JPS60176267A - Semiconductor memory device and manufacture thereof - Google Patents
Semiconductor memory device and manufacture thereofInfo
- Publication number
- JPS60176267A JPS60176267A JP59031719A JP3171984A JPS60176267A JP S60176267 A JPS60176267 A JP S60176267A JP 59031719 A JP59031719 A JP 59031719A JP 3171984 A JP3171984 A JP 3171984A JP S60176267 A JPS60176267 A JP S60176267A
- Authority
- JP
- Japan
- Prior art keywords
- groove
- film
- sio2
- shaped
- conductivity type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 238000005530 etching Methods 0.000 claims abstract description 13
- 239000011810 insulating material Substances 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 72
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 36
- 239000000377 silicon dioxide Substances 0.000 abstract description 36
- 238000009792 diffusion process Methods 0.000 abstract description 16
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 13
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 abstract description 13
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 12
- 238000000034 method Methods 0.000 abstract description 7
- 239000012535 impurity Substances 0.000 abstract description 5
- 230000010354 integration Effects 0.000 abstract description 5
- 238000005468 ion implantation Methods 0.000 abstract description 3
- 239000013078 crystal Substances 0.000 abstract description 2
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 2
- 229910052681 coesite Inorganic materials 0.000 abstract 10
- 229910052906 cristobalite Inorganic materials 0.000 abstract 10
- 229910052682 stishovite Inorganic materials 0.000 abstract 10
- 229910052905 tridymite Inorganic materials 0.000 abstract 10
- 238000007493 shaping process Methods 0.000 abstract 1
- 239000003990 capacitor Substances 0.000 description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 238000003860 storage Methods 0.000 description 7
- 238000002955 isolation Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、電荷蓄積部である容量と絶縁ゲート電界効果
トランジスタを含んでなる半導体記憶装置における電荷
蓄積部の構造およびその製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure of a charge storage section in a semiconductor memory device including a capacitor serving as a charge storage section and an insulated gate field effect transistor, and a method for manufacturing the same.
電荷の形で二進情報を貯蔵する半導体メモリセルはセル
面積が小さいため、高集積、大容量、メモリセルとして
秀れている。特にメモリセルとして一つのトランジスタ
と一つの容量力1らなるメモリセル(以1”1TICセ
ルと略す)は、構成要素も少なく、セル面積も小さいた
め高集積メモリ用メモリセルとして重要である。ところ
でメモリの高集積化によるメモリセルサイズの縮小に伴
い、ITICセル構造における容量部面積が減少してき
ている。そして容量部面積の減少による記憶電荷量の減
少は、耐α粒子問題、センスアンプの感度の劣化を引き
起す。Semiconductor memory cells that store binary information in the form of charges have a small cell area, making them highly integrated, large-capacity, and excellent as memory cells. In particular, a memory cell consisting of one transistor and one capacitor (hereinafter abbreviated as 1TIC cell) is important as a memory cell for highly integrated memory because it has few components and has a small cell area. With the reduction in memory cell size due to higher integration of memory, the area of the capacitor in the ITIC cell structure is decreasing.The decrease in the amount of stored charge due to the decrease in the area of the capacitor is due to the problem of resistance to alpha particles and the sensitivity of the sense amplifier. cause deterioration.
従来、このような問題点を解決するため、メモリセル面
積の縮小にもかかわらず大きな記憶容量部を形成する方
法として半導体基板内に溝を設け、この溝の側面と半導
体基板間に容量を形成する方法が仰られている。Conventionally, in order to solve these problems, a method of forming a large storage capacitor despite the reduction in memory cell area was to create a groove in the semiconductor substrate and form a capacitor between the side surface of the groove and the semiconductor substrate. It tells you how to do it.
