JPS60169130A - Method of producing electrode foil for aluminum electrolytic condenser - Google Patents

Method of producing electrode foil for aluminum electrolytic condenser

Info

Publication number
JPS60169130A
JPS60169130A JP2480584A JP2480584A JPS60169130A JP S60169130 A JPS60169130 A JP S60169130A JP 2480584 A JP2480584 A JP 2480584A JP 2480584 A JP2480584 A JP 2480584A JP S60169130 A JPS60169130 A JP S60169130A
Authority
JP
Japan
Prior art keywords
etching
solution
acid
stage
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2480584A
Other languages
Japanese (ja)
Other versions
JPH025009B2 (en
Inventor
神崎 信義
遠山 健二
悟 北村
大原 克己
園田 哲夫
川口 隆雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2480584A priority Critical patent/JPS60169130A/en
Publication of JPS60169130A publication Critical patent/JPS60169130A/en
Publication of JPH025009B2 publication Critical patent/JPH025009B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電解コンデンサの、特に中高圧用(100W、
V6以上)の陽極用アルミニウム箔のエツチング方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to electrolytic capacitors, especially for medium and high voltage (100W,
This invention relates to a method for etching aluminum foil for anodes (V6 or higher).

従来例の構成とその問題点 従来のこの種のアルミ電解コンデンサにおいてはけ、そ
の静電容量を高めるか、あるいは小形化。
Conventional configuration and its problems Conventional aluminum electrolytic capacitors of this type need to be improved, their capacitance increased, or downsized.

価格の低減、その他諸特性の向上のためにアルミニウム
電極箔にはエツチング処理を行って表面積を拡大したも
のを使用している。
In order to reduce the price and improve other characteristics, aluminum electrode foils are used that have been subjected to etching treatment to increase the surface area.

従来よりアルミ電解コンデンサ用電極箔の表面積を拡大
するために種々の方法が考察され実施されており、最も
一般的な方法としてはアルミニウムを塩酸2食塩などの
塩化物水溶液中で陽極的に電解エツチングする方法がと
られている。
Various methods have been considered and implemented to expand the surface area of electrode foils for aluminum electrolytic capacitors, and the most common method is electrolytic etching of aluminum anodically in an aqueous chloride solution such as di-salt hydrochloric acid. A method is being taken to do so.

ところでアルミ電解コンデンサの内、特に中高圧用エツ
チング箔としての製造条件は、エツチング後の化成処理
によシ非常に厚い陽極酸化皮膜が形成されることで、ア
ルミニウム箔面の非常に微細なエツチングビット(エツ
チングにより発生したアルミニウム表面および内部の凹
凸)が埋められてし捷い、エツチング倍率に寄与できな
くなることの無いように設定されている。即ち、中高圧
用電極箔の理想的なエツチングビット径エツチングビッ
ト径が1.3μm(化成電圧eoov捷で使用する場合
)で、エツチングピットがトンネルピント(アルミニウ
ム箔表面から裏面までエツチングピットが貫通した状態
をさす)であることが、一般に理想と考えられている。
By the way, the manufacturing conditions for aluminum electrolytic capacitors, especially as etched foils for medium and high voltages, are that a very thick anodic oxide film is formed by chemical conversion treatment after etching, and very fine etched bits on the aluminum foil surface are formed. The setting is made so that the irregularities (on the aluminum surface and inside thereof caused by etching) will not be filled in and become unable to contribute to the etching magnification. In other words, the ideal etching bit diameter of the electrode foil for medium and high voltage is 1.3 μm (when used in the formation voltage EOOV switching), and the etching pits are tunnel pins (the etching pits penetrate from the front surface to the back surface of the aluminum foil). is generally considered to be the ideal state.

