇嗣 安部
康二 福本
航介 柁山
直樹 成島
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2016103707A1 publication Critical patent/WO2016103707A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/38Gas flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a water treatment system provided with a biological reaction tank including an aerobic tank provided in a sewage treatment facility or the like.
  • the present invention relates to the control of the amount of aeration air in the aerobic tank in the water treatment system.
  • a water treatment system that purifies wastewater using activated sludge in wastewater treatment such as domestic wastewater.
  • Such a water treatment system for example, converts a pollutant in a raw water tank for storing raw water (inflow sewage) and an activated sludge mixed liquid (hereinafter also simply referred to as “mixed liquid”) into which biological water and activated sludge are mixed.
  • a series of biological reaction tanks to be treated and a sedimentation tank for precipitating and separating sludge from the mixed solution are provided.
  • a series of biological reaction tanks include anaerobic tanks, anoxic tanks, and aerobic tanks, and in these reaction tanks, removal of pollutants contained in raw water such as carbon-based organic substances, nitrogen-containing compounds, and phosphorus-containing compounds. Is done.
  • the aerobic tank is equipped with an aeration device for aerating the mixed solution.
  • the dissolved oxygen concentration in the mixed solution necessary for the activity of the activated sludge microorganisms can be increased, or the mixed solution can be stirred. If the amount of air supplied to the mixed solution in the aerobic tank by the aeration apparatus (hereinafter referred to as “aeration air volume”) is insufficient, the quality of the treated water deteriorates.
  • the present invention has been made in view of the above, and an object thereof is to provide a water treatment system capable of appropriately controlling the amount of air supplied to a mixed solution in an aerobic tank and a method for controlling the amount of aeration air.
  • a water treatment system includes an aerobic tank provided with an aeration apparatus, and at least one anaerobic tank or an oxygen-free tank provided on the upstream side of the aerobic tank, and activated sludge.
  • a second ammonia meter for measuring the ammonia nitrogen concentration
  • an aeration air volume control device for controlling the aeration air volume of the aeration device based on a target operation amount which is a target value of the aeration air volume of the previous aeration device, and the target operation
  • An aeration air volume calculating device that generates a quantity of air, and the aeration air volume calculating device outputs a feedback target manipulated variable signal based on a deviation between the ammonia nitrogen concentration of the activated sludge mixed
  • a feedback control system including a calculation element; a feedforward control system including a second operation amount calculation element that generates a preceding target operation amount signal according to a change amount per unit time of the ammonia nitrogen concentration of the raw water; and And an addition operation element for adding the feedback target operation amount signal and the preceding target operation amount signal to generate the target operation amount.
  • feedforward control is performed according to the amount of change in the ammonia nitrogen concentration of raw water per unit time while performing feedback control based on the ammonia nitrogen concentration of the activated sludge mixed liquid in the aerobic tank.
  • the aeration air volume can be changed in accordance with the rise of the ammonia nitrogen concentration in the raw water, so the aeration air volume can be adjusted appropriately even for abrupt changes in the ammonia nitrogen concentration that are difficult to follow with feedback control. Can be controlled.
  • the amount of change per unit time is small even if the ammonia nitrogen concentration value itself of the raw water is high, the change in the amount of aeration air by feedforward control can be reduced. In such a case, since it is possible to sufficiently cope with only the feedback control, it is possible to save power while controlling to an appropriate aeration air volume by suppressing an excessive change in the aeration air volume due to the feedforward control.
  • the second manipulated variable calculation element calculates a preceding target manipulated variable according to a change amount per unit time of the ammonia nitrogen concentration of the raw water so that a decrease in the preceding target manipulated variable is suppressed for a predetermined period.
  • the preceding target manipulated variable signal may be generated. According to this, when the change amount per unit time of the ammonia nitrogen concentration of the raw water indicates an increase in the ammonia nitrogen concentration of the raw water, the preceding target operation amount of the aeration air amount is set as the operation amount corresponding to the change amount.
  • the predetermined period may be configured to be set according to the residence time of the activated sludge mixed liquid in the series of biological reaction tanks. Since the time required for aeration treatment changes according to the residence time of the activated sludge mixed liquid in a series of biological reaction tanks, by changing the period for suppressing the reduction of the aeration air volume according to the residence time of the activated sludge mixed liquid, It is possible to reliably reduce the concentration of ammonia nitrogen after the treatment by reliably performing the aeration treatment in the aerobic tank.
  • the second manipulated variable calculation element calculates a preceding target manipulated variable according to a change amount per unit time of the ammonia nitrogen concentration of the raw water, and calculates a time from a reference waveform indicating a temporal change of the preceding target manipulated variable.
  • Generating at least one replicated waveform shifted in the axial direction by a predetermined first unit period, selecting at least two of the reference waveform and the replicated waveform according to the predetermined period, and Of these, the preceding target operation amount signal may be generated by selecting a value having the largest preceding target operation amount. According to this, it is possible to realize a process in which the decrease in the preceding target operation amount is suppressed during the decrease suppression period by duplicating and overlapping the reference waveform. Therefore, the process can be a relatively simple arithmetic process.
  • An aeration air volume control method for a water treatment system includes an aerobic tank provided with an aeration apparatus, and at least one anaerobic tank or an oxygen-free tank provided upstream of the aerobic tank.
  • a method for controlling the aeration air volume of a water treatment system comprising a series of biological reaction tanks having a tank and performing water treatment based on the activated sludge method, the target manipulated variable being a target value of the aeration air volume of the aeration apparatus
  • An air volume control step for controlling the aeration air volume of the aeration device based on the above, and a target operation amount calculation step for generating the target operation amount, wherein the target operation amount calculation step comprises activated sludge in the aerobic tank
  • a mixed liquid measuring step for measuring the ammonia nitrogen concentration of the mixed liquid
  • a raw water measuring step for measuring the ammonia nitrogen concentration of the raw water flowing into the series of biological reaction tanks, and the ammonia in the activated sludge mixed liquid in the
  • feed forward control is performed according to the amount of change in the ammonia nitrogen concentration of the raw water per unit time.
  • the aeration air volume can be changed in accordance with the rise of the ammonia nitrogen concentration in the raw water, so the aeration air volume can be adjusted appropriately even for abrupt changes in the ammonia nitrogen concentration that are difficult to follow with feedback control. Can be controlled.
  • the amount of change per unit time is small even if the ammonia nitrogen concentration value itself of the raw water is high, the change in the amount of aeration air by feedforward control can be reduced. In such a case, since it is possible to sufficiently cope with only the feedback control, it is possible to save power while controlling to an appropriate aeration air volume by suppressing an excessive change in the aeration air volume due to the feedforward control.
  • the preceding signal generation step calculates a preceding target operation amount according to a change amount per unit time of the ammonia nitrogen concentration of the raw water, and the preceding signal operation is performed such that a decrease in the preceding target operation amount is suppressed for a predetermined period.
  • a target operation amount signal may be generated. According to this, when the change amount per unit time of the ammonia nitrogen concentration of the raw water indicates an increase in the ammonia nitrogen concentration of the raw water, the preceding target operation amount of the aeration air amount is set as the operation amount corresponding to the change amount.
  • the amount of air supplied to the liquid mixture in the aerobic tank can be appropriately controlled.
  • FIG. 1 is a diagram showing a schematic configuration of a reclaimed water production system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a control configuration of the reclaimed water production system.
  • FIG. 3 is a block diagram showing the signal flow of the aeration air volume calculation unit.
  • FIG. 4 is a graph showing the characteristics of the FF manipulated variable function.
  • FIG. 5 is a graph illustrating the temporal change in the ammonia nitrogen concentration of the raw water and the graph illustrating the temporal change in the FF manipulated variable included in the preceding target manipulated variable signal generated based on the graph.
  • FIG. 6 is a graph showing temporal changes in the ammonia nitrogen concentration and aeration air volume in each tank in the reclaimed water production system to which the present embodiment is applied.
  • the inventors of the present invention can adjust the ammonia nitrogen concentration of raw water flowing into a series of biological reaction tanks in addition to feedback control for controlling the amount of aeration air based on the ammonia nitrogen concentration of the activated sludge mixed liquid in the aerobic tank.
  • the conventional configuration the configuration of Patent Document 2 that performs feedforward control that controls the aeration air volume based on did.
  • the inventors of the present invention have found that the conventional configuration has the following problems.
  • the amount of aeration air is controlled according to the value of the ammonia nitrogen concentration of the raw water itself.
  • concentration of ammonia nitrogen in the raw water rises rapidly, a reaction delay occurs in the biological reaction tank. Even in such a case, aeration is performed so that the ammonia nitrogen concentration in the treated water can be suppressed below the regulation value.
  • the operation amount with respect to the air volume is set larger.
  • the increase in the concentration of ammonia nitrogen in the raw water is slow, there is no reaction delay in the biological reaction tank. However, it becomes an excessive aeration air volume.
  • the inventors of the present invention after earnest research, in the feedback control, while controlling the aeration air volume based on the ammonia nitrogen concentration value itself of the activated sludge mixed liquid in the aerobic tank,
  • the control by controlling the amount of aeration air according to the amount of change in the ammonia nitrogen concentration of raw water flowing into a series of biological reactors per unit time, the rise of the change in ammonia nitrogen concentration that requires a quick response is required. It was conceived that an excessive change in the aeration air volume can be suppressed when the change in the ammonia nitrogen concentration is slow while following the aeration air volume.
  • the inventors of the present invention have sufficient feedforward control in the above-described conventional configuration when the residence time of the activated sludge mixed liquid in a series of biological reaction tanks is long, the time required for the aeration treatment becomes long. It has been found that there is a problem that the effect of may not be obtained.
  • the inventors of the present invention can reliably perform the aeration treatment in the aerobic tank to change the ammonia state after the treatment by changing the period for suppressing the decrease in the amount of aeration air according to the residence time of the activated sludge mixed liquid.
  • the inventors have conceived that the nitrogen concentration can be reliably reduced.
  • FIG. 1 is a diagram showing a schematic configuration of a reclaimed water production system according to an embodiment of the present invention.
  • a reclaimed water production system 1 shown in the figure is a water treatment system for purifying sewage using a standard activated sludge method.
  • the reclaimed water production system 1 includes a raw water tank 2, a series of biological reaction tanks 10 including an anaerobic tank 3, an anaerobic tank 4, and an aerobic tank 5 and a sedimentation tank 6 in order from the upstream side.
  • the raw water tank 2 functions as a buffer tank that temporarily stores the inflowing sewage.
  • the outflow side of the raw water tank 2 is connected to the inflow side of the anaerobic tank 3 located on the most upstream side of the series of biological reaction tanks 10 by a pipe 52.
  • the pipe 52 is provided with a supply pump 51 that pumps the raw water stored in the raw water tank 2 to the anaerobic tank 3.
  • the ammonia nitrogen concentration hereinafter referred to as “raw water NH 4 concentration” flowing from the raw water tank 2 into a series of biological reaction tanks 10 (here, the most upstream anaerobic tank 3).
  • raw water ammonia meter 31 second ammonia meter
  • the biological reaction tank 10 is provided in the order of the anaerobic tank 3, the oxygen-free tank 4 and the aerobic tank 5 from the upstream side.
  • the raw water flowing into the biological reaction tank 10 is an activated sludge mixed liquid (hereinafter simply referred to as activated sludge). Also known as “mixed liquid”.
  • the anaerobic tank 3 and the anoxic tank 4 are formed by dividing one reaction tank into two, and the anaerobic tank 3 and the anaerobic tank 4 are connected via the partition. . Therefore, the liquid mixture in the anaerobic tank 3 can move to the anoxic tank 4.
  • the outflow side of the anaerobic tank 4 is connected to the inflow side of the aerobic tank 5 by a pipe 53. Furthermore, the outflow side of the aerobic tank 5 is connected to the inflow side of the settling tank 6 by a pipe 54.
  • the aerobic tank 5 is provided with an aeration device 9 for aeration of the mixed solution.
  • the aeration apparatus 9 according to the present embodiment is of an aeration type, and compressed air sent from a blower (not shown) is made into fine bubbles to be blown into the mixed liquid from the bottom of the aerobic tank 5. It is configured.
  • a blower not shown
  • the mixed solution is stirred and mixed, and when activated sludge microorganisms remove nitrogen, phosphorus and organic matter. Necessary oxygen is supplied into the liquid mixture.
  • the amount of air supplied to the mixed solution in the aerobic tank 5 by the aeration device 9 (hereinafter referred to as “aeration air amount”) is controlled by a control device 40 described later.
  • an aerobic tank ammonia meter 32 (first ammonia meter) for measuring the ammonia nitrogen concentration (hereinafter referred to as “aerobic tank NH 4 concentration”) of the mixed solution in the aerobic tank 5 is provided.
  • the aerobic tank ammonia meter 32 is preferably provided on the outflow side of the aerobic tank 5 from the viewpoint of measuring the components of the mixed solution to be discharged from the aerobic tank 5. Since these mixed solutions are considered to be completely mixed, their arrangement is not particularly limited.
  • sludge out of the treatment liquid flowing from the aerobic tank 5 is precipitated and separated into the treatment liquid and sludge.
  • the sludge is returned to the anaerobic tank 3 through the sludge return pipe 63 provided with the sludge return pump 64.
  • FIG. 2 is a block diagram showing a control configuration of the reclaimed water production system.
  • the control of the aeration apparatus 9 is shown in detail, and the remainder is omitted.
  • the control device 40 mainly calculates the target operation amount of the operation control unit 42 and the aeration device 9 (that is, the target value of the aeration air amount in the aerobic tank 5) that controls the entire reclaimed water production system 1. It has functional units such as an aeration air amount calculation unit 41 to be generated and an aeration air amount control unit 91 that controls the aeration apparatus 9 based on the target operation amount.
  • the aeration air volume control unit 91 is provided in the control device 40, but may be provided in the aeration device 9.
  • the control device 40 is composed of one or a plurality of computers.
  • Each computer is a CPU (Central Processing Unit), a main storage device that rewrites a program executed by the CPU and data used in the program, and a CPU executes the program. It is sometimes equipped with a secondary storage device that temporarily stores data, an interface for connecting the CPU and external devices, an internal path for connecting these, and the like (all not shown). Then, each function unit of the control device 40 shown in FIG. 2 is realized by the CPU executing a predetermined program.
  • CPU Central Processing Unit
  • the control device 40 and each pump provided in the reclaimed water production system 1, that is, the supply pump 51 and the drive unit of the sludge return pump 64 are connected by wire or wirelessly, and the operation of each pump 51, 64 is performed by the control device 40. It is controlled by the operation control unit 42.
  • the control device 40 and a blower (not shown) for changing the aeration air volume in the aeration device 9 are connected by wire or wirelessly, and the operation of the aeration device 9 is controlled by the aeration air volume control unit 91 of the control device 40. Yes.
  • the control device 40 and each of the ammonia meters 31 and 32 are communicably connected, and the measurement signals of these ammonia meters 31 and 32 are transmitted to the control device 40.
  • control apparatus 40 operates each pump 51 and 64 and the aeration apparatus 9 based on the measurement signal of the ammonia meters 31 and 32.
  • FIG. As a result, the control device 40 prevents the nitrogen, phosphorus and organic matter of the treated water in the filtered water tank 7 from exceeding the respective regulation values.
  • the flow rate, excess sludge extraction amount and aeration air volume are managed and controlled to appropriate values.
  • the carbon-based organic matter contained in the mixed solution is decomposed by the action of aerobic and facultative anaerobic heterotrophic bacteria in the activated sludge, or discharged out of the system as activated sludge.
  • the organic matter in the mixed liquid comes into contact with the activated sludge and is adsorbed (condensed) on the surface of the activated sludge, and the organic matter adsorbed on the activated sludge is subjected to anaerobic conditions in the anaerobic tank 3 and the anaerobic tank 4. It is ingested and degraded by facultative anaerobic heterotrophic bacteria in activated sludge.
  • the organic matter adsorbed on the activated sludge provides energy necessary for the maintenance of the living body and cell synthesis by the aerobic and facultative anaerobic heterotrophic bacteria in the activated sludge under the aerobic condition of the aerobic tank 5. Decomposed (oxidized) to obtain. Furthermore, this heterotrophic bacterium uses the energy obtained by oxidation to synthesize (anabolic) organic matter into new cellular material. In this way, most of the organic substances contained in the mixed solution are adsorbed on the activated sludge, and then used for the oxidation and assimilation of the activated sludge microorganisms and removed from the mixed solution.
  • the organic matter that is not oxidized and assimilated is stored in the system, and is finally discharged out of the system as surplus sludge together with the cellular material that is not oxidized by the endogenous respiration of the activated sludge microorganisms.
  • phosphorus contained in the mixed solution is discharged out of the system in a state where it is accumulated in the activated sludge by the action of the phosphorus accumulating bacteria in the activated sludge.
  • the phosphorus accumulating bacteria in the activated sludge take in and hold organic substances such as acetic acid contained in the raw water flowing into the anaerobic tank 3 from the raw water tank 2 under the anaerobic condition of the anaerobic tank 3. Releases phosphoric acid (PO 4 ).
  • the phosphorus accumulating bacteria in the activated sludge excessively ingests phosphorus under the aerobic condition of the aerobic tank 5 and takes in more phosphoric phosphorus released in the anaerobic tank 3.
  • phosphorus in the mixed liquid is accumulated in the activated sludge, and the activated sludge in which phosphorus is accumulated is discharged out of the system as surplus sludge.
  • nitrogen is released out of the system from the anoxic tank 4.
  • the raw water flowing from the raw water tank 2 into the anaerobic tank 3 contains ammonia nitrogen (NH 4 + -N) and organic nitrogen.
  • the organic nitrogen contained in the mixed solution changes to ammonia nitrogen in the anaerobic tank 3, the anoxic tank 4 and the aerobic tank 5.
  • Ammonia nitrogen in the mixed solution is oxidized by the action of nitrifying bacteria in the aerobic tank 5 to become nitrite nitrogen (NO 2 -N) or nitrate nitrogen (NO 3 -N).
  • the circulated water sent from the settling tank 6 to the anoxic tank 4 by the circulation pump 62 contains nitrite nitrogen and / or nitrate nitrogen.
  • Nitrite nitrogen and nitrate nitrogen in the mixed solution are nitrogen gas (N) by nitrate respiration or nitrite respiration by denitrifying bacteria using organic matter in the raw water as a nutrient source under anoxic conditions in the anaerobic tank 4. It is reduced to 2 ) and released from the anoxic tank 4 to the outside of the system.