第1図に従来よく知られている、溝を用いて容量部を形
成するITICセルの一例を示す。第1図において、3
が容量電極で反転層6との間に薄い絶縁膜2を設けるこ
とにより記憶容量部を形成している。4はスイッチング
トランジスタのゲート電極でワード線に接続されており
、ビット線に接続されている拡散層5と反転層6の間の
電荷の移動を制御する。FIG. 1 shows an example of a conventionally well-known ITIC cell in which a capacitive portion is formed using a trench. In Figure 1, 3
is a capacitor electrode, and a thin insulating film 2 is provided between it and the inversion layer 6 to form a storage capacitor section. Reference numeral 4 denotes a gate electrode of a switching transistor, which is connected to a word line and controls the movement of charges between a diffusion layer 5 and an inversion layer 6, which are connected to a bit line.
しかしながら、従来の、溝を用いて容量部を形成するl
T I Cセルはその構造上容量部としての溝を素子
領域内に形成している。このため溝形成領域部の寸法お
よび溝と分離領域間のマージン分だけセル寸法がどうし
ても大きくなる。今後さらに高集積化が進みセル寸法の
微細化が要求されると従来の溝を用いたITICセルは
その構造上セルサイズの微細化に限界が出てくるという
欠点を有している。However, in the conventional l
Due to its structure, the TIC cell has a trench formed in the element region as a capacitive portion. Therefore, the cell size inevitably increases by the size of the groove forming region and the margin between the groove and the isolation region. In the future, as higher integration progresses and miniaturization of cell dimensions is required, conventional ITIC cells using grooves have the disadvantage that there will be a limit to miniaturization of cell size due to their structure.
本発明は、溝を用いて容量部を形成するITICセルに
おいて容量部の面積を極度に縮小し高集積化に適した容
量部構造及びその製造方法を提供することを目的とする
。SUMMARY OF THE INVENTION An object of the present invention is to provide a capacitor structure suitable for high integration by extremely reducing the area of the capacitor in an ITIC cell in which the capacitor is formed using a trench, and a method for manufacturing the same.
本発明によれば、第1導電型半導体基板表面に設けられ
た溝の一対の対向した側壁に形成された一対の第2導電
型領域、少なくとも前記溝部内壁を被う絶縁性物質、前
記絶縁性物質に接し前記溝部を埋める基準電位を与えら
れた導電性物質、前記第1導電型半導体基板表面に設け
られ、前記絶縁性物質に接し、前記第2導電型領域に電
気的に接続し形成されたMI8トランジスタのソース電
極である第2導電型領域を備えたことを特徴とする半導
体記憶装置が得られる。According to the present invention, a pair of second conductivity type regions formed on a pair of opposing sidewalls of a groove provided in a surface of a first conductivity type semiconductor substrate, an insulating material covering at least the inner wall of the groove portion, and the insulating material A conductive material is provided on the surface of the first conductive type semiconductor substrate, and is in contact with the insulating material and is electrically connected to the second conductive type region. A semiconductor memory device characterized in that it includes a second conductivity type region which is a source electrode of an MI8 transistor is obtained.
さらに本発明によれば、第1導電型半導体基板上に第1
の溝を形成する工程、容量部形成領域の前記第1の溝の
内壁に第1の第2導電型領域を形成する工程、前記第1
の溝底部をエツチングして第2の溝を形成する工程、該
第2の溝底部に第1導電型領域を形成する工程、前記第
1.第2の溝表面に絶縁膜を形成する工程、前記第1.
第2の溝内を導゛醒性物質で埋める工程、該導電性物質
の上部を絶縁性物質で被う工程、前記第1の第2導電型
領域に電気的に接続するように第2の第2導電型領域を
形成する工程を含むことを特徴とする半導体記憶装置の
製造方法が得られる。Furthermore, according to the present invention, the first conductive type semiconductor substrate is
a step of forming a first second conductivity type region on an inner wall of the first trench in the capacitor formation region;
a step of forming a second groove by etching the bottom of the groove; a step of forming a first conductivity type region at the bottom of the second groove; a step of forming an insulating film on the surface of the second groove;
a step of filling the inside of the second groove with a conductive material; a step of covering the upper part of the conductive material with an insulating material; A method for manufacturing a semiconductor memory device is obtained, which includes a step of forming a second conductivity type region.
