JPH0330424A - Plasma etching device - Google Patents

Plasma etching device

Info

Publication number
JPH0330424A
JPH0330424A JP1167789A JP16778989A JPH0330424A JP H0330424 A JPH0330424 A JP H0330424A JP 1167789 A JP1167789 A JP 1167789A JP 16778989 A JP16778989 A JP 16778989A JP H0330424 A JPH0330424 A JP H0330424A
Authority
JP
Japan
Prior art keywords
electric field
electrodes
plasma
electrode
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1167789A
Other languages
Japanese (ja)
Other versions
JP2643457B2 (en
Inventor
Koji Oku
奥 康二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1167789A priority Critical patent/JP2643457B2/en
Publication of JPH0330424A publication Critical patent/JPH0330424A/en
Application granted granted Critical
Publication of JP2643457B2 publication Critical patent/JP2643457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To manufacture the title plasma etching device in the structure capable of miniaturization and power saving using no electromagnetic coil while uniforming the plasma by a method wherein rotary electric field generating parts composed of electrode members in specific shape respectively making mechanical differential angles are provided on one side of parallel electrodes arranged in a chamber. CONSTITUTION:Rotary electric field generating electrode parts composed of divided electrode member in specific shape are provided on one side of parallel electrodes 7, 8 arranged in a chamber so that the electric field distribution in the chamber 9 may be turned to the rotary electric field by transmitting electric signals in differential phases corresponding to the said mechanical differential angles to the electrode parts. For example, two opposite electrodes are composed of conical electrodes 5a-5d cut into quarters while high-frequency SIN wave signals and COS wave signals in 90 degree of electric phase difference are transmitted from secondary coil 3a and pi/2 phase-shifting device 4 of respec tive transformers 3 to the said electrodes so as to generate the rotary electric field.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラズマを利用してエツチングを行うドライ
エツチング装置に関し、特にそのプラズマチャンバー内
のプラズマ分布を平均化させると共にプラズマ密度を増
加させる機構をもつプラズマエツチング装置の改JIL
K関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a dry etching apparatus that performs etching using plasma, and particularly to a mechanism that averages the plasma distribution in the plasma chamber and increases the plasma density. Revised JIL plasma etching equipment with
This is related to K.

〔従来の技術〕[Conventional technology]

従来のプラズマエツチング装置として、反応性イオンエ
ツチング(以下RIE)装置を例にとって第5図に示し
て説明する。このRIE装置は、第5図に示すように1
真空チヤンバーとしてのキャビティ24内に円板状の上
部電極21と下部電極22管平行に配置し、その下部電
極22上にエツチングすべきウェハ23を載置して、エ
ツチングガスをガス導入口25よシ導入する。そしてこ
の電極21.22間に高周波(RF)電源28よシ高周
波電力を加えて平行交番電界(13,56MHz )を
作り、グロー放電を起してエツチングガスをプラズマ化
することKよυ、そのラジカル分子、電離されたイオン
及び電子によってウェハ23t−エツチングするものと
なっている。なお、第5図中26は真空引口、27は整
合回路である。
As a conventional plasma etching apparatus, a reactive ion etching (hereinafter referred to as RIE) apparatus will be described as an example, as shown in FIG. This RIE apparatus has 1
A disk-shaped upper electrode 21 and a lower electrode 22 are arranged in parallel with each other in a cavity 24 serving as a vacuum chamber, a wafer 23 to be etched is placed on the lower electrode 22, and an etching gas is introduced through the gas inlet 25. Introduce the system. Then, high frequency power is applied from a high frequency (RF) power source 28 between the electrodes 21 and 22 to create a parallel alternating electric field (13.56 MHz), causing a glow discharge and turning the etching gas into plasma. The wafer 23t-etches using radical molecules, ionized ions, and electrons. In addition, in FIG. 5, 26 is a vacuum inlet, and 27 is a matching circuit.

を九、チャンバー内のプラズマ分布を平均化させるため
に電界に直交した磁界を発生させてこの磁界を回転磁界
とする有磁場RIE装置もあシ、その概略構造の断面図
を第6図に示す。ここで、31&と31bは対になった
コイルで、32aと32b及び33&と33bも同様に
対をなすコイルであシ、これらによシ3対のコイルを形
成している。そして、この3対のコイルata 、 3
1bと328 、32b及び33& 、 33bは、ウ
ェハ35を収容、するプラズマ用チャンバー34の外側
に設置されていて、その内部に対向配置される平行電極
(図示せず)の電界に対し直交する磁界を形成して回転
磁界を発生させることによシ、これら磁界と電界による
相乗効果、つまF)E−B効果によるプラズマ密度増加
と共にプラズマ回転によυ平均化を計るものとなってい
る。
9. In order to average the plasma distribution in the chamber, there is also a magnetic field RIE device that generates a magnetic field perpendicular to the electric field and uses this magnetic field as a rotating magnetic field. A cross-sectional view of its schematic structure is shown in Figure 6. . Here, 31& and 31b are paired coils, and 32a and 32b and 33& and 33b are similarly paired coils, forming three pairs of coils. And these three pairs of coils ata, 3
1b, 328, 32b, 33&, 33b are installed outside the plasma chamber 34 that accommodates the wafer 35, and generate a magnetic field perpendicular to the electric field of parallel electrodes (not shown) disposed opposite to each other inside the plasma chamber 34. By forming a rotating magnetic field and generating a rotating magnetic field, a synergistic effect of these magnetic fields and an electric field, i.e., an increase in plasma density due to the E-B effect, and an averaging of υ due to plasma rotation are achieved.

