JPS60153129A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60153129A
JPS60153129A JP901284A JP901284A JPS60153129A JP S60153129 A JPS60153129 A JP S60153129A JP 901284 A JP901284 A JP 901284A JP 901284 A JP901284 A JP 901284A JP S60153129 A JPS60153129 A JP S60153129A
Authority
JP
Japan
Prior art keywords
etching
power
electrode
frequency
parallel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP901284A
Other languages
Japanese (ja)
Inventor
Yoshio Tsuruta
鶴田 芳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP901284A priority Critical patent/JPS60153129A/en
Publication of JPS60153129A publication Critical patent/JPS60153129A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To improve the step coverage of an upper layer by removing residuals in a level difference part to finish said part with the desired angle by a method wherein an independent electrode in the periphery of a parallel flat electrodes is arranged and an independent A.C. power in applied to that electrode to control an incident angle of reactive ions into a substrate and to add the lateral etching effect. CONSTITUTION:When high-frequency power 1 is applied, a self-bias is generated in the periphery of a substrate by the upper and lower electrodes 2 and an electric field is produced in vertical direction. At the same time, an electric field in horizontal direction is produced by a horizontal electrode 9 and ions enters into a substrate obliquely. The lateral-direction components of the reactive ions 4 change in all times according to frequency of horizontal electric power. The intensity of reactive ions in horizontal direction can be controlled by control of frequency and electric power in horizontal direction. For example, if A.C. power proportional to coswt and sinwt is applied in X and Y-directions respectively, the uniform electric field which makes a round with a constant cycle 1/w in horizontal direction and thus the uniform etching is realized.

Description

【発明の詳細な説明】 本発明は、ドライエツチング工程を有する半導体装置の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device including a dry etching process.

一般に半導体装置の製造方法において半導体基板に所望
のパターンを形成するエツチングという工程があるが、
これには二押類の方法がある。
Generally, in the manufacturing method of semiconductor devices, there is a process called etching to form a desired pattern on a semiconductor substrate.
There are two methods for this.

一つは、薬液を用いて化学的反応によりエツチングする
いわゆるウェットエツチング、又もう一つは、ガス全放
電により解離させフラズマ状態にして化学的反応あるい
は物理的反応によりエツチングするいわゆるドライエツ
チングである。
One is so-called wet etching, in which etching is carried out by a chemical reaction using a chemical solution, and the other is so-called dry etching, in which etching is carried out by a chemical or physical reaction in which the gas is dissociated into a plasma state by full gas discharge.

ウェットエツチングは従来より広く使われた方法である
が、エツチングが化学的反応Q−)ため等方的であるの
でザイドエンチ蓋が大きく、微細加工には適さない。そ
れに対して、ドライエツチングは異方性エツチングが可
能であるので最近特に使われ始め、微細加工を8狭とす
る半導体装置の製造には不可欠の物となりつつある。%
に平行平板電極の間に半導体基板を置き、この平行平板
電極に高周波を印加してガスをプラズマ化させエンチン
グするドライエツチング工程は、微細加工の主流となっ
ている。
Wet etching is a method that has been widely used in the past, but because the etching is a chemical reaction (Q-), it is isotropic and requires a large side etch lid, making it unsuitable for microfabrication. On the other hand, dry etching has recently started to be used because it allows anisotropic etching, and is becoming indispensable in the manufacture of semiconductor devices that require fine processing. %
The dry etching process, in which a semiconductor substrate is placed between parallel plate electrodes and a high frequency is applied to the parallel plate electrodes to turn gas into plasma and etch it, has become mainstream in microfabrication.

以下にこの従来方法を図を基に説明する。This conventional method will be explained below based on the drawings.

第1図は従来より使用されている平行平板電極型のドラ
イエツチング装置である。1は電極に印加する高周波電
力であり、2は電極、3は半導体基板でJする。又、第
1図では基板が設定されている’TIE極全アースして
いるいわゆるアノードカップリング方式であるが、対向
電極をアースするカソードカップリング方式も考えられ
る。第1図の装置に高周波電力1を印加した場合、電極
に自己バイアスが発生し、第2図のように基板に垂直に
反応性イオンが入射する。この結果第5図のようにエツ
チング断面は垂直となり、サイドエッチのないエツチン
グが実現できる。
FIG. 1 shows a conventional parallel plate electrode type dry etching apparatus. 1 is the high frequency power applied to the electrode, 2 is the electrode, and 3 is the semiconductor substrate. Although FIG. 1 shows a so-called anode coupling method in which the 'TIE electrode on which the substrate is set is all grounded, a cathode coupling method in which the counter electrode is grounded is also conceivable. When high frequency power 1 is applied to the device shown in FIG. 1, a self-bias is generated in the electrode, and reactive ions are incident perpendicularly onto the substrate as shown in FIG. As a result, the etching cross section becomes vertical as shown in FIG. 5, and etching without side etching can be realized.