以下本発明の典型的な実施例を図面を用いて詳述する。Hereinafter, typical embodiments of the present invention will be described in detail using the drawings.
第2図fal 、 (bl 、 (c) 、 td)
、 tel 、 if) 、 (g) 、 th) 。Fig. 2 fal, (bl, (c), td)
, tel, if), (g), th).
(il 、 (j)は本発明における溝を用いて容量部
を形成する製造プロセスを順を追って示した模式的断面
図である。(il, (j) are schematic cross-sectional views sequentially showing the manufacturing process of forming a capacitive part using grooves in the present invention.
第2図(alは、p型シリコン単結晶基板ll上に薄い
二酸化珪素膜12、窒化珪素膜13、および厚い二酸化
珪素膜14を順次形成した後、溝形成領域以外をレジス
ト15で被い、さらにこのレジスト15をエツチングマ
スクとして反応性スパッタエツチングにより前記二酸化
珪素膜15、窒化珪素膜14.二酸化珪素膜13を順次
エツチング除去後ひき続き前記レジス)15および二酸
化珪素膜14をエツチングマスクとして前記シリコン基
板11をエツチングして第1の溝Aを形成した状態を示
す。FIG. 2 (al) shows that after sequentially forming a thin silicon dioxide film 12, a silicon nitride film 13, and a thick silicon dioxide film 14 on a p-type silicon single crystal substrate 11, areas other than the groove forming region are covered with a resist 15; Furthermore, using this resist 15 as an etching mask, the silicon dioxide film 15, silicon nitride film 14, and silicon dioxide film 13 are sequentially etched and removed by reactive sputter etching, and then the silicon dioxide film 15 and silicon dioxide film 14 are used as an etching mask to remove the silicon dioxide film 15, silicon nitride film 14, and silicon dioxide film 13 in sequence. A state in which the first groove A is formed by etching the substrate 11 is shown.
第2図(b)は、前記レジスト15を除去した後、熱酸
化法により前記溝A表面に二酸化珪素膜16を形成し、
その後レジスト17を全面に塗布、さらにその表面にシ
リコン18を薄く蒸着し、さらに溝容量部となる領域以
外をレジスト19で被った状態を示す。FIG. 2(b) shows that after removing the resist 15, a silicon dioxide film 16 is formed on the surface of the groove A by thermal oxidation.
Thereafter, a resist 17 is applied to the entire surface, and a thin layer of silicon 18 is further deposited on the surface, and a resist 19 is shown covering the area other than the area that will become the groove capacitance.
第2図(C1は、前記レジスト19をエツチングマスク
として前記シリコンI8をエツチングし、その後前記シ
リコン18’をエツチングマスクとして前記レジスト1
7をエツチング除去した状態を示す。ここでレジスト1
7をエツチングする1手段としては例えば酸素ガスを用
いた反応性スパッタエッチ技術がある。FIG. 2 (C1 shows that the silicon I8 is etched using the resist 19 as an etching mask, and then the resist 1 is etched using the silicon 18' as an etching mask.
7 is shown after being etched away. Here resist 1
One means of etching 7 is, for example, a reactive sputter etch technique using oxygen gas.
第2図(cl+は前記シリコン18′を除去した後、前
記レジスト17′をエツチングマスクとして前記二酸化
珪素膜16をエツチング除去し、さらに前記二酸化珪素
膜14をマスクとして容量形成領域の溝内にのみシリコ
ン基板11と異なる導電型不純物例えば燐の拡散層20
を形成した状態を示す。FIG. 2 (cl+) shows that after the silicon 18' is removed, the silicon dioxide film 16 is etched away using the resist 17' as an etching mask, and then the silicon dioxide film 14 is used as a mask to remove only the inside of the trench in the capacitor formation region. A diffusion layer 20 of an impurity of a conductivity type different from that of the silicon substrate 11, for example, phosphorus.
This shows the state in which it has been formed.