  • the aeration air amount control unit 91 operates the rotation amount of the blower (not shown) included in the aeration device 9 and the aerobic tank 5 from the aeration device 9. At least one of the operation amounts of an adjustment actuator (not shown) provided in the supply path of the air supplied into the inside is adjusted.
  • FIG. 3 is a block diagram showing the signal flow of the aeration air volume calculation unit.
  • the aeration air volume calculation unit 41 generates a preceding target manipulated variable (hereinafter also simply referred to as FF manipulated variable) based on the amount of change per unit time of the raw water NH 4 concentration, and the preceding target manipulated variable.
  • a feedforward control system (hereinafter referred to as FF control system 48) that outputs as a signal and a feedback target manipulated variable (hereinafter also simply referred to as FB manipulated variable) are generated using the aerobic tank NH 4 concentration as a controlled variable, and the feedback target manipulated variable is generated.
  • a feedback control system (hereinafter referred to as FB control system 49) that outputs the signal as a quantity signal.
  • the FF control system 48 and the FB control system 49 function in cooperation, and the addition operation element 70 adds the FF operation amount generated by the FF control system 48 and the FB operation amount generated by the FB control system 49.
  • the target operation amount of the aeration apparatus 9 is generated.
  • the FB control system 49 is measured by a preset ammonia nitrogen concentration set value (hereinafter, also referred to as “aerobic tank NH 4 concentration set value”) of the liquid mixture of the aerobic tank 5 and an aerobic tank ammonia meter 32.
  • a deviation calculation element 71 for calculating a deviation from the aerobic tank NH 4 concentration and an FB operation amount calculation element (first operation amount calculation element) 72 for generating an FB operation amount from the deviation are provided.
  • the FB operation amount calculation element 72 is a calculation element that calculates an FB operation amount using, for example, a PID control method, a P control method, or a PI control method.
  • An output signal (FB operation amount) of the FB control system 49 is input to the addition calculation element 70.
  • the aerobic tank NH 4 concentration set value is a value that is appropriately determined based on the regulation value (target value) of the ammonia nitrogen concentration (treated water NH 4 concentration) of the treated water.
  • the aerobic tank NH 4 concentration set value may be determined based on other factors such as the water temperature of the mixed liquid in addition to the regulation value of the treated water NH 4 concentration.
  • the FF control system 48 includes a differential operation element 73, an FF operation amount function element 74, a period setting element 75, and a feedforward gain element 76, and includes a second operation amount operation element that generates an FF operation amount. ing.
  • An output signal (FF operation amount) of the FF control system 48 is input to the addition operation element 70.
  • the FF control system 48 is configured to execute the period setting element 75 after executing the FF manipulated variable function element 74 as shown in FIG.
  • the FF manipulated variable function element 74 may be executed later.
  • the differential calculation element 73 calculates the amount of change ⁇ x per unit time of the raw water NH 4 concentration by differentiating the raw water NH 4 concentration x measured by the raw water ammonia meter 31.
  • FF manipulated variable function F 1 [Delta] x
  • the raw water NH 4 concentration Is a function of the static characteristic relationship between the change amount ⁇ x per unit time and the aeration air volume manipulated variable (in particular, the FF manipulated variable).
  • the raw water NH 4 concentration x is a measured value of the raw water ammonia meter 31 provided in the raw water tank 2 in the present embodiment, but may be any ammonia nitrogen concentration in the raw water flowing into the anaerobic tank 3.
  • the measurement position is not limited.
  • FIG. 4 is a graph showing the characteristics of the FF manipulated variable function F 1 ( ⁇ x).
  • the vertical axis y represents the FF manipulated variable (L / min), and the horizontal axis ⁇ x represents the change per unit time of the raw water NH 4 concentration. Amount (mg / L) is shown.
  • the FF manipulated variable (L / min) represents the amount of aeration air in the aerobic tank 5.
  • the minimum air volume Y 1 of the FF manipulated variable y is the minimum air volume required for maintaining the entire system.
  • the minimum amount of air required to maintain the entire system is heterotrophic that agitates the mixture in the aerobic tank 5 and grows using carbon-based organic matter under aerobic conditions in the aerobic tank 5 It is the minimum amount of aeration air that provides oxygen necessary for maintaining living organisms by living sludge microorganisms such as nitrifying bacteria that nitrify living organisms and ammonia nitrogen.
  • the minimum air volume Y 1 is appropriately determined according to the number of activated sludge microorganisms in the aerobic tank 5 and the capacity of the aerobic tank 5.
  • the FF manipulated variable y is the minimum airflow Y in the range where the change amount ⁇ x per unit time of the raw water NH 4 concentration is from a negative value (concentration decreased state) to the predetermined first change ⁇ X 1. 1 is constant. In the range of the first change amount ⁇ X 1 or more, the FF manipulated variable y increases as the change amount ⁇ x increases.
  • the first change amount ⁇ X 1 may be a positive value, may be 0, or may be a negative value.
  • the minimum air volume Y 2 may be set in a region below ⁇ X 1 ′ which is a negative value.
  • the FF manipulated variable y is set to a fixed minimum air volume Y 1 .
  • the FF manipulated variable function F 1 ( ⁇ x) element 74 aerates when the change amount ⁇ x per unit time of the ammonia nitrogen concentration of the raw water indicates an increase in the ammonia nitrogen concentration x of the raw water.
  • the aeration air volume following the increase in the ammonia nitrogen concentration in the activated sludge mixed liquid in the aerobic tank is quickly controlled, and when the ammonia nitrogen concentration is reduced,
  • feedforward control By suppressing an excessive change in the amount of aeration air by feedforward control, it is possible to reliably perform the aeration treatment in the aerobic tank and reliably reduce the ammonia nitrogen concentration after the treatment.
  • the first change amount ⁇ X 1 is a positive value (when it is not 0), it is possible to prevent the FF manipulated variable y from frequently changing due to a minute change in the raw water NH 4 concentration.
  • the period setting element 75 sets the period of effect of the FF manipulated variable y obtained by the FF manipulated variable function F 1 ( ⁇ x) in order to add dynamic characteristics to the FF manipulated variable y.
  • the effect display period includes a dead time (also referred to as shift time) and a decrease suppression period (also referred to as retention time).
  • the dead time is that the raw water whose ammonia nitrogen concentration is measured by the raw water ammonia meter 31 flows into the series of biological reaction tanks 10 and becomes a mixed liquid mixed with activated sludge, and enters the aerobic tank 5. This is the time required to flow in.
  • the growth rate of nitrifying bacteria that nitrify ammonia nitrogen in the aerobic tank 5 is slower than that of heterotrophic bacteria in normal activated sludge, the discontinuous surface of the ammonia nitrogen concentration of the mixed solution is the aerobic tank 5.
  • the aeration air volume is increased before reaching the level, and when the discontinuous surface reaches the aerobic tank 5, the activated sludge microorganisms are activated so as to cope with the rapid increase in the ammonia nitrogen concentration.
  • the dead time is desirably set to a time shorter than the time required for the raw water whose ammonia nitrogen concentration is measured by the raw water ammonia meter 31 to flow into the aerobic tank 5.
  • the decrease suppression period is the time until the ammonia nitrogen in the mixed liquid flowing into the aerobic tank 5 is oxidized by the aeration apparatus 9, that is, the residence time of the activated sludge mixed liquid in the series of biological reaction tanks 10. It is. In other words, a time during which the ammonia nitrogen in the mixed liquid in the series of biological reaction tanks 10 does not exceed the target value after the ammonia nitrogen concentration of the raw water starts to rise is set as the reduction suppression period.
  • the time required for the aeration treatment changes according to the residence time of the activated sludge mixed liquid in the series of biological reaction tanks 10, by changing the period for suppressing the decrease in the amount of aeration air according to the residence time of the activated sludge mixture liquid And the aeration process in the aerobic tank 5 can be performed reliably, and the ammonia nitrogen concentration after a process can be reduced reliably.
  • the period setting element 75 of the second manipulated variable calculation element calculates the FF manipulated variable according to the change amount ⁇ x per unit time of the ammonia nitrogen concentration of the raw water, and the decrease in the FF manipulated variable is predetermined. A preceding target operation amount signal that is suppressed for a period (a decrease suppression period) is generated. More specifically, the second manipulated variable calculation element calculates the FF manipulated variable according to the amount of change ⁇ x per unit time of the ammonia nitrogen concentration of the raw water, and is a reference indicating the temporal change of the FF manipulated variable. Generate a waveform.
  • the second manipulated variable calculation element generates at least one duplicate waveform that is shifted from the generated reference waveform by a predetermined first unit period in the time axis direction.
  • the reference waveform and the at least one duplicate waveform overlap each other according to the first unit period.
  • the second manipulated variable calculation element selects at least one of the reference waveform and the duplicate waveform according to the dead time and the decrease suppression period.
  • the second manipulated variable calculation element When there are a plurality of selected waveforms, the second manipulated variable calculation element generates a preceding target manipulated variable signal by selecting a value having the largest FF manipulated variable from the plurality of waveforms selected per unit time. To do. That is, the value having the largest FF operation amount is selected at a location where the plurality of selected waveforms overlap each other.
  • the second manipulated variable calculation element outputs a preceding target manipulated variable having the selected one waveform as a preceding target manipulated variable signal.
  • FIG. 5 is a graph illustrating the temporal change in the ammonia nitrogen concentration of the raw water and the graph illustrating the temporal change in the FF manipulated variable included in the preceding target manipulated variable signal generated based on the graph.
  • the upper graph in FIG. 5 is a graph illustrating the temporal change in the ammonia nitrogen concentration of the raw water
  • the lower graph in FIG. 5 is a preceding target manipulated variable signal generated with respect to the ammonia nitrogen concentration of the raw water.
  • 3 is a graph illustrating a temporal change in the amount of FF operation included in the graph.
  • the change amount ⁇ x of the raw water ammonia nitrogen concentration per unit time is the ammonia nitrogen concentration of the raw water. Increases monotonically until reaching a peak, and reaches a peak, and decreases monotonically from the peak until the ammonia nitrogen concentration of the raw water reaches the peak.
  • the change amount ⁇ x per unit time is zero.
  • the waveform indicating the temporal change of the change amount ⁇ x per unit time is a waveform (reference waveform) indicated by 0h.
  • the marks such as 0h, 1h,... Correspond to the waveform in which the peak is at the position of the mark.
  • the second manipulated variable calculation element calculates a waveform shifted from the 0h waveform by a predetermined first unit period in the time axis direction.
  • the first unit period is set to 1 hour (1h).
  • the waveform of the FF manipulated variable calculated by the second manipulated variable calculation element is a waveform (1h, 2h, 3h) in which the waveform of 0h is translated in the time axis direction every hour. , 4h waveform: replicated waveform).
  • at least one of the calculated waveforms from 0h to 4h is selected according to the dead time A and the reduction suppression period B that are set. For example, when the dead time A is not provided, a waveform of at least 0h is selected.
  • the decrease suppression period B is only the first unit period (1 hour)
  • only one waveform is selected according to the dead time A.
  • the dead time A and the decrease suppression period B may be set and input by an operator. Instead of this, the control device 40 may be configured to automatically set the dead time A and the decrease suppression period B according to the season and time zone.
  • a value having the largest FF operation amount is selected for each unit time among the selected plurality of waveforms.
  • the waveforms from 1h to 3h are selected in a state where they are overlapped with each other. This means that the dead time A is set to 1 hour and the decrease suppression period B is set to 3 hours.
  • the FF manipulated variable included in the preceding target manipulated variable signal is generated. That is, as shown by the solid line in the lower graph of FIG.
  • the generated FF operation amount has a waveform that follows the ridgeline of the waveform from 1h to 3h.
  • the temporal change of the FF operation amount determined in this way is output as a preceding target operation amount signal.
  • the dead time A and the decrease suppression period B are marked with respect to the peak point of each waveform. However, as long as the points corresponding to each other in each waveform are used as references, It may be a standard.
  • the target operation amount of the aeration air amount is set to the FF operation amount corresponding to the change amount. After that, even if the amount of change in the ammonia nitrogen concentration of the raw water per unit time shows a decrease in the ammonia nitrogen concentration of the raw water, the decrease in the FF manipulated variable is suppressed for a predetermined period.
  • the aeration air volume increases rapidly following the increase of the ammonia nitrogen concentration in the activated sludge mixture in the aerobic tank, and when the ammonia nitrogen concentration decreases, feedforward control
  • feedforward control By suppressing an excessive change in the amount of aeration air due to the aeration, it is possible to reliably perform the aeration treatment in the aerobic tank and reliably reduce the ammonia nitrogen concentration after the treatment.
  • the process in which the decrease in the FF manipulated variable is suppressed in the decrease suppression period B can be realized by duplicating and overlapping the reference waveform. Therefore, the process can be a relatively simple arithmetic process.
  • the term “a decrease in the preceding target operation amount (FF operation amount) is suppressed” is a reference for the FF operation amount according to the change amount ⁇ x per unit time. This means that the waveform (0h waveform) includes at least a part of the time zone in which the FF manipulated variable is larger than the value of the FF manipulated variable during the period in which the FF manipulated variable decreases.
  • the dead time A and the decrease suppression period B are experimental or calculated as the time including the residence time until the raw water flows into the anaerobic tank 3 and flows out of the anaerobic tank 4 and is aerated in the aerobic tank 5. Can be obtained.
  • the feedforward gain element 76 also functions as an element that gives the dynamic characteristic of the FF manipulated variable y.
  • Feedforward gain K f is the ratio of change in width of the FF manipulated variable y is an output value for the range of change in the change amount ⁇ x per unit time of the raw water NH 4 concentration is the input value is appropriately set.
  • the finally obtained FF manipulated variable y is set so as not to take a negative value, as in the graph shown by the solid line in FIG.
  • the FF Calculation processing may be performed so that the manipulated variable does not take a negative value (below the minimum air volume).
  • first change amount [Delta] X 1 is as FF operation amount does not take a negative value even in the case of negative.
  • the FF operation amount is calculated based on the change amount ⁇ x per unit time of the raw water NH 4 concentration in the FF control system 48, and the FB operation amount is calculated based on the aerobic tank NH 4 concentration in the FB control system 49. Then, the target operation amount of the aeration apparatus 9 is generated by adding the FF operation amount and the FB operation amount.
  • FIG. 6 is a graph showing temporal changes in the ammonia nitrogen concentration and aeration air volume in each tank in the reclaimed water production system to which the present embodiment is applied.
  • the horizontal axis is a common time axis, the raw water NH 4 concentration, the aerobic tank NH 4 concentration, and the ammonia nitrogen concentration of the treated water filtered in the settling tank 6 (in FIG. 6 and below, the treated water NH 4 concentration).
  • a regulation value of the treated water NH 4 concentration (referred to as a treated water regulation value in FIG. 6 and hereinafter), and a graph showing a temporal change in the aeration air volume.
  • the treated water NH 4 concentration is measured by, for example, an ammonia meter (not shown) that measures the ammonia nitrogen concentration of the treated water stored in the filtered water tank 7.
  • feedforward control is performed according to the amount of change ⁇ x per unit time of the raw water NH 4 concentration while performing feedback control based on the aerobic tank NH 4 concentration.
  • the aeration air volume can be changed in accordance with the rising of the change in the raw water NH 4 concentration.
  • the dead time A is set, and the aeration air volume is increased by the feedforward control at time t2 immediately after the dead time A has elapsed from the rise of the raw water NH 4 concentration at time t1. For this reason, it is possible to control the amount of aeration air to an appropriate amount even for a sudden change in ammonia nitrogen concentration that is difficult to follow in feedback control.
  • a reduction suppression period B is set, and even if a decrease in the raw water NH 4 concentration occurs (even if the dead time A is subtracted), the increase period of the raw water NH 4 concentration (until the peak is reached). The increase in aeration air volume by feedforward control is maintained for a longer period.
  • the increase in the aerobic tank NH 4 concentration is suppressed, and the treated water NH 4 concentration is also controlled to a value that does not exceed the treated water regulation value. ing.
  • the specific structure of the reclaimed water production system 1 is not limited to the above embodiment.
  • the reclaimed water production system 1 according to the present embodiment exemplifies a configuration in which a settling tank 6 is provided after an aerobic tank 5, and sludge is produced from a mixed solution that flows from the aerobic tank 5 after the aerobic tank 5.
  • the aspect of the above-described embodiment can also be applied to a water treatment system using a membrane separation activated sludge method (MBR: Membrane® Bio-Reactor) equipped with a membrane separation tank for separating the components.
  • MLR membrane separation activated sludge method
  • the reclaimed water manufacturing system 1 which concerns on this Embodiment is equipped with both the anaerobic tank 3 and the anaerobic tank 4, you may provide at least one among the anaerobic tank 3 and the anaerobic tank 4.
  • the aeration apparatus 9 according to the present embodiment is configured to adjust the aeration air volume by the operation amount of the rotation speed of the blower or the operation amount of the adjustment actuator, but the operation amount of the rotation speed of the blower and the adjustment actuator The aeration air volume may be adjusted by both of the manipulated variables.
  • the ammonia meters 31 and 32 are concentration meters that continuously measure the ammonia nitrogen concentration of the raw water and the mixed solution, respectively. It can also be set as the method of measuring ammonia nitrogen concentration by a method.
  • the configuration for ensuring the suppression of the preceding target manipulated variable in the decrease suppressing period B is 0h as described above. It is not limited to a mode in which the waveforms are superimposed while being shifted by the first unit period.
  • the second manipulated variable calculation element detects the peak of the waveform of 0h (or decreases the change amount ⁇ x per unit time) and maintains the value of the peak according to the decrease suppression period or gradually decreases Such a preceding target operation amount may be generated.
  • the second operation amount calculation element may be configured to generate the preceding target operation amount by expanding the waveform of 0h so as to expand in the time axis direction according to the decrease suppression period.
  • the present invention is useful for providing a water treatment system capable of appropriately controlling the amount of air supplied to a mixed solution in an aerobic tank and an aeration air volume control method thereof.
  • Reclaimed water production system (water treatment system) 5 Aerobic tank 9 Aeration device 10 Biological reaction tank 31 Raw water ammonia meter (second ammonia meter) 32 Aerobic tank ammonia meter (first ammonia meter) 40 Control Device 41 Aeration Air Volume Calculation Unit (Aeration Air Volume Calculation Device) 48 Feedforward control system 49 Feedback control system 72 FB manipulated variable computation element (first manipulated variable computation element) 73 Differential calculation element (second manipulated variable calculation element) 74 FF manipulated variable function element (second manipulated variable computation element) 75 Period setting element (second manipulated variable calculation element) 76 Feed forward gain element (second manipulated variable calculation element) 91 Aeration air volume control unit (Aeration air volume control device)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Activated Sludge Processes (AREA)