本発明者らも理想的なエツチングピット状態を目指し種
々検討した結果、第1段エツチングとして塩酸水溶液に
蓚酸、硫酸、リン酸、硼酸等の皮膜形成性物質を添加し
、直流電流にてエツチング定行った後、第2段エツチン
グとしてアルミニウムよりイオン化傾向の大きい金属の
塩化物である塩化ナトリウム、もしくは塩化カリウム・
塩化アンモニウム等の水溶液で直流電流エツチングを行
い、この中間で熱処理あるいは化学処理により箔表面に
酸化皮膜全形成させる工程を2〜6回設けるような工程
を経て電極箔を製造していた。
As a result of various studies aimed at achieving the ideal etching pit state, the present inventors added film-forming substances such as oxalic acid, sulfuric acid, phosphoric acid, and boric acid to an aqueous hydrochloric acid solution as the first stage of etching, and fixed the etching using a direct current. After this, a second stage of etching is performed using sodium chloride or potassium chloride, which is a metal chloride that has a greater tendency to ionize than aluminum.
Electrode foils have been manufactured through a process in which direct current etching is performed using an aqueous solution of ammonium chloride or the like, and an intermediate step is performed two to six times to completely form an oxide film on the foil surface by heat treatment or chemical treatment.

しかし従来のエツチング方法では、エツチングの進行と
ともに表面溶解が多く進行したり、壕だエツチングビッ
ト径が化成電圧に対し小さすぎて充分な表面拡大倍率(
以下倍率と呼ぶ)が得られなかったり、もしくは倍率は
拡大してもエツチングビット形状が制御されずに箔内部
において深さ方向以外にエツチングピットが枝分かれ的
に進行しすぎて、電極箔強度を著しく減少させる等の点
が問題点となっており、電極箔倍率を向上させることに
よるアルミ電解コンデンサの小形化実現の上で大きな障
害となっていた。
However, with conventional etching methods, surface dissolution often progresses as etching progresses, and the trench etching bit diameter is too small for the formation voltage, making it difficult to obtain sufficient surface enlargement magnification (
(hereinafter referred to as magnification) cannot be obtained, or even if the magnification is increased, the shape of the etching bits is not controlled and the etching pits propagate in a branched manner in directions other than the depth direction inside the foil, significantly reducing the strength of the electrode foil. This has been a problem, and has been a major hindrance in achieving miniaturization of aluminum electrolytic capacitors by improving the electrode foil magnification.

ここで従来のエツチング方法の例を更に詳細に具体的に
説明していくと次のようになる。
Here, an example of the conventional etching method will be explained in more detail as follows.

即ち、従来第1段を塩酸溶液中で直流電流エツチング、
第2段を同じく塩酸溶液中で直流電流エツチングした場
合(第1図、第2図の例−1参照)もしくは第2段を塩
酸液中で化学エツチングした場合(第1図、第2図の例
−3参照)には、利点として電極箔のエツチングピント
のトンネル化及び電極箔の機械的強度は優れているが、
欠点として溶解減量を増加させても容量が初期の段階で
飽和してし甘い高倍率が得られないという問題があった
。これは塩酸をエツチング液として用いた場合、電極箔
表面への皮膜形成性物質を添加してもエツチングによる
アルミニウムの溶解減量が増加するに従ってアルミ表面
の活性化が進み、エツチングが表面溶解的に進行し、箔
表面上のエツチングピットが破壊されるのと、トンネル
方向以外の横方向への枝分かれビットがほとんど発生し
ないだめである。
That is, conventionally, the first stage was etched with a direct current in a hydrochloric acid solution;
When the second stage is etched with direct current in a hydrochloric acid solution (see Example 1 in Figures 1 and 2) or when the second stage is chemically etched in a hydrochloric acid solution (see Example 1 in Figures 1 and 2). Refer to Example 3), the advantages are that the etching focus of the electrode foil is tunneled and the mechanical strength of the electrode foil is excellent.
The disadvantage is that even if the dissolution loss is increased, the capacity is saturated at an early stage and a high magnification cannot be obtained. This is because when hydrochloric acid is used as an etching solution, even if a film-forming substance is added to the surface of the electrode foil, the activation of the aluminum surface progresses as the amount of dissolution of aluminum increases due to etching, and etching progresses in a surface dissolution manner. However, the etching pits on the foil surface are destroyed, and bits branching in the lateral direction other than the tunnel direction are hardly generated.