第2図t6+は、前記二酸化珪素膜14をエツチングマ
スクとして反応性スパックエッチにより前記シリコン基
板11をエツチングし、さらに深い溝Bを形成後、熱酸
化法により前記溝の表面に二酸化珪素膜21を形成し、
続いて前記二酸化珪素膜14をマスクとして溝Bの底に
イオン注入法により基板11と同一導電型不純物層22
を形成した状態を示す。At t6+ in FIG. 2, the silicon substrate 11 is etched by reactive sprocket etching using the silicon dioxide film 14 as an etching mask to form a deeper trench B, and then a silicon dioxide film 21 is formed on the surface of the trench by thermal oxidation. form,
Next, using the silicon dioxide film 14 as a mask, an impurity layer 22 of the same conductivity type as the substrate 11 is formed at the bottom of the groove B by ion implantation.
This shows the state in which it has been formed.
第2図(f)は、レジストを全面に形成した後、前述し
たのと同様に酸素ガスを用いた反応性ス/NOツタエッ
チにより溝の中にのみレジスト23を残した状態を示す
。FIG. 2(f) shows a state in which after the resist is formed on the entire surface, the resist 23 is left only in the grooves by reactive S/NO etch using oxygen gas in the same manner as described above.
第2図(g)は前記レジストnをマスクとして前記二酸
化珪素膜14、窒化珪素膜13および二酸化珪素膜12
を順次エツチング除去した状態を示す。FIG. 2(g) shows the silicon dioxide film 14, silicon nitride film 13 and silicon dioxide film 12 using the resist n as a mask.
This shows the state in which the parts have been removed by sequential etching.
第2図(h)は、前記レジスト23および二酸化珪素膜
21を除去後ウェハー全面に二酸化珪素膜24、窒化珪
素膜25、およびリンドープした多結晶シリコン26を
順次形成した状態を示す。ここでリンドープ多結晶シリ
コン26は前記溝を十分に埋めるように厚く形成する。FIG. 2(h) shows a state in which, after removing the resist 23 and the silicon dioxide film 21, a silicon dioxide film 24, a silicon nitride film 25, and a phosphorous-doped polycrystalline silicon 26 are successively formed over the entire surface of the wafer. Here, the phosphorus-doped polycrystalline silicon 26 is formed thickly so as to sufficiently fill the groove.
第2図(i)は、前記リンドープ多結晶シリコン26を
表面よりエツチングして溝内にのみリンドープ多結晶シ
リコン26′を残した後、前記窒化珪素膜25をマスク
きして溝に埋めた前記リンドープ多結晶シリコン26′
を酸化し、溝上部に二酸化珪素膜27を形成した状態を
示す。前記窒化珪素膜25は薄く形成するので前記リン
ドープ多結晶シリコンを酸化する際、前記窒化珪素膜2
5は完全に酸化されるが、前記リンドープ多結晶シリコ
ン26′と前記窒化珪素膜25とでは酸化レートに大き
な差があり、素子領域上の二酸化珪素膜厚27′と分離
領域上の二酸化珪素膜厚との間には大きな差がある。FIG. 2(i) shows that the phosphorus-doped polycrystalline silicon 26 is etched from the surface to leave the phosphorus-doped polycrystalline silicon 26' only in the groove, and then the silicon nitride film 25 is masked and filled in the groove. Phosphorus-doped polycrystalline silicon 26'
This shows a state in which a silicon dioxide film 27 is formed on the top of the trench by oxidizing the silicon dioxide film. Since the silicon nitride film 25 is formed thinly, when the phosphorus-doped polycrystalline silicon is oxidized, the silicon nitride film 25 is formed thinly.
5 is completely oxidized, but there is a large difference in oxidation rate between the phosphorus-doped polycrystalline silicon 26' and the silicon nitride film 25, and the thickness of the silicon dioxide film 27' on the element region and the silicon dioxide film on the isolation region are different. There is a big difference between the thickness.