Abstract

A water treatment system is provided with: a first ammonia meter for measuring the ammoniacal nitrogen concentration in an activated sludge mixture in an aerobic tank provided with an aeration device; a second ammonia meter for measuring the ammoniacal nitrogen concentration in raw water flowing into a series of biological reaction tanks; an aeration air quantity control device for controlling the aeration air quantity in the aeration device on the basis of a target operation amount which is a target value for aeration air quantity in the aeration device; and an aeration air quantity calculation device for generating the target operation amount. The aeration air quantity calculation device has: a feedback control system including a first operation amount calculation element for generating a return target operation amount signal; a feed-forward control system including a second operation amount calculation element for generating a preceding target operation amount signal in accordance with the change amount per unit of time of the ammoniacal nitrogen concentration in the raw water; and an addition calculation element for adding the return target operation amount signal and the preceding target operation amount signal.

Description

水処理システムおよびその曝気風量制御方法Water treatment system and aeration air volume control method thereof
 本発明は、下水処理設備等に設けられる、好気槽を含む生物反応槽を備えた水処理システムに関する。特に、上記水処理システムにおける、好気槽の曝気風量の制御に関する。 The present invention relates to a water treatment system provided with a biological reaction tank including an aerobic tank provided in a sewage treatment facility or the like. In particular, the present invention relates to the control of the amount of aeration air in the aerobic tank in the water treatment system.
 従来、生活排水などの排水処理において、活性汚泥を用いて排水を浄化する水処理システムが知られている。このような水処理システムは、例えば、原水(流入下水)を貯溜する原水槽と、原水と活性汚泥が混合した活性汚泥混合液(以下、単に「混合液」ともいう)中の汚濁物質を生物処理する一連の生物反応槽と、混合液から汚泥を沈殿分離する沈殿槽とを備えている。一連の生物反応槽には、嫌気槽、無酸素槽および好気槽などが含まれ、これらの反応槽で、炭素系有機物、窒素含有化合物、リン含有化合物などの原水に含まれる汚濁物質の除去が行われる。 Conventionally, a water treatment system that purifies wastewater using activated sludge in wastewater treatment such as domestic wastewater is known. Such a water treatment system, for example, converts a pollutant in a raw water tank for storing raw water (inflow sewage) and an activated sludge mixed liquid (hereinafter also simply referred to as “mixed liquid”) into which biological water and activated sludge are mixed. A series of biological reaction tanks to be treated and a sedimentation tank for precipitating and separating sludge from the mixed solution are provided. A series of biological reaction tanks include anaerobic tanks, anoxic tanks, and aerobic tanks, and in these reaction tanks, removal of pollutants contained in raw water such as carbon-based organic substances, nitrogen-containing compounds, and phosphorus-containing compounds. Is done.
 上記水処理システムにおいて、好気槽には混合液を曝気するための曝気装置が備えられている。混合液を曝気することにより、活性汚泥微生物の活動に必要となる混合液中の溶存酸素濃度を高めたり、混合液を攪拌したりすることができる。曝気装置により好気槽の混合液へ供給される空気量(以下、「曝気風量」という)が不足すれば、処理水の水質が悪化する。 In the above water treatment system, the aerobic tank is equipped with an aeration device for aerating the mixed solution. By aeration of the mixed solution, the dissolved oxygen concentration in the mixed solution necessary for the activity of the activated sludge microorganisms can be increased, or the mixed solution can be stirred. If the amount of air supplied to the mixed solution in the aerobic tank by the aeration apparatus (hereinafter referred to as “aeration air volume”) is insufficient, the quality of the treated water deteriorates.
 これを防止するために、好気槽の曝気風量を好気槽内のアンモニア態窒素濃度に基づいてフィードバック制御する構成が提案されている(特許文献1参照)。さらに、好気槽内のアンモニア態窒素濃度に加えて一連の生物反応槽に流入する原水のアンモニア態窒素濃度を計測し、原水のアンモニア態窒素濃度に基づいて曝気風量をフィードフォワード制御する構成も提案されている(特許文献2参照)。 In order to prevent this, a configuration has been proposed in which the aeration volume in the aerobic tank is feedback-controlled based on the ammonia nitrogen concentration in the aerobic tank (see Patent Document 1). In addition to the ammonia nitrogen concentration in the aerobic tank, the ammonia nitrogen concentration of raw water flowing into a series of biological reaction tanks is measured, and the aeration air volume is feedforward controlled based on the ammonia nitrogen concentration of the raw water. It has been proposed (see Patent Document 2).
特開2005-199116号公報JP 2005-199116 A 特開2012- 66231号公報JP 2012-66231 A
 しかし、上記のようなフィードバック制御に加えてフィードフォワード制御を行う構成においても、適切な曝気風量とするのが難しい場合があった。 However, even in a configuration in which feedforward control is performed in addition to the feedback control as described above, it may be difficult to obtain an appropriate aeration air volume.
 本発明は上記に鑑みなされたものであり、好気槽の混合液へ供給される空気量を適切に制御することができる水処理システムおよびその曝気風量制御方法を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a water treatment system capable of appropriately controlling the amount of air supplied to a mixed solution in an aerobic tank and a method for controlling the amount of aeration air.
 本発明の一態様に係る水処理システムは、曝気装置を備えた好気槽と、該好気槽の上流側に設けられた少なくとも1以上の嫌気槽または無酸素槽とを有し、活性汚泥法に基づいて水処理を行う一連の生物反応槽と、前記好気槽の活性汚泥混合液のアンモニア態窒素濃度を計測する第1のアンモニア計と、前記一連の生物反応槽に流入する原水のアンモニア態窒素濃度を計測する第2のアンモニア計と、前前記曝気装置の曝気風量の目標値である目標操作量に基づいて前記曝気装置の曝気風量を制御する曝気風量制御装置と、前記目標操作量を生成する曝気風量演算装置と、を備え、前記曝気風量演算装置は、前記好気槽の活性汚泥混合液のアンモニア態窒素濃度とその設定値との偏差に基づいて帰還目標操作量信号を生成する第1の操作量演算要素を含むフィードバック制御系と、前記原水のアンモニア態窒素濃度の単位時間当たりの変化量に応じて先行目標操作量信号を生成する第2の操作量演算要素を含むフィードフォワード制御系と、前記帰還目標操作量信号および前記先行目標操作量信号を加算して前記目標操作量を生成する加算演算要素と、を有するものである。 A water treatment system according to an aspect of the present invention includes an aerobic tank provided with an aeration apparatus, and at least one anaerobic tank or an oxygen-free tank provided on the upstream side of the aerobic tank, and activated sludge. A series of biological reaction tanks for water treatment based on the law, a first ammonia meter for measuring the ammonia nitrogen concentration of the activated sludge mixed liquid in the aerobic tank, and raw water flowing into the series of biological reaction tanks A second ammonia meter for measuring the ammonia nitrogen concentration, an aeration air volume control device for controlling the aeration air volume of the aeration device based on a target operation amount which is a target value of the aeration air volume of the previous aeration device, and the target operation An aeration air volume calculating device that generates a quantity of air, and the aeration air volume calculating device outputs a feedback target manipulated variable signal based on a deviation between the ammonia nitrogen concentration of the activated sludge mixed liquid in the aerobic tank and its set value. First operation amount to be generated A feedback control system including a calculation element; a feedforward control system including a second operation amount calculation element that generates a preceding target operation amount signal according to a change amount per unit time of the ammonia nitrogen concentration of the raw water; and And an addition operation element for adding the feedback target operation amount signal and the preceding target operation amount signal to generate the target operation amount.
 上記構成によれば、好気槽の活性汚泥混合液のアンモニア態窒素濃度に基づいてフィードバック制御を行いつつ、原水のアンモニア態窒素濃度の単位時間当たりの変化量に応じたフィードフォワード制御を行う。これにより、原水のアンモニア態窒素濃度の変化の立ち上がりからそれに合わせて曝気風量を変化させることができるため、フィードバック制御では追従し難いアンモニア態窒素濃度の急激な変化に対しても適切な曝気風量に制御することができる。また、原水のアンモニア態窒素濃度の値自体が高くても単位時間当たりの変化量が小さい場合には、フィードフォワード制御による曝気風量の変化を小さくすることができる。このような場合には、フィードバック制御だけで十分対応できるため、フィードフォワード制御による過剰な曝気風量の変化を抑えることにより、適切な曝気風量に制御しつつ省電力化を図ることができる。 According to the above configuration, feedforward control is performed according to the amount of change in the ammonia nitrogen concentration of raw water per unit time while performing feedback control based on the ammonia nitrogen concentration of the activated sludge mixed liquid in the aerobic tank. As a result, the aeration air volume can be changed in accordance with the rise of the ammonia nitrogen concentration in the raw water, so the aeration air volume can be adjusted appropriately even for abrupt changes in the ammonia nitrogen concentration that are difficult to follow with feedback control. Can be controlled. Further, if the amount of change per unit time is small even if the ammonia nitrogen concentration value itself of the raw water is high, the change in the amount of aeration air by feedforward control can be reduced. In such a case, since it is possible to sufficiently cope with only the feedback control, it is possible to save power while controlling to an appropriate aeration air volume by suppressing an excessive change in the aeration air volume due to the feedforward control.
 前記第2の操作量演算要素は、前記原水のアンモニア態窒素濃度の単位時間当たりの変化量に応じた先行目標操作量を算出し、当該先行目標操作量の減少が所定の期間抑制されるような前記先行目標操作量信号を生成するよう構成されてもよい。これによれば、原水のアンモニア態窒素濃度の単位時間当たりの変化量が原水のアンモニア態窒素濃度の上昇を示す場合に、曝気風量の先行目標操作量を当該変化量に応じた操作量とした後、原水のアンモニア態窒素濃度の単位時間当たりの変化量が原水のアンモニア態窒素濃度の減少を示した場合であっても、所定の期間、先行目標操作量の減少が抑制される。したがって、アンモニア態窒素濃度の上昇時には、好気槽の活性汚泥混合液におけるアンモニア態窒素濃度の上昇に追従した曝気風量の増加制御を迅速に行うとともに、アンモニア態窒素濃度の減少時には、フィードフォワード制御による過剰な曝気風量の変化を抑えることにより、好気槽における曝気処理を確実に行って処理後のアンモニア態窒素濃度を確実に低減させることができる。 The second manipulated variable calculation element calculates a preceding target manipulated variable according to a change amount per unit time of the ammonia nitrogen concentration of the raw water so that a decrease in the preceding target manipulated variable is suppressed for a predetermined period. The preceding target manipulated variable signal may be generated. According to this, when the change amount per unit time of the ammonia nitrogen concentration of the raw water indicates an increase in the ammonia nitrogen concentration of the raw water, the preceding target operation amount of the aeration air amount is set as the operation amount corresponding to the change amount. Thereafter, even if the amount of change in the ammonia nitrogen concentration of the raw water per unit time indicates a decrease in the ammonia nitrogen concentration of the raw water, the decrease in the preceding target manipulated variable is suppressed for a predetermined period. Therefore, when the ammonia nitrogen concentration rises, the aeration air volume increases rapidly following the increase of the ammonia nitrogen concentration in the activated sludge mixture in the aerobic tank, and when the ammonia nitrogen concentration decreases, feedforward control By suppressing an excessive change in the amount of aeration air due to the aeration, it is possible to reliably perform the aeration treatment in the aerobic tank and reliably reduce the ammonia nitrogen concentration after the treatment.
 前記所定の期間は、前記一連の生物反応槽における活性汚泥混合液の滞留時間に応じて設定可能に構成されてもよい。一連の生物反応槽における活性汚泥混合液の滞留時間に応じて曝気処理にかかる時間が変化するため、活性汚泥混合液の滞留時間に応じて曝気風量の減少を抑制する期間を変化させることにより、好気槽における曝気処理を確実に行って処理後のアンモニア態窒素濃度を確実に低減させることができる。 The predetermined period may be configured to be set according to the residence time of the activated sludge mixed liquid in the series of biological reaction tanks. Since the time required for aeration treatment changes according to the residence time of the activated sludge mixed liquid in a series of biological reaction tanks, by changing the period for suppressing the reduction of the aeration air volume according to the residence time of the activated sludge mixed liquid, It is possible to reliably reduce the concentration of ammonia nitrogen after the treatment by reliably performing the aeration treatment in the aerobic tank.
 前記第2の操作量演算要素は、前記原水のアンモニア態窒素濃度の単位時間当たりの変化量に応じた先行目標操作量を算出し、当該先行目標操作量の時間的変化を示す基準波形から時間軸方向に所定の第1単位期間ずつずらした少なくとも1つの複製波形を生成し、前記所定の期間に応じて前記基準波形および前記複製波形のうちの少なくとも2つの波形を選択し、選択した波形のうち前記先行目標操作量が最も大きい値を選択することによって前記先行目標操作量信号を生成するよう構成されてもよい。これによれば、減少抑制期間において先行目標操作量の減少が抑制されるという処理を、基準波形を複製して重ねることにより実現することができる。したがって、当該処理を比較的簡単な演算処理とすることができる。 The second manipulated variable calculation element calculates a preceding target manipulated variable according to a change amount per unit time of the ammonia nitrogen concentration of the raw water, and calculates a time from a reference waveform indicating a temporal change of the preceding target manipulated variable. Generating at least one replicated waveform shifted in the axial direction by a predetermined first unit period, selecting at least two of the reference waveform and the replicated waveform according to the predetermined period, and Of these, the preceding target operation amount signal may be generated by selecting a value having the largest preceding target operation amount. According to this, it is possible to realize a process in which the decrease in the preceding target operation amount is suppressed during the decrease suppression period by duplicating and overlapping the reference waveform. Therefore, the process can be a relatively simple arithmetic process.
 また、本発明の他の態様に係る水処理システムの曝気風量制御方法は、曝気装置を備えた好気槽と、該好気槽の上流側に設けられた少なくとも1以上の嫌気槽または無酸素槽とを有し、活性汚泥法に基づいて水処理を行う一連の生物反応槽を備えた水処理システムの曝気風量制御方法であって、前記曝気装置の曝気風量の目標値である目標操作量に基づいて前記曝気装置の曝気風量を制御する風量制御工程と、前記目標操作量を生成する目標操作量演算工程と、を有し、前記目標操作量演算工程は、前記好気槽の活性汚泥混合液のアンモニア態窒素濃度を計測する混合液計測工程と、前記一連の生物反応槽に流入する原水のアンモニア態窒素濃度を計測する原水計測工程と、前記好気槽の活性汚泥混合液のアンモニア態窒素濃度とその設定値との偏差に基づいて帰還目標操作量信号を生成する帰還信号生成工程と、前記原水のアンモニア態窒素濃度の単位時間当たりの変化量に応じて先行目標操作量信号を生成する先行信号生成工程と、前記帰還目標操作量信号および前記先行目標操作量信号を加算して前記目標操作量を生成する操作量生成工程と、を有するものである。 An aeration air volume control method for a water treatment system according to another aspect of the present invention includes an aerobic tank provided with an aeration apparatus, and at least one anaerobic tank or an oxygen-free tank provided upstream of the aerobic tank. A method for controlling the aeration air volume of a water treatment system comprising a series of biological reaction tanks having a tank and performing water treatment based on the activated sludge method, the target manipulated variable being a target value of the aeration air volume of the aeration apparatus An air volume control step for controlling the aeration air volume of the aeration device based on the above, and a target operation amount calculation step for generating the target operation amount, wherein the target operation amount calculation step comprises activated sludge in the aerobic tank A mixed liquid measuring step for measuring the ammonia nitrogen concentration of the mixed liquid, a raw water measuring step for measuring the ammonia nitrogen concentration of the raw water flowing into the series of biological reaction tanks, and the ammonia in the activated sludge mixed liquid in the aerobic tank Nitrogen concentration and its setting A feedback signal generating step for generating a feedback target manipulated variable signal based on the deviation from the above, and a preceding signal generating step for generating a preceding target manipulated variable signal according to the amount of change per unit time in the ammonia nitrogen concentration of the raw water And an operation amount generating step of generating the target operation amount by adding the feedback target operation amount signal and the preceding target operation amount signal.
 上記方法によれば、好気槽の活性汚泥混合液のアンモニア態窒素濃度に基づいてフィードバック制御を行いつつ、原水のアンモニア態窒素濃度の単位時間当たりの変化量に応じたフィードフォワード制御を行う。これにより、原水のアンモニア態窒素濃度の変化の立ち上がりからそれに合わせて曝気風量を変化させることができるため、フィードバック制御では追従し難いアンモニア態窒素濃度の急激な変化に対しても適切な曝気風量に制御することができる。また、原水のアンモニア態窒素濃度の値自体が高くても単位時間当たりの変化量が小さい場合には、フィードフォワード制御による曝気風量の変化を小さくすることができる。このような場合には、フィードバック制御だけで十分対応できるため、フィードフォワード制御による過剰な曝気風量の変化を抑えることにより、適切な曝気風量に制御しつつ省電力化を図ることができる。 According to the above method, while performing feedback control based on the ammonia nitrogen concentration of the activated sludge mixed liquid in the aerobic tank, feed forward control is performed according to the amount of change in the ammonia nitrogen concentration of the raw water per unit time. As a result, the aeration air volume can be changed in accordance with the rise of the ammonia nitrogen concentration in the raw water, so the aeration air volume can be adjusted appropriately even for abrupt changes in the ammonia nitrogen concentration that are difficult to follow with feedback control. Can be controlled. Further, if the amount of change per unit time is small even if the ammonia nitrogen concentration value itself of the raw water is high, the change in the amount of aeration air by feedforward control can be reduced. In such a case, since it is possible to sufficiently cope with only the feedback control, it is possible to save power while controlling to an appropriate aeration air volume by suppressing an excessive change in the aeration air volume due to the feedforward control.
 前記先行信号生成工程は、前記原水のアンモニア態窒素濃度の単位時間当たりの変化量に応じた先行目標操作量を算出し、当該先行目標操作量の減少が所定の期間抑制されるような前記先行目標操作量信号を生成してもよい。これによれば、原水のアンモニア態窒素濃度の単位時間当たりの変化量が原水のアンモニア態窒素濃度の上昇を示す場合に、曝気風量の先行目標操作量を当該変化量に応じた操作量とした後、原水のアンモニア態窒素濃度の単位時間当たりの変化量が原水のアンモニア態窒素濃度の減少を示した場合であっても、所定の期間、先行目標操作量の減少が抑制される。したがって、アンモニア態窒素濃度の上昇時には、好気槽の活性汚泥混合液におけるアンモニア態窒素濃度の上昇に追従した曝気風量の増加制御を迅速に行うとともに、アンモニア態窒素濃度の減少時には、フィードフォワード制御による過剰な曝気風量の変化を抑えることにより、好気槽における曝気処理を確実に行って処理後のアンモニア態窒素濃度を確実に低減させることができる。 The preceding signal generation step calculates a preceding target operation amount according to a change amount per unit time of the ammonia nitrogen concentration of the raw water, and the preceding signal operation is performed such that a decrease in the preceding target operation amount is suppressed for a predetermined period. A target operation amount signal may be generated. According to this, when the change amount per unit time of the ammonia nitrogen concentration of the raw water indicates an increase in the ammonia nitrogen concentration of the raw water, the preceding target operation amount of the aeration air amount is set as the operation amount corresponding to the change amount. Thereafter, even if the amount of change in the ammonia nitrogen concentration of the raw water per unit time indicates a decrease in the ammonia nitrogen concentration of the raw water, the decrease in the preceding target manipulated variable is suppressed for a predetermined period. Therefore, when the ammonia nitrogen concentration rises, the aeration air volume increases rapidly following the increase of the ammonia nitrogen concentration in the activated sludge mixture in the aerobic tank, and when the ammonia nitrogen concentration decreases, feedforward control By suppressing an excessive change in the amount of aeration air due to the aeration, it is possible to reliably perform the aeration treatment in the aerobic tank and reliably reduce the ammonia nitrogen concentration after the treatment.
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。 The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
 本発明によれば、好気槽の混合液へ供給される空気量を適切に制御することができる。 According to the present invention, the amount of air supplied to the liquid mixture in the aerobic tank can be appropriately controlled.