しかしながら、このドライエツチング工程にも種々の問
題がある。七の1つに、エツチングが異方性であるため
に第4図(a)のように段差部でエンチング残り5が生
じるという問題がある。これは、第4図(b)のように
段差部では被エンチング物6の膜厚が見かけ上編方向に
厚くなるため、異方性エツチング(縦方向のみのエンチ
ング)ではその部分に残りが生じるというものである。
However, this dry etching process also has various problems. One of the problems is that because the etching is anisotropic, etching remains 5 are generated at the stepped portions as shown in FIG. 4(a). This is because, as shown in Fig. 4(b), the film thickness of the object to be etched 6 apparently increases in the knitting direction at the step part, so in anisotropic etching (etching only in the vertical direction), a residue is left in that part. That is what it is.

これは被エツチング物が配線もゲート材料である場合、
第4図(e)のようにとの残渣物1が配線間のショート
を引き起こし、素子そのものを不良にしてしまうという
恐れがある。
This is because when the object to be etched is both wiring and gate material,
As shown in FIG. 4(e), there is a fear that the residue 1 may cause a short circuit between the wiring lines, resulting in the element itself becoming defective.

そこでこの問題全解決するため、従来より色々な方法が
考案されている。例えば、ドライエツチング後レジスト
を残したままウェットエツチングを少しの間だけ行い段
差部の残渣物を取り除くという方法等であるが、これら
は工程が増え、又その制御もむずかしい。一般的に段差
部でのステップカバリンジが悪いことから、ウエットエ
ソトエッチング工程ではエツチングの′時間が長ひけれ
ば配線等の場合段切れを起こすからである。
Therefore, various methods have been devised to completely solve this problem. For example, after dry etching, wet etching is performed for a short period of time to remove the residue at the stepped portion while leaving the resist, but these methods require more steps and are difficult to control. This is because step coverage at stepped portions is generally poor, so in the wet etching process, if the etching time is too long, breakage may occur in the case of wiring, etc.

又、もう一つの欠点として、エツチングが異方性のため
断面形状が第5図のように垂直で4ンるから第5図のよ
うに上層のステップカバリンジが悪くなったり、又クラ
ンクが入ったりする恐れがある。
Another disadvantage is that because the etching is anisotropic, the cross-sectional shape is vertical as shown in Figure 5, which may result in poor step covering of the upper layer, or the crank may enter. There is a risk of

本発明は、上記異方性エツチングでの欠点である段差部
での残渣物を工程を増やさず制御良く除去し、あわせて
上層のカバリッジを良くする半導体装置の製造方法を得
ること全目的としたものである。
The overall purpose of the present invention is to provide a method for manufacturing a semiconductor device that can remove residues at step portions, which are a drawback of the above-mentioned anisotropic etching, in a well-controlled manner without increasing the number of steps, and also improve the coverage of the upper layer. It is something.

本発明の%徴は、平行平板電極の周辺に独自の電極を設
け、これに平行平板1.極とは異なる独自の交流電力を
印加し、反応性イオンの基板への入射角全制御し、横方
向のエンチング効果を加えることにより段差部での残渣
物を除去し、又エツチング形状を所望の角度に仕上げ、
上層のステップカバリンジを良くしたドライエツチング
工程を行うものでるる。
The characteristic of the present invention is that a unique electrode is provided around the parallel plate electrode, and a parallel plate 1. By applying a unique alternating current power different from that of the electrode, fully controlling the angle of incidence of reactive ions onto the substrate, and adding a lateral etching effect, residues at the stepped portion can be removed and the etching shape can be adjusted to the desired shape. Finished at an angle,
A dry etching process is performed to improve the step coverage of the upper layer.

以下に本発明の原理を図を基に詳細に説明する。The principle of the present invention will be explained in detail below with reference to the drawings.

第6図は本発明による半導体装置の製造方法に含まれる
ドライエンチング工程に使用されるドライエンチング装
置の正面図でめり、第7図はそれを上から見た平面図で
ある。交流箱:力7と8は尚周波電力1とは独自な周波
数(υ3周波亀電力より低周波)及び位相を持っており
、9は水平方向の電極である。
FIG. 6 is a front view of the dry etching apparatus used in the dry etching step included in the method of manufacturing a semiconductor device according to the present invention, and FIG. 7 is a plan view of the same as seen from above. AC box: Forces 7 and 8 have a frequency (lower frequency than υ3 frequency power) and phase that are unique to frequency power 1, and 9 is a horizontal electrode.