第2図(j)は前記素子領域上の二酸化珪素膜27′を
除去した後、熱酸化法により素子領域上に薄い二酸化珪
素膜路を形成、しかる後にワード線に接続しているスイ
ッチングトランジスタのゲート電極29 、29’を形
成し、次にビット線に接続している拡散層30A 、
30A’と拡散層20′に電気的に接続している拡散層
3QB 、 30B’とをイオン注入法により同時に形
成した状態を示す。FIG. 2(j) shows that after removing the silicon dioxide film 27' on the element area, a thin silicon dioxide film path is formed on the element area by thermal oxidation, and then the switching transistor connected to the word line is formed. Forming the gate electrodes 29, 29', and then forming a diffusion layer 30A connected to the bit line,
30A' and diffusion layers 3QB and 30B' electrically connected to the diffusion layer 20' are simultaneously formed by ion implantation.
第2図fj)は、本発明によって形成される半導体記憶
装置の模式的断面図を示している。これを用いて本発明
による半導体記憶装置の動作について以下に述べる。電
荷を記憶する場合、ワード線に接続されたスイッチング
トランジスタをONにすることによりビット線に接線さ
れた拡散層30Aから溝の側壁に形成された拡散層20
′に電荷が蓄積されて記憶状態となる。ただし溝の中に
埋めたリンドープ多結晶シリコン26′は接地状態にし
て2く。FIG. 2fj) shows a schematic cross-sectional view of a semiconductor memory device formed according to the present invention. Using this, the operation of the semiconductor memory device according to the present invention will be described below. When storing charges, by turning on the switching transistor connected to the word line, the diffusion layer 20 formed on the side wall of the trench is moved from the diffusion layer 30A tangent to the bit line.
Charge is accumulated in ' and becomes a memory state. However, the phosphorus-doped polycrystalline silicon 26' buried in the trench is grounded.
この時、蓄積容蓋はほぼ容量電極であるリンドープ多結
晶シリコン26′と拡散層20′との間に形成された絶
縁膜の容量と拡散層20′からシリコン基板11中に広
がった空乏層容量の和で構成される。記憶した電荷を読
み出す場合、ワード線に接続されたスイッチングトラン
ジスタをONにしてビット線に接続した拡散層30Aに
拡散層20′に蓄積された電荷を移動させて読み出しを
行う。At this time, the storage cap consists of the capacitance of the insulating film formed between the phosphorus-doped polycrystalline silicon 26', which is a capacitance electrode, and the diffusion layer 20', and the depletion layer capacitance spread from the diffusion layer 20' into the silicon substrate 11. Consists of the sum of When reading out the stored charges, the switching transistor connected to the word line is turned on, and the charges accumulated in the diffusion layer 20' are transferred to the diffusion layer 30A connected to the bit line.
このように本発明による半導体記憶装置の動作は従来の
ものと同じである。そして従来のと同様記憶容量の増加
も形成する溝の深さを深くすることにより容易にできる
。しかしながら、本発明による半導体記憶装置は溝を分
離領域に形成している、即ち分離領域が容量部を兼ねて
いる点が従来のものと大きく異なる点である。分離領域
に溝を形成することにより、素子領域に溝を形成してい
る従来の半導体記憶装置よりその寸法を大幅に縮小でき
る。そして溝の中に埋めたリンドープ多結晶シリコンを
接地しているので、十分な集子間の分離特性が得られる
。さらに容i!極であるリンドープ多結晶シリコンは溝
の中に埋められているので素子表面が平坦であるという
特徴がある。As described above, the operation of the semiconductor memory device according to the present invention is the same as that of the conventional one. As in the conventional case, the storage capacity can also be easily increased by increasing the depth of the grooves formed. However, the semiconductor memory device according to the present invention differs greatly from the conventional one in that the trench is formed in the isolation region, that is, the isolation region also serves as a capacitor. By forming a trench in the isolation region, the size of the semiconductor memory device can be significantly reduced compared to a conventional semiconductor memory device in which a trench is formed in the element region. Since the phosphorus-doped polycrystalline silicon buried in the groove is grounded, sufficient isolation characteristics between the clusters can be obtained. Furthermore, I love you! Since the phosphorus-doped polycrystalline silicon that serves as the pole is buried in the groove, the element surface is flat.