図1は本発明の一実施の形態に係る再生水製造システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a reclaimed water production system according to an embodiment of the present invention. 図2は再生水製造システムの制御構成を示すブロック図である。FIG. 2 is a block diagram showing a control configuration of the reclaimed water production system. 図3は曝気風量演算部の信号の流れを示すブロック線図である。FIG. 3 is a block diagram showing the signal flow of the aeration air volume calculation unit. 図4はFF操作量関数の特徴を示すグラフである。FIG. 4 is a graph showing the characteristics of the FF manipulated variable function. 図5は原水のアンモニア態窒素濃度の時間的変化を例示するグラフおよびこれに基づいて生成される先行目標操作量信号に含まれるFF操作量の時間的変化を例示するグラフである。FIG. 5 is a graph illustrating the temporal change in the ammonia nitrogen concentration of the raw water and the graph illustrating the temporal change in the FF manipulated variable included in the preceding target manipulated variable signal generated based on the graph. 図6は本実施の形態を適用した再生水製造システムにおける各槽のアンモニア態窒素濃度および曝気風量の時間的変化を示すグラフである。FIG. 6 is a graph showing temporal changes in the ammonia nitrogen concentration and aeration air volume in each tank in the reclaimed water production system to which the present embodiment is applied.
 [本発明に係る一形態を得るに至った経緯]
 本発明の発明者らは、好気槽内の活性汚泥混合液のアンモニア態窒素濃度に基づいて曝気風量を制御するフィードバック制御に加えて一連の生物反応槽に流入する原水のアンモニア態窒素濃度に基づいて曝気風量を制御するフィードフォワード制御する従来の構成(特許文献2の構成)において、好気槽の混合液へ供給される空気量を適切に制御できない場合があることについて、その原因を検討した。その結果、本発明の発明者らは、上記従来の構成において以下のような課題があることを見出した。
[Background to obtaining one embodiment of the present invention]
The inventors of the present invention can adjust the ammonia nitrogen concentration of raw water flowing into a series of biological reaction tanks in addition to feedback control for controlling the amount of aeration air based on the ammonia nitrogen concentration of the activated sludge mixed liquid in the aerobic tank. Considering the cause of the fact that the amount of air supplied to the liquid mixture in the aerobic tank may not be appropriately controlled in the conventional configuration (the configuration of Patent Document 2) that performs feedforward control that controls the aeration air volume based on did. As a result, the inventors of the present invention have found that the conventional configuration has the following problems.
 まず、従来の構成では、原水のアンモニア態窒素濃度の値自体に応じて曝気風量を制御している。原水のアンモニア態窒素濃度の上昇が速い場合には、生物反応槽での反応遅れが発生するため、このような場合においても処理水のアンモニア態窒素濃度を規制値以下に抑制できるように、曝気風量に対する操作量が大きめに設定される。しかし、原水のアンモニア態窒素濃度の上昇が緩やかな場合には、生物反応槽での反応遅れが発生しないため、このような大きめに設定された操作量により、同じ原水のアンモニア態窒素濃度であっても過剰な曝気風量となってしまう。 First, in the conventional configuration, the amount of aeration air is controlled according to the value of the ammonia nitrogen concentration of the raw water itself. When the concentration of ammonia nitrogen in the raw water rises rapidly, a reaction delay occurs in the biological reaction tank. Even in such a case, aeration is performed so that the ammonia nitrogen concentration in the treated water can be suppressed below the regulation value. The operation amount with respect to the air volume is set larger. However, when the increase in the concentration of ammonia nitrogen in the raw water is slow, there is no reaction delay in the biological reaction tank. However, it becomes an excessive aeration air volume.
 そこで、本発明の発明者らは、鋭意研究の末、フィードバック制御においては、好気槽内の活性汚泥混合液のアンモニア態窒素濃度の値自体に基づいて曝気風量を制御する一方で、フィードフォワード制御においては一連の生物反応槽に流入する原水のアンモニア態窒素濃度の単位時間当たりの変化量に応じて曝気風量を制御することにより、迅速な応答が要求されるアンモニア態窒素濃度の変化の立ち上がりに曝気風量を追従させつつ、アンモニア態窒素濃度の変化が緩やかな場合に過剰な曝気風量の変化を抑えることができることを想到した。 Therefore, the inventors of the present invention, after earnest research, in the feedback control, while controlling the aeration air volume based on the ammonia nitrogen concentration value itself of the activated sludge mixed liquid in the aerobic tank, In the control, by controlling the amount of aeration air according to the amount of change in the ammonia nitrogen concentration of raw water flowing into a series of biological reactors per unit time, the rise of the change in ammonia nitrogen concentration that requires a quick response is required. It was conceived that an excessive change in the aeration air volume can be suppressed when the change in the ammonia nitrogen concentration is slow while following the aeration air volume.
 さらに、本発明の発明者らは、上記従来の構成において、一連の生物反応槽における活性汚泥混合液の滞留時間が長い場合には、曝気処理にかかる時間が長くなるため、十分にフィードフォワード制御の効果が得られない場合があるという課題があることを見出した。 Furthermore, the inventors of the present invention have sufficient feedforward control in the above-described conventional configuration when the residence time of the activated sludge mixed liquid in a series of biological reaction tanks is long, the time required for the aeration treatment becomes long. It has been found that there is a problem that the effect of may not be obtained.
 そこで、本発明の発明者らは、活性汚泥混合液の滞留時間に応じて曝気風量の減少を抑制する期間を変化させることにより、好気槽における曝気処理を確実に行って処理後のアンモニア態窒素濃度を確実に低減させることができることを想到した。 Therefore, the inventors of the present invention can reliably perform the aeration treatment in the aerobic tank to change the ammonia state after the treatment by changing the period for suppressing the decrease in the amount of aeration air according to the residence time of the activated sludge mixed liquid. The inventors have conceived that the nitrogen concentration can be reliably reduced.
 [実施の形態]
 以下、本発明を実施するための形態について、図面を参照しながら、詳細に説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
[Embodiment]
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout the drawings, and redundant description thereof is omitted.
 図1は本発明の一実施の形態に係る再生水製造システムの概略構成を示す図である。同図に示す再生水製造システム1は、標準活性汚泥法を利用して下水を浄化するための水処理システムである。再生水製造システム1は、上流側から順番に、原水槽2と、嫌気槽3、無酸素槽4および好気槽5から成る一連の生物反応槽10と、沈殿槽6とを備えている。 FIG. 1 is a diagram showing a schematic configuration of a reclaimed water production system according to an embodiment of the present invention. A reclaimed water production system 1 shown in the figure is a water treatment system for purifying sewage using a standard activated sludge method. The reclaimed water production system 1 includes a raw water tank 2, a series of biological reaction tanks 10 including an anaerobic tank 3, an anaerobic tank 4, and an aerobic tank 5 and a sedimentation tank 6 in order from the upstream side.
 原水槽2は、流入した下水を一時的に貯えるバッファタンクとして機能する。原水槽2の流出側は、一連の生物反応槽10の最も上流側に位置する嫌気槽3の流入側と配管52によって接続されている。配管52には、原水槽2に貯えられた原水を嫌気槽3へ圧送する供給ポンプ51が設けられている。原水槽2の流出側には、原水槽2から一連の生物反応槽10(ここでは、最も上流側の嫌気槽3)へ流入する原水のアンモニア態窒素濃度(以下、「原水NH濃度」という)を計測するための、原水アンモニア計31(第2のアンモニア計)が設けられている。 The raw water tank 2 functions as a buffer tank that temporarily stores the inflowing sewage. The outflow side of the raw water tank 2 is connected to the inflow side of the anaerobic tank 3 located on the most upstream side of the series of biological reaction tanks 10 by a pipe 52. The pipe 52 is provided with a supply pump 51 that pumps the raw water stored in the raw water tank 2 to the anaerobic tank 3. On the outflow side of the raw water tank 2, the ammonia nitrogen concentration (hereinafter referred to as “raw water NH 4 concentration”) flowing from the raw water tank 2 into a series of biological reaction tanks 10 (here, the most upstream anaerobic tank 3). ) For measuring raw water ammonia meter 31 (second ammonia meter).
 生物反応槽10は、上流側から嫌気槽3、無酸素槽4および好気槽5の順に設けられており、生物反応槽10へ流入した原水は活性汚泥との活性汚泥混合液(以下、単に「混合液」ともいう)として存在している。本実施の形態において、嫌気槽3と無酸素槽4とは一つの反応槽を2つに仕切ることにより形成されており、仕切りを介して嫌気槽3と無酸素槽4とは連通している。よって、嫌気槽3の混合液は、無酸素槽4へ移動することができる。無酸素槽4の流出側は、好気槽5の流入側と配管53により接続されている。さらに、好気槽5の流出側は、沈殿槽6の流入側と配管54により接続されている。 The biological reaction tank 10 is provided in the order of the anaerobic tank 3, the oxygen-free tank 4 and the aerobic tank 5 from the upstream side. The raw water flowing into the biological reaction tank 10 is an activated sludge mixed liquid (hereinafter simply referred to as activated sludge). Also known as “mixed liquid”. In this Embodiment, the anaerobic tank 3 and the anoxic tank 4 are formed by dividing one reaction tank into two, and the anaerobic tank 3 and the anaerobic tank 4 are connected via the partition. . Therefore, the liquid mixture in the anaerobic tank 3 can move to the anoxic tank 4. The outflow side of the anaerobic tank 4 is connected to the inflow side of the aerobic tank 5 by a pipe 53. Furthermore, the outflow side of the aerobic tank 5 is connected to the inflow side of the settling tank 6 by a pipe 54.
 好気槽5には、混合液をエアレーションするための曝気装置9が設けられている。本実施の形態に係る曝気装置9は散気式のものであって、送風機(図示略)から送られた圧縮空気を微細な気泡状にして好気槽5の底部から混合液中に吹き込むように構成されている。好気槽5の混合液中に吹き込まれた空気が気泡となって水面に上昇するときに、混合液の撹絆および混合が行われるとともに、活性汚泥微生物による窒素、リンおよび有機物除去の際に必要となる酸素が混合液中に供給される。曝気装置9によって好気槽5の混合液に供給される空気量(以下、「曝気風量」という)は、後述する制御装置40により制御される。 The aerobic tank 5 is provided with an aeration device 9 for aeration of the mixed solution. The aeration apparatus 9 according to the present embodiment is of an aeration type, and compressed air sent from a blower (not shown) is made into fine bubbles to be blown into the mixed liquid from the bottom of the aerobic tank 5. It is configured. When the air blown into the mixed solution in the aerobic tank 5 rises to the water surface as bubbles, the mixed solution is stirred and mixed, and when activated sludge microorganisms remove nitrogen, phosphorus and organic matter. Necessary oxygen is supplied into the liquid mixture. The amount of air supplied to the mixed solution in the aerobic tank 5 by the aeration device 9 (hereinafter referred to as “aeration air amount”) is controlled by a control device 40 described later.
 また、好気槽5には、好気槽5の混合液のアンモニア態窒素濃度(以下、「好気槽NH濃度」という)を計測する好気槽アンモニア計32(第1のアンモニア計)が設けられている。なお、好気槽アンモニア計32は、好気槽5から流出しようとする混合液の成分を測定する観点から何れも好気槽5の流出側に設けられることが望ましいが、好気槽5内の混合液は完全混合していると考えられるので、これらの配置は特に限定されない。 In the aerobic tank 5, an aerobic tank ammonia meter 32 (first ammonia meter) for measuring the ammonia nitrogen concentration (hereinafter referred to as “aerobic tank NH 4 concentration”) of the mixed solution in the aerobic tank 5 is provided. Is provided. The aerobic tank ammonia meter 32 is preferably provided on the outflow side of the aerobic tank 5 from the viewpoint of measuring the components of the mixed solution to be discharged from the aerobic tank 5. Since these mixed solutions are considered to be completely mixed, their arrangement is not particularly limited.
 沈殿槽6では、好気槽5から流入した処理液のうちの汚泥が沈殿して処理液と汚泥とに分離される。汚泥は、汚泥返送ポンプ64を備えた汚泥返送配管63を通じて嫌気槽3へ返送される。 In the sedimentation tank 6, sludge out of the treatment liquid flowing from the aerobic tank 5 is precipitated and separated into the treatment liquid and sludge. The sludge is returned to the anaerobic tank 3 through the sludge return pipe 63 provided with the sludge return pump 64.
 次に、再生水製造システム1の制御構成を説明する。図2は再生水製造システムの制御構成を示すブロック図である。同図では、特に曝気装置9の制御に関して詳細に示し、余を省略している。 Next, the control configuration of the reclaimed water production system 1 will be described. FIG. 2 is a block diagram showing a control configuration of the reclaimed water production system. In the figure, the control of the aeration apparatus 9 is shown in detail, and the remainder is omitted.
 図2に示すように、制御装置40は主に、再生水製造システム1全体の制御を司る運転制御部42、曝気装置9の目標操作量(すなわち、好気槽5の曝気風量の目標値)を生成する曝気風量演算部41、目標操作量に基づいて曝気装置9を制御する曝気風量制御部91等の機能部を有している。なお、本実施の形態において、曝気風量制御部91は制御装置40に備えているが、曝気装置9に備えられていてもかまわない。制御装置40は、1又は複数のコンピュータからなり、各コンピュータはCPU(中央処理装置)、CPUが実行するプログラムやプログラムで使用されるデータを書き替え可能に記憶する主記憶装置、CPUがプログラム実行時にデータを一時的に記憶する副記憶装置、CPUと外部機器を接続するためのインターフェース、並びこれらを接続する内部経路等を備えている(何れも不図示)。そして、CPUで所定のプログラムが実行されることにより、図2に示す制御装置40の各機能部が実現される。 As shown in FIG. 2, the control device 40 mainly calculates the target operation amount of the operation control unit 42 and the aeration device 9 (that is, the target value of the aeration air amount in the aerobic tank 5) that controls the entire reclaimed water production system 1. It has functional units such as an aeration air amount calculation unit 41 to be generated and an aeration air amount control unit 91 that controls the aeration apparatus 9 based on the target operation amount. In the present embodiment, the aeration air volume control unit 91 is provided in the control device 40, but may be provided in the aeration device 9. The control device 40 is composed of one or a plurality of computers. Each computer is a CPU (Central Processing Unit), a main storage device that rewrites a program executed by the CPU and data used in the program, and a CPU executes the program. It is sometimes equipped with a secondary storage device that temporarily stores data, an interface for connecting the CPU and external devices, an internal path for connecting these, and the like (all not shown). Then, each function unit of the control device 40 shown in FIG. 2 is realized by the CPU executing a predetermined program.
 制御装置40と再生水製造システム1が備える各ポンプ、すなわち、供給ポンプ51、および汚泥返送ポンプ64の駆動部とは有線または無線で接続されており、各ポンプ51,64の動作は制御装置40の運転制御部42により制御されている。また、制御装置40と曝気装置9において曝気風量を変化させる送風機(図示略)とは有線または無線で接続されており、曝気装置9の動作は制御装置40の曝気風量制御部91により制御されている。さらに、制御装置40と各アンモニア計31,32は通信可能に接続されており、これらのアンモニア計31,32の計測信号が制御装置40へ送信される。そして、制御装置40は、アンモニア計31,32の計測信号に基づいて、各ポンプ51,64および曝気装置9を動作させる。これにより、制御装置40は、濾過水槽7の処理水の窒素、リンおよび有機物がそれぞれの規制値を超えないように、原水の流入量、処理水の放流量、循環液の流量、返送汚泥の流量、余剰汚泥の引抜量および曝気風量を適正な値に管理および制御している。 The control device 40 and each pump provided in the reclaimed water production system 1, that is, the supply pump 51 and the drive unit of the sludge return pump 64 are connected by wire or wirelessly, and the operation of each pump 51, 64 is performed by the control device 40. It is controlled by the operation control unit 42. The control device 40 and a blower (not shown) for changing the aeration air volume in the aeration device 9 are connected by wire or wirelessly, and the operation of the aeration device 9 is controlled by the aeration air volume control unit 91 of the control device 40. Yes. Further, the control device 40 and each of the ammonia meters 31 and 32 are communicably connected, and the measurement signals of these ammonia meters 31 and 32 are transmitted to the control device 40. And the control apparatus 40 operates each pump 51 and 64 and the aeration apparatus 9 based on the measurement signal of the ammonia meters 31 and 32. FIG. As a result, the control device 40 prevents the nitrogen, phosphorus and organic matter of the treated water in the filtered water tank 7 from exceeding the respective regulation values. The flow rate, excess sludge extraction amount and aeration air volume are managed and controlled to appropriate values.
 上記構成の再生水製造システム1による再生水製造プロセスでは、以下に示すように混合液(原水)に含まれる有機物、窒素およびリン等の除去が行われる。 In the reclaimed water production process by the reclaimed water production system 1 configured as described above, organic substances, nitrogen, phosphorus, and the like contained in the mixed liquid (raw water) are removed as shown below.
 再生水製造プロセスにおいて、混合液に含まれる炭素系の有機物は、活性汚泥中の好気性および通性嫌気性の従属栄養細菌の作用により分解されるか、あるいは活性汚泥として系外へ排出される。具体的には、混合液中の有機物は、活性汚泥と接触して活性汚泥の表面に吸着(凝縮)され、活性汚泥に吸着された有機物は、嫌気槽3および無酸素槽4の嫌気条件下で、活性汚泥中の通性嫌気性の従属栄養細菌に摂取され、分解される。また、活性汚泥に吸着された有機物は、好気槽5の好気条件下で、活性汚泥中の好気性および通性嫌気性の従属栄養細菌によって生体の維持や細胞合成等に必要なエネルギーを得るために分解(酸化)される。さらに、この従属栄養細菌は酸化によって得たエネルギーを利用して、有機物を新しい細胞物質に合成(同化)する。このようにして、混合液に含まれる有機物の大部分は、活性汚泥に吸着されたのち、活性汚泥微生物の酸化および同化に利用され、混合液中より除去される。なお、酸化および同化されない有機物は系内に貯留され、活性汚泥微生物の内生呼吸により酸化されない細胞物質とともに最終的に余剰汚泥として系外へ排出される。 In the reclaimed water production process, the carbon-based organic matter contained in the mixed solution is decomposed by the action of aerobic and facultative anaerobic heterotrophic bacteria in the activated sludge, or discharged out of the system as activated sludge. Specifically, the organic matter in the mixed liquid comes into contact with the activated sludge and is adsorbed (condensed) on the surface of the activated sludge, and the organic matter adsorbed on the activated sludge is subjected to anaerobic conditions in the anaerobic tank 3 and the anaerobic tank 4. It is ingested and degraded by facultative anaerobic heterotrophic bacteria in activated sludge. In addition, the organic matter adsorbed on the activated sludge provides energy necessary for the maintenance of the living body and cell synthesis by the aerobic and facultative anaerobic heterotrophic bacteria in the activated sludge under the aerobic condition of the aerobic tank 5. Decomposed (oxidized) to obtain. Furthermore, this heterotrophic bacterium uses the energy obtained by oxidation to synthesize (anabolic) organic matter into new cellular material. In this way, most of the organic substances contained in the mixed solution are adsorbed on the activated sludge, and then used for the oxidation and assimilation of the activated sludge microorganisms and removed from the mixed solution. The organic matter that is not oxidized and assimilated is stored in the system, and is finally discharged out of the system as surplus sludge together with the cellular material that is not oxidized by the endogenous respiration of the activated sludge microorganisms.
 また、再生水製造プロセスにおいて、混合液に含まれるリンは、活性汚泥中のリン蓄積細菌の作用により活性汚泥に蓄積された状態で系外へ排出される。具体的には、活性汚泥中のリン蓄積細菌は、嫌気槽3の嫌気条件下で、原水槽2から嫌気槽3へ流入した原水に含まれている酢酸などの有機物を体内に取り込み、保持していたリン酸(PO4)を放出する。そして、活性汚泥中のリン蓄積細菌は、好気槽5の好気条件下でリンを過剰摂取し、嫌気槽3で放出された以上のリン酸態のリンを取り込む。このようにして混合液中のリンが活性汚泥に蓄積され、リンが蓄積された活性汚泥は余剰汚泥として系外へ排出される。 In the reclaimed water production process, phosphorus contained in the mixed solution is discharged out of the system in a state where it is accumulated in the activated sludge by the action of the phosphorus accumulating bacteria in the activated sludge. Specifically, the phosphorus accumulating bacteria in the activated sludge take in and hold organic substances such as acetic acid contained in the raw water flowing into the anaerobic tank 3 from the raw water tank 2 under the anaerobic condition of the anaerobic tank 3. Releases phosphoric acid (PO 4 ). Then, the phosphorus accumulating bacteria in the activated sludge excessively ingests phosphorus under the aerobic condition of the aerobic tank 5 and takes in more phosphoric phosphorus released in the anaerobic tank 3. Thus, phosphorus in the mixed liquid is accumulated in the activated sludge, and the activated sludge in which phosphorus is accumulated is discharged out of the system as surplus sludge.
 また、再生水製造プロセスにおいて、窒素は無酸素槽4から系外へ放出される。詳細には、原水槽2から嫌気槽3へ流入した原水には、アンモニア態窒素(NH4 +-N)と有機態窒素とが含まれている。混合液に含まれる有機態窒素は、嫌気槽3、無酸素槽4および好気槽5で、アンモニア態窒素に変化する。混合液中のアンモニア態窒素は、好気槽5で硝化細菌の作用により酸化して、亜硝酸態窒素(NO2-N)または硝酸態窒素(NO3-N)となる。したがって、循環ポンプ62により沈殿槽6から無酸素槽4に送り込まれる循環水には、亜硝酸態窒素および/または硝酸態窒素が含まれている。混合液中の亜硝酸態窒素および硝酸態窒素は、無酸素槽4の無酸素条件下で原水中の有機物を栄養源とする脱窒細菌による硝酸性呼吸あるいは亜硝酸性呼吸により窒素ガス(N2)へと還元されて、無酸素槽4から系外へ放出される。 Further, in the reclaimed water production process, nitrogen is released out of the system from the anoxic tank 4. Specifically, the raw water flowing from the raw water tank 2 into the anaerobic tank 3 contains ammonia nitrogen (NH 4 + -N) and organic nitrogen. The organic nitrogen contained in the mixed solution changes to ammonia nitrogen in the anaerobic tank 3, the anoxic tank 4 and the aerobic tank 5. Ammonia nitrogen in the mixed solution is oxidized by the action of nitrifying bacteria in the aerobic tank 5 to become nitrite nitrogen (NO 2 -N) or nitrate nitrogen (NO 3 -N). Therefore, the circulated water sent from the settling tank 6 to the anoxic tank 4 by the circulation pump 62 contains nitrite nitrogen and / or nitrate nitrogen. Nitrite nitrogen and nitrate nitrogen in the mixed solution are nitrogen gas (N) by nitrate respiration or nitrite respiration by denitrifying bacteria using organic matter in the raw water as a nutrient source under anoxic conditions in the anaerobic tank 4. It is reduced to 2 ) and released from the anoxic tank 4 to the outside of the system.