次に従来第1段を塩酸溶液中で直流電流エツチング、第
2段をアルミニウムよりイオン化傾向の大きい金属の塩
化物、もしくは塩化アンモニウムからなる中性エツチン
グ液中で直流電流エツチングした場合(第1図、第2図
の例−2)には、利点として高倍率が得られるが、欠点
としてアルミニウムの溶解減量の増加とともに箔の機械
的強度が急激に減少するため、溶解減量は8 ”f /
 critが限度であり、それ以上の倍率向上は制限さ
れていた。
Next, conventionally, the first stage was etched with a direct current in a hydrochloric acid solution, and the second stage was etched with a direct current in a neutral etching solution consisting of ammonium chloride or a chloride of a metal that has a greater tendency to ionize than aluminum (Fig. 1). , Example 2) in Figure 2 has the advantage of obtaining a high magnification, but the disadvantage is that the mechanical strength of the foil sharply decreases as the melt loss of aluminum increases, so the melt loss is 8" f /
crit was the limit, and any further increase in magnification was restricted.

これは中性エツチング液中で形成される箔表面の酸化皮
膜が厚く、従って表面の酸化皮膜は比較的に箔表面上の
広い範囲に亘って表面活性度の不均一性を生じ、そこに
形成されるエツチングピットは既成のエツチングピット
のトンネル方向への成長と同時に、表面活性度の不均一
性より生じる活性点より新たなエツチングピットを発生
させることにより、これが箔のトンネル(深さ)方向と
は垂直な横方向への枝分かれ状エツチングビットとして
発展し更に過度に成長しすぎて互いにエツチングピット
どうしが連結し合い、電極箔の機械的強度を維持するこ
とができなくなるためである。
This is because the oxide film formed on the foil surface in the neutral etching solution is thick, and therefore the oxide film on the surface causes non-uniformity in surface activity over a relatively wide range on the foil surface. At the same time, the etched pits grow in the direction of the tunnel (depth) of the foil, and at the same time new etched pits are generated from active points caused by non-uniform surface activity. This is because the etching pits develop as branched etching bits in the vertical and lateral directions, and further grow excessively, causing the etching pits to connect with each other, making it impossible to maintain the mechanical strength of the electrode foil.

捷だ中性エツチング液では表面活性度の不均一性が、比
較的広い範囲で起きやすいことから、塩酸エツチング液
の場合と比較すると、エツチングピット内部のピント径
調整のだめの全面溶解の機能が低く、溶解がエツチング
ピットの先端に集中しやすいため、エツチングビット径
が細くなり、後に陽極酸化皮膜を形成した際、倍率に寄
与しないエンチングピットが多く発生し、倍率向上を阻
害する要因として問題となっていた。
In the case of a neutral etching solution that has not been washed, non-uniformity in surface activity tends to occur over a relatively wide range, so compared to the case of a hydrochloric acid etching solution, the ability to completely dissolve the focus diameter inside the etching pit is lower. Since the dissolution tends to concentrate at the tip of the etching pit, the diameter of the etching bit becomes smaller, and when an anodic oxide film is formed later, many etching pits that do not contribute to the magnification occur, which is a problem that hinders the improvement of the magnification. It had become.

発明の目的 本発明はこのような従来の問題点を解決するもので、エ
ツチング時の表面溶解を抑制しつつ、エツチングビット
を箔に対して垂直な深さ方向と、これに垂直な横方向と
に制御された状態で成長させ、使用電圧に応じたエツチ
ングビット形状を調整することで、電極箔の高倍率化、
高強度化を図り、アルミ電解コンデンサの小形化に要求
される相反する上記の特性を同時に満足させることを目
的とする。
Purpose of the Invention The present invention solves these conventional problems, and while suppressing surface dissolution during etching, the etching bit can be moved in the depth direction perpendicular to the foil and in the lateral direction perpendicular to this. By growing the electrode foil under controlled conditions and adjusting the shape of the etching bit according to the voltage used, it is possible to increase the magnification of the electrode foil.
The purpose is to achieve high strength and simultaneously satisfy the above contradictory characteristics required for miniaturization of aluminum electrolytic capacitors.