以上述べたように本発明によれば、微細な面積において
も記憶容量を大きく取ることができるため、高集積化に
適した半導体記憶装置が容易に得られる。As described above, according to the present invention, a large storage capacity can be obtained even in a small area, so that a semiconductor memory device suitable for high integration can be easily obtained.
第1図は従来の溝を用いて容量部を形成したITICセ
ルの模式的断面図であり、第2図(a)。
(b) 、 (C) 、 (d) 、 te) 、 (
f) 、 (gl 、 lhl * (i) t (j
)は、本発明の実施例をプロセスを追って示した模式的
断面図である。
図において各記号はそれぞれ次のものを示す。
1.11:シリコン基板、2 、12 、14 、16
、21 、24 。
27.27’、28:二酸化珪素膜、3 、26’ :
容量電極、4 、29 、29’ :ワード線に接続さ
れたスイッチングトランジスタのゲート電極、5.3O
A、30A’ :ビット線に接続された拡散層、6:反
転層、13.25:窒化珪素膜、15 、17.17’
、 19,23 ニレジスト、18 、18’ :シリ
コン、20 、20’ 、 30B 、 30B’ :
基板と異なる導電型不純物拡散層、22:基板と同一導
電型不純物拡散層、A、B:溝。
71−1 図
72 図
(a)
(b)
(C)
オ 2 図
(d)
(e)
9ス
(fン
72 図
((])
(1−1)
(i)
72 図
(j)FIG. 1 is a schematic cross-sectional view of an ITIC cell in which a capacitor portion is formed using a conventional groove, and FIG. (b), (C), (d), te), (
f) , (gl, lhl * (i) t (j
) is a schematic cross-sectional view showing an example of the present invention following the process. In the figure, each symbol indicates the following. 1.11: Silicon substrate, 2 , 12 , 14 , 16
, 21 , 24 . 27.27', 28: silicon dioxide film, 3, 26':
Capacitor electrode, 4, 29, 29': Gate electrode of switching transistor connected to word line, 5.3O
A, 30A': Diffusion layer connected to bit line, 6: Inversion layer, 13.25: Silicon nitride film, 15, 17.17'
, 19, 23 Niresist, 18, 18': Silicon, 20, 20', 30B, 30B':
Impurity diffusion layer of a conductivity type different from that of the substrate, 22: Impurity diffusion layer of the same conductivity type as the substrate, A, B: Groove. 71-1 Figure 72 Figure (a) (b) (C) O 2 Figure (d) (e) 9th (fn) 72 Figure ((]) (1-1) (i) 72 Figure (j)
Claims (2)
の対向した側壁に形成された一対の第2導電型領域、少
なくとも前記溝部内壁を被う絶縁性物質、前記絶縁性物
質に接し前記溝部を埋める基準電位を与えられた導電性
物質、前記第1導電型半導体基板表面に設けられ、前記
絶縁性物質に接し、前記第2導電型領域に電気的に接続
し形成されたM工S トランジスタのソース電極である
第2導電型領域を備えたことを特徴とする半導体記憶装
置。(1) A pair of second conductivity type regions formed on a pair of opposing sidewalls of a groove provided on the surface of a first conductivity type semiconductor substrate, an insulating material covering at least the inner wall of the groove, and a region in contact with the insulating material; a conductive material applied with a reference potential to fill the groove, an M-type formed on the surface of the first conductivity type semiconductor substrate, in contact with the insulating material, and electrically connected to the second conductivity type region; A semiconductor memory device comprising a second conductivity type region which is a source electrode of an S transistor.