第6図の装置に高周波電力1を印加すると、上下電極2
により基板付近に自己バイアスが生じ垂直方向の電界が
発生するが、そfiと同時に水)V一方向の1!極9に
より水平方向にも電界が生じ、第8図のようにイオンは
基板に対して斜めに入射する。
When high frequency power 1 is applied to the device shown in Fig. 6, the upper and lower electrodes 2
This causes a self-bias near the substrate and generates a vertical electric field, but at the same time water) V is 1 in one direction! An electric field is also generated in the horizontal direction by the pole 9, and ions are incident obliquely onto the substrate as shown in FIG.

第8図はある瞬間をとらえた図であり、反応性イオン4
の横方向成分は水平電力の周波数によって随時変動する
。この場合その周波数は上下電極の周波数に比して十分
低い値とする。上下iFL&と同程度の周波数ならば、
反応性イオンは水平電界にはほとんど影響されない。又
、この水平方向の周波数及び電力を制御することにより
反応性イオンの水平方向の強度を制御することができる
Figure 8 is a diagram that captures a certain moment, and the reactive ion 4
The horizontal component of varies depending on the frequency of the horizontal power. In this case, the frequency is set to a value sufficiently lower than the frequency of the upper and lower electrodes. If the frequency is about the same as the upper and lower iFL&,
Reactive ions are hardly affected by horizontal electric fields. Furthermore, by controlling the frequency and power in the horizontal direction, the horizontal intensity of the reactive ions can be controlled.

又、X方向、Y方向はそれぞれ独自の′電力を印加して
も良いが、−例としてX方向、Y方向にそれぞれ部W 
t + glnW t’O嶌は角振動数、tは時間ンに
比例し友交流電力を印加した場合、水平方向には一定の
周期1/Wで一周する一様の電界が生ずるので、均等の
エンチングが実現される。これにより、垂直方向に加え
て水平方向に任意の強度で均一にイオン全入射できるの
で、結果として第9図のようにイオンは基板に対し任意
の角度で入射し、被エツチング物の形状を任意の角度で
エツチングすることができる。
In addition, it is also possible to apply unique powers in the X direction and the Y direction, but for example,
t + glnW t'O is the angular frequency, and t is proportional to the time. When AC power is applied, a uniform electric field that goes around at a constant period of 1/W is generated in the horizontal direction, so Enching is achieved. This allows all ions to be uniformly incident with any intensity in the horizontal direction as well as vertically, resulting in the ions being incident on the substrate at any angle as shown in Figure 9, allowing the shape of the object to be etched to be formed arbitrarily. Can be etched at an angle of

又、水平方向の電圧印加はエツチング中宮に一定である
必要は無く、エツチング初期は強く、後半で弱く(また
は無く)することにより第10図のように角の丸くした
エツチング形状にすることも5]能である。それ故、こ
のようなドライエツチング工程を有する半導体装置の製
造方法では、微細力+I工が可能であり、かつ、上層の
ステップカバリッジも良くなる。
Furthermore, the horizontal voltage application does not need to be constant to the etching center; it is possible to create an etched shape with rounded corners as shown in Figure 10 by applying a strong voltage at the beginning of etching and weakening (or eliminating) it at the latter half. ] It is Noh. Therefore, in a method of manufacturing a semiconductor device including such a dry etching process, fine force+I processing is possible and step coverage of the upper layer is also improved.