発明の構成 この目的を達成するため本発明は、塩酸水溶液もしくは
その水溶液に蓚酸、硫酸、リン酸、硼酸またはそれらの
塩のうち少なくとも一つの皮膜形成性物質を添加したエ
ツチング液中で直流電流を通電してエツチングを行う第
1段エツチング工程と、アルミニウムよりイオン化傾向
の大きい金属の塩化物、もしくは塩化アンモニウムから
なるエツチング液中で直流電流を通電してエツチングを
行う第2段エツチング工程とを有し、更に第3段エツチ
ングとして塩酸水溶液、もしくはその水溶液に蓚酸、硫
酸、リン酸、硼酸またはそれらの塩のうち少なくとも一
つの皮膜形成性物質を添加した溶液、あるいは硝酸水溶
液をエツチング液として使用して化学エツチングを行う
ことにより効果的なエツチングを行うことを発明した。
DESCRIPTION OF THE INVENTION To achieve this object, the present invention provides a method for applying a direct current in an etching solution in which at least one film-forming substance selected from oxalic acid, sulfuric acid, phosphoric acid, boric acid, or a salt thereof is added to an aqueous hydrochloric acid solution or an aqueous solution thereof. It has a first stage etching process in which etching is carried out by applying electricity, and a second stage etching process in which etching is carried out by passing a direct current in an etching solution consisting of a metal chloride or ammonium chloride, which has a greater tendency to ionize than aluminum. In the third stage etching, an aqueous hydrochloric acid solution, a solution prepared by adding at least one film-forming substance selected from oxalic acid, sulfuric acid, phosphoric acid, boric acid, or their salts to the aqueous solution, or an aqueous nitric acid solution is used as the etching solution. He invented an effective method of chemical etching.

ここでは特に従来第2段エツチングが、塩酸エツチング
液による直流電流エツチング単独、もしくは塩酸エツチ
ング液による化学エツチング単独、あるいは中性エツチ
ング液による直流電流エツチング単独であったものを更
に中性エツチング液による直流電流エツチングと塩酸エ
ツチング液による化学エツチングとで組み合わせて行い
、各エツチング法の利点を取り入れながらエツチング機
能を分離させて効果を高めるようにした。
Here, in particular, the second stage etching conventionally consisted of direct current etching alone using a hydrochloric acid etching solution, chemical etching alone using a hydrochloric acid etching solution, or direct current etching alone using a neutral etching solution. A combination of current etching and chemical etching using a hydrochloric acid etching solution was used to take advantage of the advantages of each etching method while separating the etching functions to increase effectiveness.

実施例の説明 以下本発明の実施例、特に基本的な方法について説明す
る。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention, particularly basic methods, will be described.

先づ第2段として、中性エツチング液による直流電流エ
ツチングで倍率を向上させるだめのエツチングビット形
状の構造の基礎(エツチングビットの深さ方向へのトン
ネル化及びこれと垂直方向への枝分かれビットの数と長
さ)を効果的に形成し、更にこれに引き続き新たに第3
段として塩酸エツチング液による化学エツチングで、箔
の機械強度をあまり減少させることなしに従来より溶解
減量を増加させて、化成電圧に応じたエツチングビット
のビット径拡大による容量の向上とトンネルビットのト
ンネル化の向上とを効果的に行えることを発見した。
First, as a second step, we will develop the basic structure of the etching bit shape (tunneling in the depth direction of the etching bit and branching bits in the vertical direction) to increase the magnification by direct current etching using a neutral etching solution. number and length), and furthermore, following this, a new third
As a step, chemical etching using a hydrochloric acid etching solution increases the amount of dissolution loss compared to the conventional method without significantly reducing the mechanical strength of the foil, increases the capacity by increasing the bit diameter of the etching bit according to the forming voltage, and improves the tunneling of the tunnel bit. We discovered that it is possible to effectively improve the

ここでこのエツチング機能を充分効果的に果たす目的の
ためのエツチングの全体の構成を更に詳細に記すと、以
下に示すような3段階よ構成るエツチング方法となる。
Describing in more detail the overall structure of etching for the purpose of fully and effectively performing this etching function, the etching method consists of three steps as shown below.

即ち第1段では、酸化性の添加剤を含む高温の塩酸中に
て、孔食電位以上の高電流密度で電流を印加する条件下
、酸化性の添加剤によって箔表面上に形成された多孔質
酸化皮膜の凹凸を利用することにより、エツチングピン
トの発生起点を高密度にしかも均一に発生させ、引き続
き同一の水溶液中で孔食電位以下の低電流密度で電流を
印加する条件下、酸化性の添加剤如よって箔表面上に形
成された酸化皮膜を防食膜として、エツチングビット発
生起点と箔表面上との表面状態の不均一化を進め、表面
溶解速度より孔の溶解速度の方が速く支配的な条件下で
エツチングビットを深さ方向に進行させ、エツチングピ
ットのトンネル化を図る。
That is, in the first stage, pores formed on the foil surface by the oxidizing additive are applied under conditions of applying a current at a high current density higher than the pitting corrosion potential in high-temperature hydrochloric acid containing the oxidizing additive. By utilizing the unevenness of the oxidized film, the etching points are generated uniformly and densely. The oxide film formed on the foil surface by the additive acts as an anti-corrosion film, which promotes unevenness of the surface condition between the etching bit generation point and the foil surface, and the pore dissolution rate is faster than the surface dissolution rate. The etching bit is advanced in the depth direction under prevailing conditions to tunnel the etching pit.