程、容量部形成領域の前記第1の溝の内壁に第1の第2
導電型領域を形成する工程、前記第1の溝底部をエツチ
ングして第2の溝を形成する工程、該第2の溝底部に第
1導電型領域を形成する工程、前記第1.第2の溝表面
に絶縁膜を形成する工程、前記第1.第2の溝内を導電
性物質で埋める工程、該導電性物質の上部を絶縁性物質
で被う工程、前記第1の第2導電型領域に電気的に接続
するように第2の第2導電型領域を形成する工程を含む
ことを特徴とする半導体記憶装置の製造方法。(2) forming a first groove on a first conductivity type semiconductor substrate;
a step of forming a conductivity type region; a step of etching the first groove bottom to form a second groove; a step of forming a first conductivity type region in the second groove bottom; a step of forming an insulating film on the surface of the second groove; a step of filling the inside of the second groove with a conductive material; a step of covering the upper part of the conductive material with an insulating material; 1. A method of manufacturing a semiconductor memory device, comprising the step of forming a conductivity type region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59031719A JPH079943B2 (en) | 1984-02-22 | 1984-02-22 | Semiconductor memory device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59031719A JPH079943B2 (en) | 1984-02-22 | 1984-02-22 | Semiconductor memory device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60176267A true JPS60176267A (en) | 1985-09-10 |
JPH079943B2 JPH079943B2 (en) | 1995-02-01 |
Family
ID=12338854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59031719A Expired - Lifetime JPH079943B2 (en) | 1984-02-22 | 1984-02-22 | Semiconductor memory device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH079943B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6360557A (en) * | 1986-08-29 | 1988-03-16 | Nec Corp | Semiconductor memory cell |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58137245A (en) * | 1982-02-10 | 1983-08-15 | Hitachi Ltd | Semiconductor memory and its manufacture |
JPS58215053A (en) * | 1982-06-08 | 1983-12-14 | Nec Corp | Semiconductor integrated circuit device |
-
1984
- 1984-02-22 JP JP59031719A patent/JPH079943B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58137245A (en) * | 1982-02-10 | 1983-08-15 | Hitachi Ltd | Semiconductor memory and its manufacture |
JPS58215053A (en) * | 1982-06-08 | 1983-12-14 | Nec Corp | Semiconductor integrated circuit device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6360557A (en) * | 1986-08-29 | 1988-03-16 | Nec Corp | Semiconductor memory cell |
Also Published As
Publication number | Publication date |
---|---|
JPH079943B2 (en) | 1995-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5436186A (en) | Process for fabricating a stacked capacitor | |
US5976945A (en) | Method for fabricating a DRAM cell structure on an SOI wafer incorporating a two dimensional trench capacitor | |
KR930002292B1 (en) | Semiconductor device and method for manufacturing thereof | |
JPS59141262A (en) | Semiconductor memory cell | |
KR0173332B1 (en) | Semiconductor memory device & its fabricating method | |
KR950003915B1 (en) | Semiconductor integrated circuit device and manufacturing method thereof | |
JP3222944B2 (en) | Method for manufacturing capacitor of DRAM cell | |
JPH10313100A (en) | Dram cell device and manufacture thereof | |
KR960003773B1 (en) | Manufacture of dram cell | |
JPS6187358A (en) | Semiconductor memory and manufacture thereof | |
US6087692A (en) | DRAM cell configuration and method for its fabrication | |
US5512768A (en) | Capacitor for use in DRAM cell using surface oxidized silicon nodules | |
JPH02312270A (en) | Dram cell and its manufacture | |
JPH04287366A (en) | Semiconductor integrated circuit device and its manufacture | |
JPS60176267A (en) | Semiconductor memory device and manufacture thereof | |
JP3120462B2 (en) | Semiconductor integrated circuit device and method of manufacturing the same | |
JPH0370381B2 (en) | ||
US6228699B1 (en) | Cross leakage of capacitors in DRAM or embedded DRAM | |
JP2004527111A (en) | Electrode arrangement for charge storage and its manufacturing method | |
JPH0370382B2 (en) | ||
JPS61234557A (en) | Semiconductor memory device and manufacture thereof | |
JPH022672A (en) | Semiconductor memory cell and manufacture thereof | |
KR0156096B1 (en) | Trench stack dram device & its manufacturing method | |
JPH04216666A (en) | Semiconductor device and its manufacture | |
JPS60106163A (en) | Manufacture of semiconductor device |