以上説明したように、本発明のドライエッチングエ8f
:有する半導体装置の製造方法によれば、任意に横方向
のエツチング強度を制御でき、段差部でのエツチング残
直物全工程を増やさず安定的に除去でき、又、エツチン
グ形状を任意にできるので上層のステップカバリッジを
改善することができる。
As explained above, the dry etching method 8f of the present invention
: According to the method for manufacturing a semiconductor device, the lateral etching strength can be controlled arbitrarily, the etching residue at the stepped portion can be stably removed without increasing the number of etching residues in the entire process, and the etching shape can be made arbitrarily. The step coverage of the upper layer can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のドライエツチング工程に用いられるエ
ツチング装置の正面図、第2図は従来のドライエツチン
グ工程によるエツチングの様子を示しだ図、第5図は従
来のエンチング工程によりエツチングした物のエツチン
グ形状を示した断面図である。第4図(a)は、従来の
ドライエツチング工程における段差部での残渣物の様子
を示しだ断面図、@4図(b)は段差部での膜厚の様子
を示した断面図、第4図(C1は従来のドライエツチン
グ工程における配線間の残液物の様子を示しだ斜視図で
ある。第5図は従来の半導体装置の製造方法で処理した
半導体装置の一部の断面形状2その上層の断面形状を示
した断面図でろる。 第6図と第7図はそれぞれ、本発明の半導体装置の製造
方法に含まれるドライエンチング工程に使用されるドラ
イエンチング装置の正面図及び平面図である。 第8図は、本発明の半導体装置の製造方法に含まれるド
ライエツチング工程によるエツチングの様子全示しだ図
でめり、第9図と第10図はそれぞれ本発明の製造方法
に含まれるドライエツチング工程により処理した物のエ
ツチング形状を示した図である。 1・・・間周波電力、2・・・上下電極、5・・・半導
体基板、4・・・反応性イオン、5・・・エツチング使
渣6・・・被エツチング物、物、 7.8・・・水平電極に印加する交流電力、9・・・水
平電極、 10・・・レジスト、以 上 出願人 セイコー電子工業株式会社
Figure 1 is a front view of an etching device used in a conventional dry etching process, Figure 2 shows the state of etching in the conventional dry etching process, and Figure 5 shows the etching process performed in the conventional etching process. FIG. 3 is a sectional view showing an etched shape. Figure 4(a) is a cross-sectional view showing the state of the residue at the step part in the conventional dry etching process, and Figure 4(b) is a cross-sectional view showing the state of the film thickness at the step part. Figure 4 (C1 is a perspective view showing the state of residual liquid between interconnects in a conventional dry etching process. Figure 5 is a cross-sectional view 2 of a part of a semiconductor device processed by a conventional semiconductor device manufacturing method. This is a cross-sectional view showing the cross-sectional shape of the upper layer. Figures 6 and 7 are a front view and a dry etching apparatus used in the dry etching step included in the method of manufacturing a semiconductor device of the present invention, respectively. FIG. 8 is a diagram showing the entire etching process in the dry etching process included in the method of manufacturing a semiconductor device of the present invention, and FIG. 9 and FIG. 1 is a diagram showing an etched shape of an object processed by a dry etching process included in the following. 1... Interfrequency power, 2... Upper and lower electrodes, 5... Semiconductor substrate, 4... Reactive ions, 5... Etching residue 6... Object to be etched, object, 7.8... AC power applied to horizontal electrode, 9... Horizontal electrode, 10... Resist, Applicant: Seiko Electronics Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1) 平行平板の電極を有する反応チャンバー内に1
種類または数種類のガスを導入し、平行平板電極に高周
波電力を印加し、ガスt−プラズマ化させエツチングを
行う際に、平行平板電極の周辺に独自の電極を設け、上
記高周波とは異なる独自の交流電力を印加するエツチン
グ工程を有する半導体装置の製造方法。
(1) 1 in a reaction chamber with parallel plate electrodes.
When performing etching by introducing a type or several types of gas and applying high-frequency power to the parallel plate electrodes to turn the gas into T-plasma, a unique electrode is provided around the parallel plate electrode, and a unique electrode different from the above high frequency is used. A method for manufacturing a semiconductor device including an etching process in which alternating current power is applied.
(2)平行平板電極の周辺に設ける電極を、X軸Y軸方
向にそれぞれ2枚ずつ相対した平行平板電極とし、印加
する交流電力k X Ill Y軸方向にそれぞれ、Q
OB wt、 sinwtとすることを特徴とする特許
請求範囲第1項記載の半導体装置の製造方法。
(2) The electrodes provided around the parallel plate electrodes are two parallel plate electrodes facing each other in the X and Y axis directions, and the applied AC power is k
2. The method of manufacturing a semiconductor device according to claim 1, wherein OB wt and sinwt are used.
(3) 平行平板の周辺の電極に印加する交流電力をエ
ツチングの初期に強くし、後半で弱く、または無くする
ことを特徴とする特許請求範囲第1項記載の半導体装置
の製造方法。
(3) A method for manufacturing a semiconductor device according to claim 1, characterized in that the alternating current power applied to the peripheral electrodes of the parallel plate is increased in the initial stage of etching, and is weakened or eliminated in the latter half.
JP901284A 1984-01-20 1984-01-20 Manufacture of semiconductor device Pending JPS60153129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP901284A JPS60153129A (en) 1984-01-20 1984-01-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP901284A JPS60153129A (en) 1984-01-20 1984-01-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60153129A true JPS60153129A (en) 1985-08-12