第2段では、塩化物イオンを含む中性塩の高温水溶液中
にて低電流密度で電流を印加する条件下、溶液によって
箔表面上に形成された酸化皮膜を防食膜として、エツチ
ングビット内部と箔表面との表面の活性度の不均一化を
進め、表面溶解速度よシ孔の溶解速度の方が速く支配的
なエツチング条件下において、エツチングビットの深さ
方向へのトンネル化及び深さ方向に対して垂直方向への
腐食を進行させる。ここでは塩酸溶液を用いる場合より
も、より表面の腐食を抑制しやすい状況を作り出して、
表面溶解を防止しながらエツチングピッ)Th深さ方向
のみならず、深さ方向と垂直な方向にも新たに若干発生
、成長させ、同時に総べての形成号れだエツチングビッ
ト径を拡大する機能を果たす。
In the second stage, a current is applied at a low current density in a high-temperature aqueous solution of a neutral salt containing chloride ions, and the oxide film formed on the foil surface by the solution is used as an anti-corrosion film to protect the inside of the etching bit. Under the dominant etching conditions, where the surface dissolution rate is faster than the surface dissolution rate, the etching bit is tunneled in the depth direction and the etching bit is tunneled in the depth direction. Corrosion progresses in the vertical direction. Here, we create a situation that makes it easier to suppress surface corrosion than when using a hydrochloric acid solution.
A function to generate and grow a small amount of etching bits not only in the depth direction but also in the direction perpendicular to the depth direction while preventing surface dissolution, and simultaneously expanding the diameter of all etching bits formed. fulfill.

第3段では、酸化性の添加剤を含む高温の塩酸中に浸漬
処理する条件下、酸化性の添加剤によって箔表面上に形
成された酸化皮膜を防食膜として、エツチングビット内
壁面と箔表面上との表面状態の不均一化を進め、表面溶
解よりエツチングビット内部の溶解速度の方を早く支配
的にして、エツチングをエツチングビットの径方向に進
行させる。
In the third stage, under the conditions of immersion treatment in high temperature hydrochloric acid containing an oxidizing additive, the oxide film formed on the foil surface by the oxidizing additive is used as an anti-corrosion film, and the inner wall surface of the etching bit and the foil surface are The etching progresses in the radial direction of the etching bit by making the surface condition non-uniform with respect to the upper surface, making the dissolution rate inside the etching bit faster and more dominant than the dissolution on the surface.

ここでは塩化物溶液中での電気エツチングの場合よりも
、よりトンネルビット内壁のエツチングを促進かつ均一
に進行させることができ、またエソチングビノト径拡大
方向以外への新たなエツチングビットの発生及び成長全
抑制していくことで、目的の使用電圧に応じたエツチン
グビット径の拡大と調整ヲ総べての発生エツチングビッ
トに対して可能にする。またこれにより化成後のエツチ
ングトンネルビットの貫通性を保持することが可能とな
り、高容量と低いjanδを得ることができる。
Here, etching of the inner wall of the tunnel bit can be promoted and progressed more uniformly than in the case of electroetching in a chloride solution, and the generation and growth of new etched bits in directions other than the direction in which the diameter of the etched tunnel bit is expanded is completely suppressed. By doing so, it becomes possible to expand and adjust the etching bit diameter according to the intended voltage used for all etching bits generated. Moreover, this makes it possible to maintain the penetrability of the etched tunnel bit after chemical formation, and it is possible to obtain high capacitance and low jan δ.