 ここで、図3を参照しながら、制御装置40の曝気風量演算部41による曝気装置9の目標操作量、すなわち、好気槽5の曝気風量の目標値の生成方法について説明する。曝気風量演算部41で生成された目標操作量に基づいて、曝気風量制御部91は曝気装置9が具備する送風機(図示略)の回転速度の操作量、および、曝気装置9から好気槽5内へ供給される空気の供給経路に設けられた調節用アクチュエータ(図示略)の操作量のうち少なくとも一方を調整する。 Here, a method of generating a target operation amount of the aeration apparatus 9 by the aeration air amount calculation unit 41 of the control apparatus 40, that is, a target value of the aeration air volume of the aerobic tank 5, will be described with reference to FIG. Based on the target operation amount generated by the aeration air amount calculation unit 41, the aeration air amount control unit 91 operates the rotation amount of the blower (not shown) included in the aeration device 9 and the aerobic tank 5 from the aeration device 9. At least one of the operation amounts of an adjustment actuator (not shown) provided in the supply path of the air supplied into the inside is adjusted.
 図3は曝気風量演算部の信号の流れを示すブロック線図である。同図に示すように、曝気風量演算部41は、原水NH濃度の単位時間当たりの変化量に基づいて先行目標操作量(以下、単にFF操作量ともいう)を生成し、先行目標操作量信号として出力するフィードフォワード制御系(以下、FF制御系48という)と、好気槽NH濃度を制御量として帰還目標操作量(以下、単にFB操作量ともいう)を生成し、帰還目標操作量信号として出力するフィードバック制御系(以下、FB制御系49という)とを備えている。FF制御系48とFB制御系49とは協動して機能し、FF制御系48で生成されたFF操作量と、FB制御系49で生成されたFB操作量とが加算演算要素70で加算されて、曝気装置9の目標操作量が生成される。 FIG. 3 is a block diagram showing the signal flow of the aeration air volume calculation unit. As shown in the figure, the aeration air volume calculation unit 41 generates a preceding target manipulated variable (hereinafter also simply referred to as FF manipulated variable) based on the amount of change per unit time of the raw water NH 4 concentration, and the preceding target manipulated variable. A feedforward control system (hereinafter referred to as FF control system 48) that outputs as a signal and a feedback target manipulated variable (hereinafter also simply referred to as FB manipulated variable) are generated using the aerobic tank NH 4 concentration as a controlled variable, and the feedback target manipulated variable is generated. A feedback control system (hereinafter referred to as FB control system 49) that outputs the signal as a quantity signal. The FF control system 48 and the FB control system 49 function in cooperation, and the addition operation element 70 adds the FF operation amount generated by the FF control system 48 and the FB operation amount generated by the FB control system 49. Thus, the target operation amount of the aeration apparatus 9 is generated.
 まず、FB制御系49について説明する。FB制御系49は、予め設定される好気槽5の混合液のアンモニア態窒素濃度設定値(以下、「好気槽NH濃度設定値」ともいう)と好気槽アンモニア計32で計測された好気槽NH濃度との偏差を算出する偏差演算要素71と、この偏差からFB操作量を生成するFB操作量演算要素(第1の操作量演算要素)72とを備えている。FB操作量演算要素72は、例えば、PID制御方法、P制御方法又はPI制御方法を用いてFB操作量を算出する演算要素である。FB制御系49の出力信号(FB操作量)は、加算演算要素70に入力される。 First, the FB control system 49 will be described. The FB control system 49 is measured by a preset ammonia nitrogen concentration set value (hereinafter, also referred to as “aerobic tank NH 4 concentration set value”) of the liquid mixture of the aerobic tank 5 and an aerobic tank ammonia meter 32. A deviation calculation element 71 for calculating a deviation from the aerobic tank NH 4 concentration and an FB operation amount calculation element (first operation amount calculation element) 72 for generating an FB operation amount from the deviation are provided. The FB operation amount calculation element 72 is a calculation element that calculates an FB operation amount using, for example, a PID control method, a P control method, or a PI control method. An output signal (FB operation amount) of the FB control system 49 is input to the addition calculation element 70.
 好気槽NH濃度設定値は、処理水のアンモニア態窒素濃度(処理水NH濃度)の規制値(目標値)に基づいて適宜定められる値である。ただし、好気槽NH濃度設定値は、処理水NH濃度の規制値に加えて、混合液の水温等の他の因子に基づいて定められてもよい。 The aerobic tank NH 4 concentration set value is a value that is appropriately determined based on the regulation value (target value) of the ammonia nitrogen concentration (treated water NH 4 concentration) of the treated water. However, the aerobic tank NH 4 concentration set value may be determined based on other factors such as the water temperature of the mixed liquid in addition to the regulation value of the treated water NH 4 concentration.
 次に、FF制御系48について説明する。FF制御系48は、微分演算要素73と、FF操作量関数要素74と、期間設定要素75と、フィードフォワードゲイン要素76とを含み、FF操作量を生成する第2の操作量演算要素を備えている。FF制御系48の出力信号(FF操作量)は、加算演算要素70に入力される。本実施の形態において、FF制御系48は、図3に示すように、FF操作量関数要素74を実行してから期間設定要素75を実行するように構成されているが、期間設定要素75の後にFF操作量関数要素74を実行するような構成としてもよい。 Next, the FF control system 48 will be described. The FF control system 48 includes a differential operation element 73, an FF operation amount function element 74, a period setting element 75, and a feedforward gain element 76, and includes a second operation amount operation element that generates an FF operation amount. ing. An output signal (FF operation amount) of the FF control system 48 is input to the addition operation element 70. In the present embodiment, the FF control system 48 is configured to execute the period setting element 75 after executing the FF manipulated variable function element 74 as shown in FIG. The FF manipulated variable function element 74 may be executed later.
 微分演算要素73は、原水アンモニア計31で計測された原水NH濃度xを微分することで原水NH濃度の単位時間当たりの変化量Δxを演算する。FF操作量関数F1(Δx)は、原水NH濃度の単位時間当たりの変化量Δxに基づいて処理水のアンモニア態窒素濃度(処理水NH濃度)を制御するために、原水NH濃度の単位時間当たりの変化量Δxと曝気風量操作量(特に、FF操作量)との静特性の関係を関数化したものである。なお、原水NH濃度xは、本実施の形態では、原水槽2に設けられた原水アンモニア計31の測定値であるが、嫌気槽3へ流入する原水のアンモニア態窒素濃度であればよいのでその測定位置は限定されない。 The differential calculation element 73 calculates the amount of change Δx per unit time of the raw water NH 4 concentration by differentiating the raw water NH 4 concentration x measured by the raw water ammonia meter 31. FF manipulated variable function F 1 ([Delta] x), in order to control the ammonia nitrogen concentration in the treated water on the basis of the change amount [Delta] x per unit of raw NH 4 concentration time (treated water NH 4 concentration), the raw water NH 4 concentration Is a function of the static characteristic relationship between the change amount Δx per unit time and the aeration air volume manipulated variable (in particular, the FF manipulated variable). The raw water NH 4 concentration x is a measured value of the raw water ammonia meter 31 provided in the raw water tank 2 in the present embodiment, but may be any ammonia nitrogen concentration in the raw water flowing into the anaerobic tank 3. The measurement position is not limited.
 図4はFF操作量関数F1(Δx)の特性を示すグラフであって、縦軸yはFF操作量(L/min)を示し、横軸Δxは原水NH濃度の単位時間当たりの変化量(mg/L)を示している。図4においては変化量Δxにおいて原水NH濃度が増える場合を正にとっている。FF操作量(L/min)は、すなわち、好気槽5の曝気風量を表している。FF操作量yの最低風量Y1は、システム全体を維持するために最低限必要な風量である。システム全体を維持するために最低限必要な風量とは、好気槽5の混合液を攪拌し、かつ、好気槽5の好気的条件下で炭素系有機物を利用して増殖する従属栄養生物、アンモニア態窒素を硝化する硝化細菌などの活性汚泥微生物が生体を維持するために必要な酸素を提供する最低限の曝気風量である。最低風量Y1は、好気槽5の活性汚泥微生物の数や好気槽5の容量に応じて適宜定められる。 FIG. 4 is a graph showing the characteristics of the FF manipulated variable function F 1 (Δx). The vertical axis y represents the FF manipulated variable (L / min), and the horizontal axis Δx represents the change per unit time of the raw water NH 4 concentration. Amount (mg / L) is shown. In FIG. 4, the case where the raw water NH 4 concentration increases in the change amount Δx is positive. The FF manipulated variable (L / min) represents the amount of aeration air in the aerobic tank 5. The minimum air volume Y 1 of the FF manipulated variable y is the minimum air volume required for maintaining the entire system. The minimum amount of air required to maintain the entire system is heterotrophic that agitates the mixture in the aerobic tank 5 and grows using carbon-based organic matter under aerobic conditions in the aerobic tank 5 It is the minimum amount of aeration air that provides oxygen necessary for maintaining living organisms by living sludge microorganisms such as nitrifying bacteria that nitrify living organisms and ammonia nitrogen. The minimum air volume Y 1 is appropriately determined according to the number of activated sludge microorganisms in the aerobic tank 5 and the capacity of the aerobic tank 5.
 FF操作量yは、原水NH濃度の単位時間当たりの変化量Δxが負の値(濃度減少状態)から所定の第1変化量ΔXまでの範囲において、FF操作量yは、最低風量Yで一定である。第1変化量ΔX以上の範囲において、FF操作量yは、変化量Δxの増加に伴って増加する。第1変化量ΔXは正の値であってもよいし、0であってもよいし、負の値であってもよい。例えば、図4の破線で示すように、負の値であるΔX’以下の領域で最低風量Yとなるように設定されてもよい。 The FF manipulated variable y is the minimum airflow Y in the range where the change amount Δx per unit time of the raw water NH 4 concentration is from a negative value (concentration decreased state) to the predetermined first change ΔX 1. 1 is constant. In the range of the first change amount ΔX 1 or more, the FF manipulated variable y increases as the change amount Δx increases. The first change amount ΔX 1 may be a positive value, may be 0, or may be a negative value. For example, as indicated by a broken line in FIG. 4, the minimum air volume Y 2 may be set in a region below ΔX 1 ′ which is a negative value.
 原水NH濃度が減少する場合にはフィードバック制御だけで十分対応できるため、FF操作量yとしては一定値の最低風量Yとしている。このように設定することにより、FF操作量関数F1(Δx)要素74は、原水のアンモニア態窒素濃度の単位時間当たりの変化量Δxが原水のアンモニア態窒素濃度xの上昇を示す場合に曝気風量yを増大させ、原水のアンモニア態窒素濃度の単位時間当たりの変化量Δxが原水のアンモニア態窒素濃度xの減少を示す場合に曝気風量yを変化させないような先行目標操作量(後述する基準波形)を生成するよう構成される。 When the concentration of the raw water NH 4 decreases, it can be dealt with by feedback control alone. Therefore, the FF manipulated variable y is set to a fixed minimum air volume Y 1 . By setting in this way, the FF manipulated variable function F 1 (Δx) element 74 aerates when the change amount Δx per unit time of the ammonia nitrogen concentration of the raw water indicates an increase in the ammonia nitrogen concentration x of the raw water. A preceding target manipulated variable that does not change the aeration air volume y when the air volume y is increased and the amount of change Δx per unit time in the ammonia nitrogen concentration of the raw water indicates a decrease in the ammonia nitrogen concentration x of the raw water (a reference to be described later) Waveform).
 これによれば、アンモニア態窒素濃度の上昇時には、好気槽の活性汚泥混合液におけるアンモニア態窒素濃度の上昇に追従した曝気風量の増加制御を迅速に行うとともに、アンモニア態窒素濃度の減少時には、フィードフォワード制御による過剰な曝気風量の変化を抑えることにより、好気槽における曝気処理を確実に行って処理後のアンモニア態窒素濃度を確実に低減させることができる。 According to this, when the ammonia nitrogen concentration rises, the aeration air volume following the increase in the ammonia nitrogen concentration in the activated sludge mixed liquid in the aerobic tank is quickly controlled, and when the ammonia nitrogen concentration is reduced, By suppressing an excessive change in the amount of aeration air by feedforward control, it is possible to reliably perform the aeration treatment in the aerobic tank and reliably reduce the ammonia nitrogen concentration after the treatment.
 さらに、第1変化量ΔXが正の値である場合(0でない場合)、原水NH濃度の微小な変化によって頻繁にFF操作量yが変化することを防止することができる。 Further, when the first change amount ΔX 1 is a positive value (when it is not 0), it is possible to prevent the FF manipulated variable y from frequently changing due to a minute change in the raw water NH 4 concentration.
 期間設定要素75は、上記FF操作量yに動特性を付加するために、FF操作量関数F1(Δx)で得られたFF操作量yの効果発揮期間を設定する。効果発揮期間は、無駄時間(シフト時間とも呼ばれる)および減少抑制期間(保持時間とも呼ばれる)を含んでいる。 The period setting element 75 sets the period of effect of the FF manipulated variable y obtained by the FF manipulated variable function F 1 (Δx) in order to add dynamic characteristics to the FF manipulated variable y. The effect display period includes a dead time (also referred to as shift time) and a decrease suppression period (also referred to as retention time).
 無駄時間は、原則として、原水アンモニア計31でアンモニア態窒素濃度が計測された原水が、一連の生物反応槽10に流入して活性汚泥と混合された混合液となって、好気槽5に流入するまでに要する時間である。ただし、好気槽5においてアンモニア態窒素を硝化する硝化細菌の増殖速度は、通常の活性汚泥中にいる従属栄養細菌より遅いので、混合液のアンモニア態窒素濃度の不連続面が好気槽5に到達するよりも前に曝気風量を増加させ、その不連続面が好気槽5に到達したときにはアンモニア態窒素濃度の急激な増加に対応しうるように活性汚泥微生物を活性化させておくことが望ましい。つまり、無駄時間は、原水アンモニア計31でアンモニア態窒素濃度が計測された原水が好気槽5に流入するまでに要する時間よりも短い時間に設定されることが望ましい。 As a general rule, the dead time is that the raw water whose ammonia nitrogen concentration is measured by the raw water ammonia meter 31 flows into the series of biological reaction tanks 10 and becomes a mixed liquid mixed with activated sludge, and enters the aerobic tank 5. This is the time required to flow in. However, since the growth rate of nitrifying bacteria that nitrify ammonia nitrogen in the aerobic tank 5 is slower than that of heterotrophic bacteria in normal activated sludge, the discontinuous surface of the ammonia nitrogen concentration of the mixed solution is the aerobic tank 5. The aeration air volume is increased before reaching the level, and when the discontinuous surface reaches the aerobic tank 5, the activated sludge microorganisms are activated so as to cope with the rapid increase in the ammonia nitrogen concentration. Is desirable. That is, the dead time is desirably set to a time shorter than the time required for the raw water whose ammonia nitrogen concentration is measured by the raw water ammonia meter 31 to flow into the aerobic tank 5.
 さらに、減少抑制期間は、好気槽5に流入した混合液中のアンモニア態窒素が、曝気装置9により酸化されるまでの時間、すなわち、一連の生物反応槽10における活性汚泥混合液の滞留時間である。言い換えると、原水のアンモニア態窒素濃度が上昇し出してから一連の生物反応槽10における混合液中のアンモニア態窒素が目標値を超えないような時間を減少抑制期間として設定する。一連の生物反応槽10における活性汚泥混合液の滞留時間に応じて曝気処理にかかる時間が変化するため、活性汚泥混合液の滞留時間に応じて曝気風量の減少を抑制する期間を変化させることにより、好気槽5における曝気処理を確実に行って処理後のアンモニア態窒素濃度を確実に低減させることができる。 Further, the decrease suppression period is the time until the ammonia nitrogen in the mixed liquid flowing into the aerobic tank 5 is oxidized by the aeration apparatus 9, that is, the residence time of the activated sludge mixed liquid in the series of biological reaction tanks 10. It is. In other words, a time during which the ammonia nitrogen in the mixed liquid in the series of biological reaction tanks 10 does not exceed the target value after the ammonia nitrogen concentration of the raw water starts to rise is set as the reduction suppression period. Since the time required for the aeration treatment changes according to the residence time of the activated sludge mixed liquid in the series of biological reaction tanks 10, by changing the period for suppressing the decrease in the amount of aeration air according to the residence time of the activated sludge mixture liquid And the aeration process in the aerobic tank 5 can be performed reliably, and the ammonia nitrogen concentration after a process can be reduced reliably.
 このため、第2の操作量演算要素の期間設定要素75は、原水のアンモニア態窒素濃度の単位時間当たりの変化量Δxに応じたFF操作量を算出し、当該FF操作量の減少が所定の期間(減少抑制期間)抑制されるような先行目標操作量信号を生成する。より具体的には、第2の操作量演算要素は、原水のアンモニア態窒素濃度の単位時間当たりの変化量Δxに応じたFF操作量を算出し、当該FF操作量の時間的変化を示す基準波形を生成する。さらに、第2の操作量演算要素は、生成した基準波形から時間軸方向に所定の第1単位期間ずつずらした少なくとも1つの複製波形を生成する。基準波形および少なくとも1つの複製波形は、第1単位期間に応じて互いに重なり合いが生じる。第2の操作量演算要素は、無駄時間および減少抑制期間に応じて基準波形および複製波形のうちの少なくとも1つの波形を選択する。選択した波形が複数ある場合には、第2の操作量演算要素は、単位時間ごとに選択された複数の波形のうちFF操作量が最も大きい値を選択することによって先行目標操作量信号を生成する。すなわち、選択された複数の波形において互いに重なり合いが生じている箇所においては、FF操作量が最も大きい値が選択される。選択した波形が1つである場合には、第2の操作量演算要素は、当該選択した1つの波形を有する先行目標操作量を先行目標操作量信号として出力する。 For this reason, the period setting element 75 of the second manipulated variable calculation element calculates the FF manipulated variable according to the change amount Δx per unit time of the ammonia nitrogen concentration of the raw water, and the decrease in the FF manipulated variable is predetermined. A preceding target operation amount signal that is suppressed for a period (a decrease suppression period) is generated. More specifically, the second manipulated variable calculation element calculates the FF manipulated variable according to the amount of change Δx per unit time of the ammonia nitrogen concentration of the raw water, and is a reference indicating the temporal change of the FF manipulated variable. Generate a waveform. Further, the second manipulated variable calculation element generates at least one duplicate waveform that is shifted from the generated reference waveform by a predetermined first unit period in the time axis direction. The reference waveform and the at least one duplicate waveform overlap each other according to the first unit period. The second manipulated variable calculation element selects at least one of the reference waveform and the duplicate waveform according to the dead time and the decrease suppression period. When there are a plurality of selected waveforms, the second manipulated variable calculation element generates a preceding target manipulated variable signal by selecting a value having the largest FF manipulated variable from the plurality of waveforms selected per unit time. To do. That is, the value having the largest FF operation amount is selected at a location where the plurality of selected waveforms overlap each other. When there is one selected waveform, the second manipulated variable calculation element outputs a preceding target manipulated variable having the selected one waveform as a preceding target manipulated variable signal.
 図5は原水のアンモニア態窒素濃度の時間的変化を例示するグラフおよびこれに基づいて生成される先行目標操作量信号に含まれるFF操作量の時間的変化を例示するグラフである。図5の上のグラフは、原水のアンモニア態窒素濃度の時間的変化を例示するグラフであり、図5の下のグラフは、原水のアンモニア態窒素濃度に対して生成される先行目標操作量信号に含まれるFF操作量の時間的変化を例示するグラフである。 FIG. 5 is a graph illustrating the temporal change in the ammonia nitrogen concentration of the raw water and the graph illustrating the temporal change in the FF manipulated variable included in the preceding target manipulated variable signal generated based on the graph. The upper graph in FIG. 5 is a graph illustrating the temporal change in the ammonia nitrogen concentration of the raw water, and the lower graph in FIG. 5 is a preceding target manipulated variable signal generated with respect to the ammonia nitrogen concentration of the raw water. 3 is a graph illustrating a temporal change in the amount of FF operation included in the graph.
 図5の上のグラフに示すように、原水のアンモニア態窒素濃度が単調増加した後、単調減少した場合、原水のアンモニア態窒素濃度の単位時間当たりの変化量Δxは、原水のアンモニア態窒素濃度が単調増加してピークに達するまでの間に単調増加してピークを迎え、当該ピークから原水のアンモニア態窒素濃度がピークに達するまでの間は単調減少する。 As shown in the upper graph of FIG. 5, when the ammonia nitrogen concentration of the raw water monotonously increases and then monotonously decreases, the change amount Δx of the raw water ammonia nitrogen concentration per unit time is the ammonia nitrogen concentration of the raw water. Increases monotonically until reaching a peak, and reaches a peak, and decreases monotonically from the peak until the ammonia nitrogen concentration of the raw water reaches the peak.