Family

ID=11708734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP901284A Pending JPS60153129A (en) 1984-01-20 1984-01-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60153129A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273731A (en) * 1986-05-21 1987-11-27 Tokyo Electron Ltd Plasma processor
JPH01238120A (en) * 1988-03-18 1989-09-22 Fujitsu Ltd Etching device
JPH0330424A (en) * 1989-06-28 1991-02-08 Mitsubishi Electric Corp Plasma etching device
US5330606A (en) * 1990-12-14 1994-07-19 Matsushita Electric Industrial Co., Ltd. Plasma source for etching
US5332880A (en) * 1992-03-31 1994-07-26 Matsushita Electric Industrial Co., Ltd. Method and apparatus for generating highly dense uniform plasma by use of a high frequency rotating electric field
US5424905A (en) * 1992-03-31 1995-06-13 Matsushita Electric Company, Ltd. Plasma generating method and apparatus
US5436424A (en) * 1992-06-25 1995-07-25 Matsushita Electric Industrial Co., Ltd. Plasma generating method and apparatus for generating rotating electrons in the plasma
US5609690A (en) * 1994-02-15 1997-03-11 Matsushita Electric Industrial Co., Ltd. Vacuum plasma processing apparatus and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127168A (en) * 1976-04-19 1977-10-25 Fujitsu Ltd Etching unit
JPS52141443A (en) * 1976-05-21 1977-11-25 Nippon Electric Co Method of etching films

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127168A (en) * 1976-04-19 1977-10-25 Fujitsu Ltd Etching unit
JPS52141443A (en) * 1976-05-21 1977-11-25 Nippon Electric Co Method of etching films

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273731A (en) * 1986-05-21 1987-11-27 Tokyo Electron Ltd Plasma processor
JPH0551172B2 (en) * 1986-05-21 1993-07-30 Tokyo Electron Ltd
JPH01238120A (en) * 1988-03-18 1989-09-22 Fujitsu Ltd Etching device
JPH0330424A (en) * 1989-06-28 1991-02-08 Mitsubishi Electric Corp Plasma etching device
US5330606A (en) * 1990-12-14 1994-07-19 Matsushita Electric Industrial Co., Ltd. Plasma source for etching
US5593539A (en) * 1990-12-14 1997-01-14 Matsushita Electric Industrial Co., Ltd. Plasma source for etching
US5332880A (en) * 1992-03-31 1994-07-26 Matsushita Electric Industrial Co., Ltd. Method and apparatus for generating highly dense uniform plasma by use of a high frequency rotating electric field
US5424905A (en) * 1992-03-31 1995-06-13 Matsushita Electric Company, Ltd. Plasma generating method and apparatus
US5436424A (en) * 1992-06-25 1995-07-25 Matsushita Electric Industrial Co., Ltd. Plasma generating method and apparatus for generating rotating electrons in the plasma
US5609690A (en) * 1994-02-15 1997-03-11 Matsushita Electric Industrial Co., Ltd. Vacuum plasma processing apparatus and method

Similar Documents

Publication Publication Date Title
JPS60126832A (en) Dry etching method and device thereof
JPS60153129A (en) Manufacture of semiconductor device
US5397433A (en) Method and apparatus for patterning a metal layer
JP3350973B2 (en) Plasma processing method and plasma processing apparatus
KR20200098386A (en) Dry etching method and dry etching apparatus
JP3211391B2 (en) Dry etching method
JPS6110239A (en) Semiconductor manufacturing equipment
JPH02106925A (en) Dry etching apparatus
JPS63116428A (en) Dry etching method
JPH02309631A (en) Plasma etching method
JP2634910B2 (en) Microwave plasma processing equipment
JP4004244B2 (en) Plasma processing method
JPH0393224A (en) Dry etching
JP3112395B2 (en) Dry etching apparatus and dry etching method
JP4243615B2 (en) Reactive ion etching system
JPS62249420A (en) Apparatus for plasma treatment
JPH03177587A (en) Plasma treatment
KR100634677B1 (en) Equipment for plasma etch
JPS6010731A (en) Plasma etching device
JPH01122124A (en) Dry etching method
JP2797685B2 (en) Dry etching method
JPS61222132A (en) Production unit for semiconductor
JPH01107539A (en) Microwave plasma processor
JPH0196931A (en) Plasma etching device
JPS63224232A (en) Plasma treatment and device therefor