なお従来のエツチング法(例2)と本発明によるエツチ
ング法(例4)とで形成されるエツチングビット形状の
差を比較したものが第4図(エツチング法によるエツチ
ングビット径とビット数との関係)であり、本発明のエ
ツチング法によりエツチングビット径が拡大して−るこ
とか分かる。
Figure 4 shows a comparison of the differences in the etching bit shapes formed by the conventional etching method (Example 2) and the etching method according to the present invention (Example 4) (Relationship between the etching bit diameter and the number of bits by the etching method). ), which shows that the etching bit diameter is enlarged by the etching method of the present invention.

以下本発明に基づく具体的は実施例を示す。Specific examples based on the present invention will be shown below.

〔実施例−1〕 純度99.99%、厚さ10o/1mのアルミ焼鈍路を
試料とし、第1段エツチングを6%塩酸に0.03%蓚
酸を添加しだ液温8o″Cの水溶液で、電流密度1cs
 o mA/crAの直流を80秒印加して行った後、
同一水溶液中で電流密度40mA/7の直流を10分間
印加して行ったエツチング箔について、硼酸溶液中で3
70v化成した後、エツチング減量、静電容量2強度に
ついて測定した結果を表なお箔強度は折曲げ強度による
もので、1.oR。
[Example-1] An aluminum annealing track with a purity of 99.99% and a thickness of 10o/1m was used as a sample, and the first stage etching was performed using an aqueous solution of 6% hydrochloric acid and 0.03% oxalic acid at a liquid temperature of 8o''C. So, the current density is 1cs
After applying a direct current of o mA/crA for 80 seconds,
Etching foil was etched by applying a direct current with a current density of 40 mA/7 for 10 minutes in the same aqueous solution.
After 70V chemical formation, the results of measurements on etching weight loss and capacitance 2 strength are shown below.The foil strength is based on the bending strength.1. oR.

200g荷重、折曲げ角9oにより1往復で1回とした
With a load of 200g and a bending angle of 9o, one reciprocation was made once.

〔実施例−2〕 実施例1と同一の試料を用い、第1段エツチングをts
%HCIKo、o%蓚酸を添加しだ液温so’Cの水溶
液で、電流密度150mA/cutの直流(i780秒
印加して行った後、第2段エツチングを2チ塩化アンモ
ニウム液温90°Cの水溶液で電流密度80mA/cn
lの直流金4分間印加して行ったエツチング箔について
、硼酸溶液中で370v化成した後エッチング溶解減量
2静電容量2強度について測定した結果を表−2に示す
[Example-2] Using the same sample as in Example 1, the first stage etching was performed at ts
After adding %HCIKo, o% oxalic acid and applying a direct current (i780 seconds) at a current density of 150 mA/cut in an aqueous solution at a solution temperature of so'C, the second stage etching was performed using a diammonium chloride solution at a solution temperature of 90°C. Current density 80mA/cn in aqueous solution of
Table 2 shows the results of measurements of etching dissolution loss, capacitance, and strength after chemical conversion in a boric acid solution at 370 V for etching foils that were subjected to a DC gold application of 1 for 4 minutes.

〔実施例−3〕 実施例1と同一の試料を用い、第1段エツチング全6%
塩酸に0.03%蓚酸を添加しだ液温80’Cの水溶液
で、電流密度150mA/cnlの直流を80秒印加し
て行った後、第2段エツチングを6%塩酸に0.03%
蓚酸を添加しだ液温90″Cの水溶液で6分間浸漬処理
して化学溶解したエツチング箔について、硼酸溶液中で
370V化成した後、エツチング溶解減量、静電容量2
強度について測定した結果を表−3に示す。
[Example-3] Using the same sample as Example 1, the first stage etching was 6% in total.
After adding 0.03% oxalic acid to hydrochloric acid and applying a direct current with a current density of 150 mA/cnl for 80 seconds in an aqueous solution with a liquid temperature of 80'C, the second stage etching was performed by adding 0.03% oxalic acid to 6% hydrochloric acid.
Etching foil that was chemically dissolved by immersion in an aqueous solution containing oxalic acid at a temperature of 90''C for 6 minutes was chemically converted in a boric acid solution at 370V, and the etching dissolution loss and capacitance were 2.
Table 3 shows the results of measuring strength.