 図5のグラフでは、原水のアンモニア態窒素濃度が単調減少している間は、単位時間当たりの変化量Δxは0となる。例えば、第1変化量がΔX=0に設定され、変化量がΔX以下の領域において最低風量Y(≧0)に設定される。 In the graph of FIG. 5, while the ammonia nitrogen concentration of the raw water is monotonously decreasing, the change amount Δx per unit time is zero. For example, the first change amount is set to ΔX 1 = 0, and the minimum air amount Y 1 (≧ 0) is set in an area where the change amount is ΔX 1 or less.
 このような単位時間当たりの変化量Δxの時間的変化を示す波形は、0hで示される波形(基準波形)となる。なお、図5においては0h,1h,…等の標記は、当該標記位置にピークが来る波形に対応している。 The waveform indicating the temporal change of the change amount Δx per unit time is a waveform (reference waveform) indicated by 0h. In FIG. 5, the marks such as 0h, 1h,... Correspond to the waveform in which the peak is at the position of the mark.
 第2の操作量演算要素は、0hの波形から時間軸方向に所定の第1単位期間ずつずらした波形を算出する。本例においては第1単位期間は1時間(1h)に設定されている。第2の操作量演算要素が算出するFF操作量の波形は、図5の下のグラフに示すように、1時間ごとに0hの波形が時間軸方向に平行移動した波形(1h,2h,3h,4hの波形:複製波形)となる。そして、算出された0hから4hまでの波形のうちの少なくとも1つが設定される無駄時間Aおよび減少抑制期間Bに応じて選択される。例えば無駄時間Aを設けない場合には少なくとも0hの波形が選択される。減少抑制期間Bが第1単位期間(1時間)のみである場合には無駄時間Aに応じて何れか1つの波形のみが選択される。例えば、無駄時間Aが2時間で減少抑制期間Bが第1単位期間のみであれば2hの波形のみが選択される。なお、無駄時間Aおよび減少抑制期間Bの設定は、オペレータによって設定入力されるものであってもよい。これに代えて、制御装置40が季節や時間帯に応じて無駄時間Aおよび減少抑制期間Bを自動的に設定するよう構成されてもよい。 The second manipulated variable calculation element calculates a waveform shifted from the 0h waveform by a predetermined first unit period in the time axis direction. In this example, the first unit period is set to 1 hour (1h). As shown in the lower graph of FIG. 5, the waveform of the FF manipulated variable calculated by the second manipulated variable calculation element is a waveform (1h, 2h, 3h) in which the waveform of 0h is translated in the time axis direction every hour. , 4h waveform: replicated waveform). Then, at least one of the calculated waveforms from 0h to 4h is selected according to the dead time A and the reduction suppression period B that are set. For example, when the dead time A is not provided, a waveform of at least 0h is selected. When the decrease suppression period B is only the first unit period (1 hour), only one waveform is selected according to the dead time A. For example, if the dead time A is 2 hours and the decrease suppression period B is only the first unit period, only the 2h waveform is selected. The dead time A and the decrease suppression period B may be set and input by an operator. Instead of this, the control device 40 may be configured to automatically set the dead time A and the decrease suppression period B according to the season and time zone.
 また、例えば複数の波形が選択された場合、選択された複数の波形のうち単位時間ごとにFF操作量が最も大きい値が選択される。例えば図5の下のグラフの例では、1hから3hまでの波形が互いに重ねられた状態で選択されている。これは、無駄時間Aが1時間に設定され、減少抑制期間Bが3時間に設定されていることを意味する。1hから3hまでの波形のうち単位時間ごとにFF操作量が最も大きい値を選択することによって先行目標操作量信号に含まれるFF操作量が生成される。すなわち、図5の下のグラフにおいて実線で示されるように、生成されるFF操作量は、1hから3hまでの波形の稜線をたどるような波形を有する。このようにして定められたFF操作量の時間的変化が先行目標操作量信号として出力される。なお、図5の下のグラフでは、無駄時間Aおよび減少抑制期間Bを各波形のピーク地点を基準に標記しているが、各波形において互いに対応する点同士を基準とする限り何れの点を基準にしてもよい。 For example, when a plurality of waveforms are selected, a value having the largest FF operation amount is selected for each unit time among the selected plurality of waveforms. For example, in the example of the lower graph in FIG. 5, the waveforms from 1h to 3h are selected in a state where they are overlapped with each other. This means that the dead time A is set to 1 hour and the decrease suppression period B is set to 3 hours. By selecting the value having the largest FF manipulated variable per unit time from the waveforms from 1h to 3h, the FF manipulated variable included in the preceding target manipulated variable signal is generated. That is, as shown by the solid line in the lower graph of FIG. 5, the generated FF operation amount has a waveform that follows the ridgeline of the waveform from 1h to 3h. The temporal change of the FF operation amount determined in this way is output as a preceding target operation amount signal. In the lower graph of FIG. 5, the dead time A and the decrease suppression period B are marked with respect to the peak point of each waveform. However, as long as the points corresponding to each other in each waveform are used as references, It may be a standard.
 これによれば、原水のアンモニア態窒素濃度の単位時間当たりの変化量Δxが原水のアンモニア態窒素濃度の上昇を示す場合に、曝気風量の目標操作量を当該変化量に応じたFF操作量とした後、原水のアンモニア態窒素濃度の単位時間当たりの変化量が原水のアンモニア態窒素濃度の減少を示した場合であっても、所定の期間、FF操作量の減少が抑制される。したがって、アンモニア態窒素濃度の上昇時には、好気槽の活性汚泥混合液におけるアンモニア態窒素濃度の上昇に追従した曝気風量の増加制御を迅速に行うとともに、アンモニア態窒素濃度の減少時には、フィードフォワード制御による過剰な曝気風量の変化を抑えることにより、好気槽における曝気処理を確実に行って処理後のアンモニア態窒素濃度を確実に低減させることができる。しかも、減少抑制期間BにおいてFF操作量の減少が抑制されるという処理を、基準波形を複製して重ねることにより実現することができる。したがって、当該処理を比較的簡単な演算処理とすることができる。 According to this, when the change amount Δx per unit time of the ammonia nitrogen concentration of the raw water indicates an increase in the ammonia nitrogen concentration of the raw water, the target operation amount of the aeration air amount is set to the FF operation amount corresponding to the change amount. After that, even if the amount of change in the ammonia nitrogen concentration of the raw water per unit time shows a decrease in the ammonia nitrogen concentration of the raw water, the decrease in the FF manipulated variable is suppressed for a predetermined period. Therefore, when the ammonia nitrogen concentration rises, the aeration air volume increases rapidly following the increase of the ammonia nitrogen concentration in the activated sludge mixture in the aerobic tank, and when the ammonia nitrogen concentration decreases, feedforward control By suppressing an excessive change in the amount of aeration air due to the aeration, it is possible to reliably perform the aeration treatment in the aerobic tank and reliably reduce the ammonia nitrogen concentration after the treatment. In addition, the process in which the decrease in the FF manipulated variable is suppressed in the decrease suppression period B can be realized by duplicating and overlapping the reference waveform. Therefore, the process can be a relatively simple arithmetic process.
 なお、本明細書および特許請求の範囲の記載において、「先行目標操作量(FF操作量)の減少が抑制される」という用語は、単位時間当たりの変化量Δxに応じたFF操作量の基準波形(0hの波形)においてFF操作量が減少する期間の当該FF操作量の値に比べて、FF操作量が大きい時間帯を少なくとも一部に含んでいることを意味する。 In the description of the present specification and claims, the term “a decrease in the preceding target operation amount (FF operation amount) is suppressed” is a reference for the FF operation amount according to the change amount Δx per unit time. This means that the waveform (0h waveform) includes at least a part of the time zone in which the FF manipulated variable is larger than the value of the FF manipulated variable during the period in which the FF manipulated variable decreases.
 無駄時間Aおよび減少抑制期間Bは、原水が嫌気槽3へ流入してから無酸素槽4より流出し、好気槽5において曝気されるまでの滞留時間を含めた時間として、実験的または計算的に求めることができる。 The dead time A and the decrease suppression period B are experimental or calculated as the time including the residence time until the raw water flows into the anaerobic tank 3 and flows out of the anaerobic tank 4 and is aerated in the aerobic tank 5. Can be obtained.
 また、フィードフォワードゲイン要素76も、FF操作量yの動特性を付与する要素として機能する。フィードフォワードゲインKfは、入力値である原水NH濃度の単位時間当たりの変化量Δxの変化幅に対する出力値であるFF操作量yの変化幅の比であり、適宜設定される。 The feedforward gain element 76 also functions as an element that gives the dynamic characteristic of the FF manipulated variable y. Feedforward gain K f is the ratio of change in width of the FF manipulated variable y is an output value for the range of change in the change amount Δx per unit time of the raw water NH 4 concentration is the input value is appropriately set.
 本実施の形態において、最終的に得られるFF操作量yは、図5の下の実線で示されるグラフのように、負の値を取らないように設定される。このためには、前述のように、第1変化量をΔX=0に設定し、変化量がΔX以下の領域において最低風量がY(>0)であるように設定してもよい。これに代えて、FF操作量の基準波形を複製して重ねることによりFF操作量の時間的変化の値を生成する際(図5の下の実線で示されるグラフを生成する際)に、FF操作量が負の値を取らない(最低風量以下とならない)ように演算処理してもよい。これにより、第1変化量ΔXが負の場合でもFF操作量が負の値を取らないようにすることができる。 In the present embodiment, the finally obtained FF manipulated variable y is set so as not to take a negative value, as in the graph shown by the solid line in FIG. For this purpose, as described above, the first change amount may be set to ΔX 1 = 0, and the minimum air volume may be set to Y 1 (> 0) in the region where the change amount is ΔX 1 or less. . Instead, when generating a value of temporal change of the FF manipulated variable by duplicating and superimposing a reference waveform of the FF manipulated variable (when generating a graph indicated by the solid line in FIG. 5), the FF Calculation processing may be performed so that the manipulated variable does not take a negative value (below the minimum air volume). Thus, it is possible to first change amount [Delta] X 1 is as FF operation amount does not take a negative value even in the case of negative.
 以上の通り、FF制御系48で原水NH濃度の単位時間当たりの変化量Δxに基づいてFF操作量が算出され、FB制御系49で好気槽NH濃度に基づいてFB操作量が算出され、これらのFF操作量とFB操作量とを足し合わせて曝気装置9の目標操作量が生成される。 As described above, the FF operation amount is calculated based on the change amount Δx per unit time of the raw water NH 4 concentration in the FF control system 48, and the FB operation amount is calculated based on the aerobic tank NH 4 concentration in the FB control system 49. Then, the target operation amount of the aeration apparatus 9 is generated by adding the FF operation amount and the FB operation amount.
 図6は本実施の形態を適用した再生水製造システムにおける各槽のアンモニア態窒素濃度および曝気風量の時間的変化を示すグラフである。図6においては横軸を共通の時間軸とし、原水NH濃度、好気槽NH濃度、沈殿槽6で濾過された処理水のアンモニア態窒素濃度(図6および以下では処理水NH濃度と表記する)、処理水NH濃度の規制値(図6および以下では処理水規制値と表記する)、および曝気風量の時間的変化を示すグラフが示されている。なお、処理水NH濃度は、例えば濾過水槽7に貯留される処理水のアンモニア態窒素濃度を計測するアンモニア計(不図示)により計測される。 FIG. 6 is a graph showing temporal changes in the ammonia nitrogen concentration and aeration air volume in each tank in the reclaimed water production system to which the present embodiment is applied. In FIG. 6, the horizontal axis is a common time axis, the raw water NH 4 concentration, the aerobic tank NH 4 concentration, and the ammonia nitrogen concentration of the treated water filtered in the settling tank 6 (in FIG. 6 and below, the treated water NH 4 concentration). And a regulation value of the treated water NH 4 concentration (referred to as a treated water regulation value in FIG. 6 and hereinafter), and a graph showing a temporal change in the aeration air volume. The treated water NH 4 concentration is measured by, for example, an ammonia meter (not shown) that measures the ammonia nitrogen concentration of the treated water stored in the filtered water tank 7.
 本実施の形態においては、上述したように、好気槽NH濃度に基づいてフィードバック制御を行いつつ、原水NH濃度の単位時間当たりの変化量Δxに応じたフィードフォワード制御を行う。これにより、原水NH濃度の変化の立ち上がりからそれに合わせて曝気風量を変化させることができる。図6の例においては無駄時間Aが設定されており、時刻t1における原水NH濃度の立ち上がり時から無駄時間A経過後すぐの時刻t2においてフィードフォワード制御による曝気風量の増大が生じている。このため、フィードバック制御では追従し難いアンモニア態窒素濃度の急激な変化に対しても適切な曝気風量に制御することができる。 In the present embodiment, as described above, feedforward control is performed according to the amount of change Δx per unit time of the raw water NH 4 concentration while performing feedback control based on the aerobic tank NH 4 concentration. Thereby, the aeration air volume can be changed in accordance with the rising of the change in the raw water NH 4 concentration. In the example of FIG. 6, the dead time A is set, and the aeration air volume is increased by the feedforward control at time t2 immediately after the dead time A has elapsed from the rise of the raw water NH 4 concentration at time t1. For this reason, it is possible to control the amount of aeration air to an appropriate amount even for a sudden change in ammonia nitrogen concentration that is difficult to follow in feedback control.
 さらに、図6の例においては減少抑制期間Bが設定されており、原水NH濃度の減少が生じても(無駄時間Aを差し引いても)原水NH濃度の増加期間(ピークに至るまでの期間)より長い期間、フィードフォワード制御による曝気風量の増大が維持されている。 Furthermore, in the example of FIG. 6, a reduction suppression period B is set, and even if a decrease in the raw water NH 4 concentration occurs (even if the dead time A is subtracted), the increase period of the raw water NH 4 concentration (until the peak is reached). The increase in aeration air volume by feedforward control is maintained for a longer period.
 この結果、その後の期間C(時刻t3と時刻t4との間の期間)においても好気槽NH濃度の増大が抑えられ、処理水NH濃度も処理水規制値を超えない値に制御されている。 As a result, in the subsequent period C (period between time t3 and time t4), the increase in the aerobic tank NH 4 concentration is suppressed, and the treated water NH 4 concentration is also controlled to a value that does not exceed the treated water regulation value. ing.
 また、期間D(時刻t4と時刻t5との間の期間)のように、原水のアンモニア態窒素濃度の値自体が高くても単位時間当たりの変化量が小さい場合には、フィードフォワード制御による曝気風量の変化を小さくすることができる。図6に示されるように、期間Dにおいては原水NH濃度は緩やかに上昇するため、曝気風量が急激に上昇していない。すなわち、期間Dにおける曝気風量の変化はフィードバック制御が支配的になっている。このように、フィードバック制御だけで十分対応できる期間においては、フィードフォワード制御による過剰な曝気風量の変化を抑えることにより、適切な曝気風量に制御しつつ省電力化を図ることができる。 Further, when the amount of change per unit time is small even if the ammonia nitrogen concentration value itself is high as in the period D (period between time t4 and time t5), aeration by feedforward control is performed. The change in air volume can be reduced. As shown in FIG. 6, in the period D, the raw water NH 4 concentration gradually increases, so the aeration air volume does not increase rapidly. That is, feedback control is dominant in the change of the aeration air volume during the period D. In this way, during a period that can be adequately handled only by feedback control, it is possible to save power while controlling to an appropriate aeration air volume by suppressing an excessive change in the aeration air volume due to the feedforward control.
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の改良、変更、修正が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various improvements, changes, and modifications can be made without departing from the spirit of the present invention.
 例えば、再生水製造システム1の具体的な構造は、上記実施の形態に限定されない。本実施の形態に係る再生水製造システム1は、好気槽5の後に沈殿槽6を備えた構成を例示しているが、好気槽5の後に、好気槽5より流入した混合液から汚泥等を分離するための膜分離槽を備えた膜分離活性汚泥法(MBR:Membrane Bio-Reactor)を利用した水処理システムにも上記実施の形態の態様を適用可能である。また、本実施の形態に係る再生水製造システム1は、嫌気槽3と無酸素槽4とをともに備えているが、嫌気槽3と無酸素槽4とのうち少なくとも一方を備えていてもよい。さらに、本実施の形態に係る曝気装置9は、送風機の回転数の操作量または調節アクチュエータの操作量により曝気風量を調整するように構成されているが、送風機の回転数の操作量および調節アクチュエータの操作量の両方で曝気風量を調整するように構成されていてもよい。 For example, the specific structure of the reclaimed water production system 1 is not limited to the above embodiment. The reclaimed water production system 1 according to the present embodiment exemplifies a configuration in which a settling tank 6 is provided after an aerobic tank 5, and sludge is produced from a mixed solution that flows from the aerobic tank 5 after the aerobic tank 5. The aspect of the above-described embodiment can also be applied to a water treatment system using a membrane separation activated sludge method (MBR: Membrane® Bio-Reactor) equipped with a membrane separation tank for separating the components. Moreover, although the reclaimed water manufacturing system 1 which concerns on this Embodiment is equipped with both the anaerobic tank 3 and the anaerobic tank 4, you may provide at least one among the anaerobic tank 3 and the anaerobic tank 4. FIG. Further, the aeration apparatus 9 according to the present embodiment is configured to adjust the aeration air volume by the operation amount of the rotation speed of the blower or the operation amount of the adjustment actuator, but the operation amount of the rotation speed of the blower and the adjustment actuator The aeration air volume may be adjusted by both of the manipulated variables.
 また、例えば、本実施の形態においてアンモニア計31,32は、それぞれ原水および混合液のアンモニア態窒素濃度を連続的に計測する濃度計であるが、定期的または不定期にサンプリングを行って任意の方法でアンモニア態窒素濃度を測定する方法とすることもできる。 Further, for example, in the present embodiment, the ammonia meters 31 and 32 are concentration meters that continuously measure the ammonia nitrogen concentration of the raw water and the mixed solution, respectively. It can also be set as the method of measuring ammonia nitrogen concentration by a method.
 また、原水アンモニア態窒素濃度の単位時間当たりの変化量Δxに基づく先行目標操作量の生成において、減少抑制期間Bにおける先行目標操作量の減少抑制を確保するための構成は、上述したような0hの波形を第1単位期間ずつずらして重ね合わせる態様に限られない。例えば、第2の操作量演算要素が、0hの波形のピーク(または単位時間当たりの変化量Δxの減少)を検出し、減少抑制期間に応じて当該ピークの値を維持する、または緩やかに減少するような先行目標操作量を生成するように構成してもよい。また、例えば、第2の操作量演算要素が、減少抑制期間に応じて0hの波形を時間軸方向に広がるように拡大させることにより先行目標操作量を生成するように構成してもよい。 In addition, in the generation of the preceding target manipulated variable based on the change amount Δx per unit time of the raw water ammonia nitrogen concentration, the configuration for ensuring the suppression of the preceding target manipulated variable in the decrease suppressing period B is 0h as described above. It is not limited to a mode in which the waveforms are superimposed while being shifted by the first unit period. For example, the second manipulated variable calculation element detects the peak of the waveform of 0h (or decreases the change amount Δx per unit time) and maintains the value of the peak according to the decrease suppression period or gradually decreases Such a preceding target operation amount may be generated. Further, for example, the second operation amount calculation element may be configured to generate the preceding target operation amount by expanding the waveform of 0h so as to expand in the time axis direction according to the decrease suppression period.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
 本発明は、好気槽の混合液へ供給される空気量を適切に制御することができる水処理システムおよびその曝気風量制御方法を提供するために有用である。 The present invention is useful for providing a water treatment system capable of appropriately controlling the amount of air supplied to a mixed solution in an aerobic tank and an aeration air volume control method thereof.
 1 再生水製造システム(水処理システム)
 5 好気槽
 9 曝気装置
 10 生物反応槽
 31 原水アンモニア計(第2のアンモニア計)
 32 好気槽アンモニア計(第1のアンモニア計)
 40 制御装置
 41 曝気風量演算部(曝気風量演算装置)
 48 フィードフォワード制御系
 49 フィードバック制御系
 72 FB操作量演算要素(第1の操作量演算要素)
 73 微分演算要素(第2の操作量演算要素)
 74 FF操作量関数要素(第2の操作量演算要素)
 75 期間設定要素(第2の操作量演算要素)
 76 フィードフォワードゲイン要素(第2の操作量演算要素)
 91 曝気風量制御部(曝気風量制御装置)
1 Reclaimed water production system (water treatment system)
5 Aerobic tank 9 Aeration device 10 Biological reaction tank 31 Raw water ammonia meter (second ammonia meter)
32 Aerobic tank ammonia meter (first ammonia meter)
40 Control Device 41 Aeration Air Volume Calculation Unit (Aeration Air Volume Calculation Device)
48 Feedforward control system 49 Feedback control system 72 FB manipulated variable computation element (first manipulated variable computation element)
73 Differential calculation element (second manipulated variable calculation element)
74 FF manipulated variable function element (second manipulated variable computation element)
75 Period setting element (second manipulated variable calculation element)
76 Feed forward gain element (second manipulated variable calculation element)
91 Aeration air volume control unit (Aeration air volume control device)