このとき、各コイル311〜33bを、それぞれ機構的
配置角度差に相当する電気角度の位相差のついた信号で
駆動する。例えば、3対のコイル31&〜33bに空間
的(機構的配置)に120度の角度をつけた場合は、三
相交流電流(電気的に120度の差)を、sta 、 
31bの対コイル−+33m 、 33bの対コイル→
32& 、 32bの対コイルに流すことによ多回転磁
界を発生させ、プラズマにしぼり込みを与えるとともに
プラズマ分布を回転させることによって、エツチング作
用を平均化させることができる。また、電流を60・度
の位相差で給電すれば、aia 、 31bの対コイ/
M32& 、 32bの対コイル→a3m 、 33b
の対コイルの順に流すことによ)回転磁界が発生し、上
述と同様の効果が得られる。また電界と磁界を共用する
ことにより、E−B効果が得られるので、電子にスビ/
がかかり、この電子によってプラズマ発生の効率アップ
を計ることができる。
At this time, each of the coils 311 to 33b is driven by a signal having a phase difference in electrical angle corresponding to a difference in mechanical arrangement angle. For example, if the three pairs of coils 31 & ~ 33b are spatially (mechanically arranged) at an angle of 120 degrees, the three-phase alternating current (electrical difference of 120 degrees) is sta,
31b pair coil - +33m, 33b pair coil →
The etching action can be averaged by generating a multi-rotation magnetic field by flowing it through the pair of coils 32 & 32b, narrowing the plasma and rotating the plasma distribution. Also, if the current is supplied with a phase difference of 60 degrees, the pair of coils of aia, 31b /
M32&, 32b pair coil → a3m, 33b
By passing the current through the pair of coils in this order, a rotating magnetic field is generated, and the same effect as described above can be obtained. Also, by sharing the electric and magnetic fields, the E-B effect can be obtained, so electrons can be
These electrons can be used to increase the efficiency of plasma generation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、第5図に示すような従来のR[装置では
、平行電極に交番電界によりプラズマを発生させている
が、電極仕上精度差による電界のみだれや、ウェハの乗
υ方のわずかな差による電界のみだれ、エツチングガス
の流れの不均一等により、プラズマ分布の均一性が劣る
という問題点があった。
However, in the conventional R [device shown in Fig. 5], plasma is generated by an alternating electric field on parallel electrodes, but the electric field is distorted due to differences in electrode finishing accuracy, and due to slight differences in the wafer multiplier. There is a problem in that the uniformity of the plasma distribution is poor due to the sagging electric field, non-uniform etching gas flow, etc.

また、第6図に示す従来の有磁場RIE装置は、回転磁
界によシプラズマを回転させることにより、プラズマ均
一性は改善されるが、チャンバーの内または外側に電磁
コイルを設けるため、比較的大きな駆動電流が必要とな
る。このため発熱量も大きく、冷却機構を必要とし、装
置の小型化が計シにくい、また消費電力も大きくなって
しまうという問題点があつ九。
In addition, in the conventional magnetic field RIE apparatus shown in Fig. 6, plasma uniformity is improved by rotating the plasma using a rotating magnetic field, but since an electromagnetic coil is provided inside or outside the chamber, the plasma is relatively large. Drive current is required. For this reason, the amount of heat generated is large, a cooling mechanism is required, it is difficult to miniaturize the device, and power consumption also increases.

本発明は上記のような問題点を解消するためになされた
もので、電界を回転電界にすることKよシ、プラズマの
平均化(均一化)を計れるとともに、装置の構造も電磁
コイル等を用いず、小型化。
The present invention was made to solve the above-mentioned problems, and instead of using a rotating electric field, it is possible to average the plasma (uniformity), and the structure of the device also has electromagnetic coils, etc. It is not used and is miniaturized.

省電力化ができるプラズマエツチング装置を得ることを
目的とする。
The purpose of this invention is to obtain a plasma etching device that can save power.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係るプラズマエツチング装置は、プラズマ分布
の均一化を計るために、チャンバー内に配置される平行
電極の一方側に所定形状の電極部材を分割してそれぞれ
に機構的角度差をつけ九回転電界発生用電極部を設け、
この電極部に前記機構的角度差に対応する位相差をもつ
電気信号を給電してチャンバー内の電界分布を回転電界
とすることにより、ウェハに対するエツチング作用を均
一化させ、再現性の良いエツチングを実現させるように
したものである。
In order to make the plasma distribution uniform, the plasma etching apparatus according to the present invention divides electrode members of a predetermined shape on one side of parallel electrodes arranged in a chamber, and rotates each electrode member nine times with a mechanical angle difference. An electric field generating electrode section is provided,
By feeding electrical signals with a phase difference corresponding to the mechanical angle difference to this electrode part and making the electric field distribution in the chamber a rotating electric field, the etching action on the wafer is made uniform and etching with good reproducibility is achieved. This is what I tried to accomplish.