(表−3) 〔実施例−4〕 実施例1と同一の試料を用い、第1段エツチングを6%
塩酸に0.03%蓚酸全添加しだ液温80°Cの水溶液
で、電流密度150mA/肩の直流を70秒印加して行
った後、第2段エツチングを2飴塩化アンモニウム液温
eo’cの水溶液で電流密度80mA/cniの直流を
3分3o秒印加して行った後、第3段エツチングを6%
塩酸に0.03%蓚酸を添加しだ液温90°Cの水溶液
中で化学エツチングして(化学エツチング温度・減量と
容量との関係は第3図参照)370V化成した後、エツ
チング溶解減量、静電容量2強度について測定した結果
を表−4に示す。
(Table 3) [Example 4] Using the same sample as Example 1, the first stage etching was 6%.
After the second stage etching was carried out using an aqueous solution containing 0.03% oxalic acid in hydrochloric acid at a temperature of 80°C and applying a direct current with a current density of 150 mA/shoulder for 70 seconds, the second stage etching was carried out at a diammonium chloride solution temperature of eo'. After applying a direct current with a current density of 80 mA/cni for 3 minutes and 30 seconds using an aqueous solution of c, the third stage etching was performed at 6%
After adding 0.03% oxalic acid to hydrochloric acid and chemically etching it in an aqueous solution with a liquid temperature of 90°C (refer to Figure 3 for the relationship between chemical etching temperature, weight loss, and capacity) at 370V, the etching dissolution weight loss, Table 4 shows the results of measurements for capacitance 2 intensity.

(表−4) 表−4に示されるように本発明のエツチング方法を用い
れば、このように溶解減量を増加させても容量は飽和す
ることなく比例して増加させることができ、しかも同時
に強度を維持することが可能となった。(第1図、第2
図の例4参照)発明の効果 以上のように本発明のアルミ電解コンデンサ用電極箔の
方法でエツチングを行う場合と比較し、8〜25%静電
容量値を高くすることができてアルミ電解コンデンサ小
形化が可能となり、同時にコンデンサの製品とした場合
のjanδを従来比20チ下げることができる。しかも
生産に必要とされる付帯設備コスト及びエツチング法の
省電力化によりランニングコストの低減も図ることがで
きる。
(Table 4) As shown in Table 4, by using the etching method of the present invention, even if the dissolution loss is increased in this way, the capacity can be increased proportionally without becoming saturated, and at the same time, the strength can be increased. It became possible to maintain the (Fig. 1, 2
(See Example 4 in the figure) Effects of the Invention As described above, the capacitance value can be increased by 8 to 25% compared to when etching is performed using the electrode foil method for aluminum electrolytic capacitors of the present invention. It becomes possible to downsize the capacitor, and at the same time, when used as a capacitor product, the jan δ can be lowered by 20 inches compared to the conventional product. Furthermore, running costs can be reduced by reducing the cost of incidental equipment required for production and the power consumption of the etching method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1〜4に掲げた各エツチング法による溶
解減量と静電容量との関係を示す特性図、第2図は同じ
〈実施例1〜4に掲げた各エツチング法による溶解減量
とエツチング箔強度比との関係を示す特性図、第3図は
本発明による化学エツチング温度・減量と静電容量との
関係を示す特性図、第4図は従来法(実施例2)と本発
明によるエツチング法(実施例4)のエツチング法によ
るエツチングピット径とピット数との関係を示す特性図
である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 で @2図 う@ζlうX t (tn?/cmf)第3図 第4図
Figure 1 is a characteristic diagram showing the relationship between dissolution loss and capacitance by each etching method listed in Examples 1 to 4, and Figure 2 is the same (dissolution loss by each etching method listed in Examples 1 to 4). FIG. 3 is a characteristic diagram showing the relationship between chemical etching temperature/loss and capacitance according to the present invention, and FIG. FIG. 7 is a characteristic diagram showing the relationship between the etching pit diameter and the number of pits according to the etching method according to the invention (Example 4). Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure @2 Figure @ζlUX t (tn?/cmf) Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 塩酸水溶液、もしくはその水溶液に蓚酸、硫酸。 リン酸、硼酸またはそれらの塩のうち少なくとも一つの
皮膜形成性物質を添加したエツチング液中で直流電流を
通電してエツチングを行う第1段エツチング工程と、ア
ルミニウムよりイオン化傾向の大きい金属の塩化物、も
しくは塩化アンモニウムからなるエツチング液中で直流
電流を通電してエツチングを行う第2段エツチング工程
とを有し、更に第3段エツチングとして塩酸水溶液、も
しくはその水溶液に蓚酸、硫酸、リン酸、硼酸またはそ
れらの塩のうち少なくとも一つの皮膜形成性物質を添加
した溶液、あるいは硝酸水溶液をエツチング液として使
用して化学エツチングを行うことを特徴とするアルミ電
解コンデンサ用電極箔の製造方法。
[Claims] An aqueous solution of hydrochloric acid, or an aqueous solution containing oxalic acid or sulfuric acid. A first stage etching step in which etching is carried out by passing a direct current in an etching solution containing at least one film-forming substance selected from phosphoric acid, boric acid, or their salts, and a chloride of a metal that has a greater tendency to ionize than aluminum. or a second stage etching process in which etching is carried out by passing a direct current in an etching solution made of ammonium chloride, and a third stage etching process in which a hydrochloric acid aqueous solution or oxalic acid, sulfuric acid, phosphoric acid, or boric acid is added to the aqueous solution. A method for producing an electrode foil for an aluminum electrolytic capacitor, characterized in that chemical etching is performed using a solution containing at least one film-forming substance among these salts or a nitric acid aqueous solution as an etching solution.
JP2480584A 1984-02-13 1984-02-13 Method of producing electrode foil for aluminum electrolytic condenser Granted JPS60169130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2480584A JPS60169130A (en) 1984-02-13 1984-02-13 Method of producing electrode foil for aluminum electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2480584A JPS60169130A (en) 1984-02-13 1984-02-13 Method of producing electrode foil for aluminum electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS60169130A true JPS60169130A (en) 1985-09-02
JPH025009B2 JPH025009B2 (en) 1990-01-31