Claims (6)

  1.  曝気装置を備えた好気槽と、該好気槽の上流側に設けられた少なくとも1以上の嫌気槽または無酸素槽とを有し、活性汚泥法に基づいて水処理を行う一連の生物反応槽と、
     前記好気槽の活性汚泥混合液のアンモニア態窒素濃度を計測する第1のアンモニア計と、
     前記一連の生物反応槽に流入する原水のアンモニア態窒素濃度を計測する第2のアンモニア計と、
     前記曝気装置の曝気風量の目標値である目標操作量に基づいて前記曝気装置の曝気風量を制御する曝気風量制御装置と、
     前記目標操作量を生成する曝気風量演算装置と、を備え、
     前記曝気風量演算装置は、前記好気槽の活性汚泥混合液のアンモニア態窒素濃度とその設定値との偏差に基づいて帰還目標操作量信号を生成する第1の操作量演算要素を含むフィードバック制御系と、前記原水のアンモニア態窒素濃度の単位時間当たりの変化量に応じて先行目標操作量信号を生成する第2の操作量演算要素を含むフィードフォワード制御系と、前記帰還目標操作量信号および前記先行目標操作量信号を加算して前記目標操作量を生成する加算演算要素と、を有する、
     水処理システム。
    A series of biological reactions having an aerobic tank equipped with an aeration apparatus and at least one anaerobic tank or an oxygen-free tank provided upstream of the aerobic tank, and performing water treatment based on the activated sludge method A tank,
    A first ammonia meter for measuring the ammonia nitrogen concentration of the activated sludge mixed liquid in the aerobic tank;
    A second ammonia meter for measuring the ammonia nitrogen concentration of the raw water flowing into the series of biological reaction tanks;
    An aeration air volume control device that controls the aeration air volume of the aeration device based on a target operation amount that is a target value of the aeration air volume of the aeration device;
    An aeration air volume calculating device for generating the target manipulated variable,
    The aeration air amount calculation device includes a first operation amount calculation element that generates a feedback target operation amount signal based on a deviation between the ammonia nitrogen concentration of the activated sludge mixed liquid in the aerobic tank and a set value thereof. A feedforward control system including a system and a second manipulated variable calculation element that generates a preceding target manipulated variable signal according to a change amount per unit time of the ammonia nitrogen concentration of the raw water, the feedback target manipulated variable signal, An addition operation element for adding the preceding target operation amount signal to generate the target operation amount,
    Water treatment system.
  2.  前記第2の操作量演算要素は、前記原水のアンモニア態窒素濃度の単位時間当たりの変化量に応じた先行目標操作量を算出し、当該先行目標操作量の減少が所定の期間抑制されるような前記先行目標操作量信号を生成するよう構成される、
     請求項1に記載の水処理システム。
    The second manipulated variable calculation element calculates a preceding target manipulated variable according to a change amount per unit time of the ammonia nitrogen concentration of the raw water so that a decrease in the preceding target manipulated variable is suppressed for a predetermined period. Configured to generate the preceding target manipulated variable signal,
    The water treatment system according to claim 1.
  3.  前記所定の期間は、前記一連の生物反応槽における活性汚泥混合液の滞留時間に応じて設定可能に構成される、
     請求項2に記載の水処理システム。
    The predetermined period is configured to be set according to the residence time of the activated sludge mixed liquid in the series of biological reaction tanks.
    The water treatment system according to claim 2.
  4.  前記第2の操作量演算要素は、前記原水のアンモニア態窒素濃度の単位時間当たりの変化量に応じた先行目標操作量を算出し、当該先行目標操作量の時間的変化を示す基準波形から時間軸方向に所定の第1単位期間ずつずらした少なくとも1つの複製波形を生成し、前記所定の期間に応じて前記基準波形および前記複製波形のうちの少なくとも2つの波形を選択し、選択した波形のうち前記先行目標操作量が最も大きい値を選択することによって前記先行目標操作量信号を生成するよう構成される、
     請求項2または3に記載の水処理システム。
    The second manipulated variable calculation element calculates a preceding target manipulated variable according to a change amount per unit time of the ammonia nitrogen concentration of the raw water, and calculates a time from a reference waveform indicating a temporal change of the preceding target manipulated variable. Generating at least one replicated waveform shifted in the axial direction by a predetermined first unit period, selecting at least two of the reference waveform and the replicated waveform according to the predetermined period, and The preceding target operation amount signal is generated by selecting a value of which the preceding target operation amount is the largest,
    The water treatment system according to claim 2 or 3.
  5.  曝気装置を備えた好気槽と、該好気槽の上流側に設けられた少なくとも1以上の嫌気槽または無酸素槽とを有し、活性汚泥法に基づいて水処理を行う一連の生物反応槽を備えた水処理システムの曝気風量制御方法であって、
     前記曝気装置の曝気風量の目標値である目標操作量に基づいて前記曝気装置の曝気風量を制御する風量制御工程と、
     前記目標操作量を生成する目標操作量演算工程と、を有し、
     前記目標操作量演算工程は、
     前記好気槽の活性汚泥混合液のアンモニア態窒素濃度を計測する混合液計測工程と、
     前記一連の生物反応槽に流入する原水のアンモニア態窒素濃度を計測する原水計測工程と、
     前記好気槽の活性汚泥混合液のアンモニア態窒素濃度とその設定値との偏差に基づいて帰還目標操作量信号を生成する帰還信号生成工程と、
     前記原水のアンモニア態窒素濃度の単位時間当たりの変化量に応じて先行目標操作量信号を生成する先行信号生成工程と、
     前記帰還目標操作量信号および前記先行目標操作量信号を加算して前記目標操作量を生成する操作量生成工程と、を有する
     水処理システムの曝気風量制御方法。
    A series of biological reactions having an aerobic tank equipped with an aeration apparatus and at least one anaerobic tank or an oxygen-free tank provided upstream of the aerobic tank, and performing water treatment based on the activated sludge method A method for controlling aeration air volume in a water treatment system equipped with a tank,
    An air volume control step of controlling the aeration air volume of the aeration apparatus based on a target operation amount that is a target value of the aeration air volume of the aeration apparatus;
    A target operation amount calculation step for generating the target operation amount,
    The target manipulated variable calculation step includes:
    A mixed solution measuring step for measuring the ammonia nitrogen concentration of the activated sludge mixed solution in the aerobic tank;
    Raw water measurement step for measuring ammonia nitrogen concentration of raw water flowing into the series of biological reaction tanks,
    A feedback signal generation step of generating a feedback target manipulated variable signal based on a deviation between the ammonia nitrogen concentration of the activated sludge mixed liquid in the aerobic tank and its set value;
    A preceding signal generation step of generating a preceding target manipulated variable signal according to the amount of change per unit time of the ammonia nitrogen concentration of the raw water;
    An aeration amount generation method for a water treatment system, comprising: an operation amount generation step of generating the target operation amount by adding the feedback target operation amount signal and the preceding target operation amount signal.
  6.  前記先行信号生成工程は、前記原水のアンモニア態窒素濃度の単位時間当たりの変化量に応じた先行目標操作量を算出し、当該先行目標操作量の減少が所定の期間抑制されるような前記先行目標操作量信号を生成する、
     請求項5に記載の水処理システムの曝気風量制御方法。
    The preceding signal generation step calculates a preceding target operation amount according to a change amount per unit time of the ammonia nitrogen concentration of the raw water, and the preceding signal operation is performed such that a decrease in the preceding target operation amount is suppressed for a predetermined period. Generate a target manipulated variable signal,
    The aeration air volume control method of the water treatment system according to claim 5.
PCT/JP2015/006444 2014-12-25 2015-12-24 Water treatment system and method for controlling aeration air quantity thereof WO2016103707A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014262281A JP6431363B2 (en) 2014-12-25 2014-12-25 Water treatment system and aeration air volume control method thereof
JP2014-262281 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016103707A1 true WO2016103707A1 (en) 2016-06-30

Family

ID=56149765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006444 WO2016103707A1 (en) 2014-12-25 2015-12-24 Water treatment system and method for controlling aeration air quantity thereof

Country Status (3)

Country Link
JP (1) JP6431363B2 (en)
CN (2) CN205398370U (en)
WO (1) WO2016103707A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698029A (en) * 2021-07-14 2021-11-26 河海大学 Gate-controlled non-constant water level estuary water quality purification system and operation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7166058B2 (en) * 2018-02-09 2022-11-07 オルガノ株式会社 Water treatment method and water treatment equipment
JP6541913B1 (en) * 2018-07-26 2019-07-10 三菱電機株式会社 Water treatment plant and operating method of water treatment plant
JP7282149B2 (en) * 2019-02-06 2023-05-26 三菱電機株式会社 Water treatment device and water treatment method
WO2020161825A1 (en) * 2019-02-06 2020-08-13 三菱電機株式会社 Water treatment device and water treatment method
JP7406445B2 (en) 2020-04-28 2023-12-27 株式会社明電舎 Air volume control device and air volume control method
JP7170949B1 (en) * 2022-03-17 2022-11-14 三菱電機株式会社 Aeration amount control device and aeration amount control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066231A (en) * 2010-09-27 2012-04-05 Kawasaki Heavy Ind Ltd Water treatment system and aeration air flow control method therefor
WO2013021591A1 (en) * 2011-08-10 2013-02-14 川崎重工業株式会社 Water treatment system and method for controlling amount of aeration

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100361909C (en) * 2005-10-20 2008-01-16 彭永臻 Adjusting method for A/O biological denitrification reactor and nitrification process, its on-line fuzzy controller and control thereof
CN201737811U (en) * 2010-06-25 2011-02-09 北京工业大学 A2/O-BAF technique deep denitrification and dephosphorization real-time control device
CN101880111B (en) * 2010-06-25 2013-07-10 北京工业大学 Real-time control device and method for deep denitrification and dephosphorization of A2/O-BAF (Biological Aerated Filter) process
CN103112949B (en) * 2013-02-03 2014-03-05 北京工业大学 SBR (sequencing batch reactor) semi-short-distance nitrification process control method
CN103496818B (en) * 2013-09-11 2015-01-07 北京工业大学 AAO (Anaerobic-Anoxic-Oxic)-biological contact oxidation strengthened denitrification and dephosphorization device and real-time control method of low C/N sewage treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066231A (en) * 2010-09-27 2012-04-05 Kawasaki Heavy Ind Ltd Water treatment system and aeration air flow control method therefor
WO2013021591A1 (en) * 2011-08-10 2013-02-14 川崎重工業株式会社 Water treatment system and method for controlling amount of aeration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698029A (en) * 2021-07-14 2021-11-26 河海大学 Gate-controlled non-constant water level estuary water quality purification system and operation method thereof

Also Published As

Publication number Publication date
CN205398370U (en) 2016-07-27
CN105731630A (en) 2016-07-06
JP6431363B2 (en) 2018-11-28
CN105731630B (en) 2019-08-30
JP2016120465A (en) 2016-07-07

Similar Documents

Publication Publication Date Title
JP6431363B2 (en) Water treatment system and aeration air volume control method thereof
JP5608027B2 (en) Water treatment system and aeration air volume control method thereof
JP5685504B2 (en) Water treatment system and aeration air volume control method thereof
JP2016512169A5 (en)
CN108191052B (en) Intelligent carbon source adding system and application thereof in sewage treatment
EP2740713A1 (en) Method for starting up and controlling a biological process for ammonium removal by the action of autotrophic bacteria in wastewater
JP5566147B2 (en) Rice processing wastewater treatment method and equipment
US20130020257A1 (en) Mainstream Wastewater Treatment
JP5140545B2 (en) Air supply system and air supply method
JP6720100B2 (en) Water treatment method and water treatment device
WO2013133443A1 (en) Wastewater treatment device, wastewater treatment method, wastewater treatment system, control device, control method, and program
JP2012066231A5 (en)
JP5833791B1 (en) Aeration control method for activated sludge
JP2011147858A (en) Apparatus and method for treating sewage
JP2016182551A (en) Treatment method for organic waste water and treatment system therefor
JP5956372B2 (en) Water treatment apparatus and water treatment method
JP2015208708A (en) Water treatment monitor system, water treatment system having the same and water treatment method
JP2015127027A (en) Operation mode calculating device and water treatment system comprising it
Guglielmi et al. Alternate anoxic/aerobic operation for nitrogen removal in a membrane bioreactor for municipal wastewater treatment
JP6062328B2 (en) Waste water treatment method, waste water treatment device, control method, control device, and program
CN106573807B (en) Aeration air volume calculating device and water treatment system
JP2012066186A (en) Water treatment apparatus
JP2012228645A (en) Water treatment apparatus, water treating method, and program for the method
JP5325124B2 (en) Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water
JPWO2019039008A1 (en) Water treatment control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872278

Country of ref document: EP

Kind code of ref document: A1