Family

ID=12148404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2480584A Granted JPS60169130A (en) 1984-02-13 1984-02-13 Method of producing electrode foil for aluminum electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS60169130A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264288A (en) * 2004-03-22 2005-09-29 Matsushita Electric Ind Co Ltd Method for manufacturing etched foil for aluminum electrolytic capacitor, the etched foil, and chemical foil thereof
JP2010202981A (en) * 2010-06-07 2010-09-16 Panasonic Corp Etching foil for aluminum electrolytic capacitor and chemical conversion foil thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264288A (en) * 2004-03-22 2005-09-29 Matsushita Electric Ind Co Ltd Method for manufacturing etched foil for aluminum electrolytic capacitor, the etched foil, and chemical foil thereof
JP4556461B2 (en) * 2004-03-22 2010-10-06 パナソニック株式会社 Manufacturing method of etching foil for aluminum electrolytic capacitor
JP2010202981A (en) * 2010-06-07 2010-09-16 Panasonic Corp Etching foil for aluminum electrolytic capacitor and chemical conversion foil thereof

Also Published As

Publication number Publication date
JPH025009B2 (en) 1990-01-31

Similar Documents

Publication Publication Date Title
JPS6134187A (en) Etching of aluminum anode foil to high voltage electrolytic condenser
JP2907718B2 (en) Etching method of aluminum foil for electrolytic capacitor electrode
JPS60169130A (en) Method of producing electrode foil for aluminum electrolytic condenser
JPH08264391A (en) Etching of aluminum foil for electrolytic capacitor
JP3185453B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JPH0317209B2 (en)
JP3498349B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP4653644B2 (en) Method for producing aluminum electrode foil for electrolytic capacitor
JP3582451B2 (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP2758040B2 (en) Electrode etching method for electrolytic capacitor
JP2002246274A (en) Electrode foil for aluminum electrolytic capacitor and its producing method
JP2696882B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JPH1116787A (en) Manufacture of aluminum electrode foil for electrolytic capacitor large in electrostatic capacitance per unit loss of weight on etching
JP4089333B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2005223180A (en) Method and apparatus for manufacturing electrode foil for aluminum electrolytic capacitor
JP2692107B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2847717B2 (en) Method for etching electrode foil for aluminum electrolytic capacitor
JP3537127B2 (en) Aluminum foil for electrolytic capacitor electrodes
JPS60219721A (en) Method of producing electrode foil for aluminum electrolyticcondenser
JP2763136B2 (en) Method for forming etching nuclei on aluminum foil for electrolytic capacitor electrode
JP2638038B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2745520B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP3543694B2 (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP4547919B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JPS5992515A (en) Method of producing aluminum electrode foil for electrolyticcondenser

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term