〔作用〕[Effect]

本発明におけるプラズマエツチング装置は、交番回転の
高周波電界を発生することによυ、プラズマの均一化を
計ることができ、またウェハに対するエツチングの再現
性の向上が計れるとともに、装置の小型化、省エネルギ
ー化も計れる。
The plasma etching apparatus of the present invention can uniformize the plasma by generating an alternatingly rotating high-frequency electric field, improve the reproducibility of etching on wafers, and reduce the size of the apparatus and save energy. It can also be measured.

(実施例〕 以下、本発明の一実施例を第1図ないし第4図を参照し
て説明する。
(Example) An example of the present invention will be described below with reference to FIGS. 1 to 4.

第1図は本発明によるプラズマエツチング装置の全体構
成を示す概略図でちシ、第2図く第1図のA−A視の断
面図、第3図は第1図の回転電界発生用の電極構造及び
その給電系を示す電気系統図である。
FIG. 1 is a schematic diagram showing the overall configuration of a plasma etching apparatus according to the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIG. It is an electrical system diagram showing an electrode structure and its power supply system.

これらの図において、1は周波数にして例えば13、5
6MHzが使用される高周波(R,F)電源、2はその
電源及び負荷との整合をとるための整合回路、3は回転
電界を作るために後述する2つの電極に給電するための
パワーデイバイダーとしてのトランスである。また、4
はその電極の機構的角度差に相当する電気的位相差を得
るためのπ/2移相器、5は円錐状板を4分割し九電極
5凰〜5dからなる回転電界発生用の円錐状電極部、6
はこの4分割された電極5a〜5dを保持するための対
エツチング、デポジット性に強い8103等の絶縁物電
極保持リングである。
In these figures, 1 is the frequency, for example 13, 5
A high frequency (R, F) power supply using 6MHz, 2 a matching circuit for matching the power supply and the load, and 3 a power divider for supplying power to two electrodes to be described later to create a rotating electric field. It is a trance. Also, 4
5 is a π/2 phase shifter for obtaining an electrical phase difference corresponding to the mechanical angular difference of the electrodes, and 5 is a conical plate for generating a rotating electric field consisting of nine electrodes 50 to 5d divided into four parts. Electrode part, 6
is an insulating electrode holding ring such as 8103 which is resistant to etching and depositing and is used to hold the electrodes 5a to 5d divided into four parts.

また、Tは真空チャンバー9内の所定箇所に配置される
リング状の上部電極であシ、この上部電極7の内周面近
傍には、回転電界発生用の円錐状電極部5の下部が位置
され、それら電極51〜5dが第2図に示すように軸を
中心に対称的に配設されている。この時、4分割された
円錐状の電極5a〜5dによシ相対向する2つの電極を
構成し、それらの電極は機構的に90度の角度差を持つ
。そして、これに電気位相的に同じく90度(π/2)
の差をもつ高周波の5IN(サイン)波信号Ex。
Further, T is a ring-shaped upper electrode placed at a predetermined location in the vacuum chamber 9, and near the inner peripheral surface of this upper electrode 7, a lower part of a conical electrode portion 5 for generating a rotating electric field is located. The electrodes 51 to 5d are arranged symmetrically about the axis as shown in FIG. At this time, the quarter-divided conical electrodes 5a to 5d constitute two electrodes facing each other, and these electrodes have a mechanical angle difference of 90 degrees. And the electrical phase is also 90 degrees (π/2)
A high frequency 5IN (sine) wave signal Ex with a difference of .

C05(コサイン)波信号[7をそれぞれトランス3の
2次コイル3a及びに/2移相器4から給電することに
より、回転電界を発生するものとなっている。8はこの
円錐状の電極5&〜5dを含む上部電極7に対して平行
に配置された円板状の下部電極であり、この下部電極8
上にはエツチングすべきウェハ10が載置される。そし
て、これら下部電極8と上部電極1間にはトランス3の
2次コイル3aよI)SIN波信号が給電されている。
A rotating electric field is generated by feeding a C05 (cosine) wave signal [7 from the secondary coil 3a of the transformer 3 and the /2 phase shifter 4, respectively. Reference numeral 8 denotes a disk-shaped lower electrode disposed parallel to the upper electrode 7 including the conical electrodes 5 &~5d;
A wafer 10 to be etched is placed thereon. A SIN wave signal is supplied to the secondary coil 3a of the transformer 3 between the lower electrode 8 and the upper electrode 1.

11はエツチングガスを導入するための整流板付ガス導
入口、12は真空引口である。
11 is a gas inlet with a rectifying plate for introducing etching gas, and 12 is a vacuum outlet.

上記実施例の構成によると、平行電極をなす一方の上部
電極Iに対し円錐状に配置された2つの電極5m、5b
及び5c、5dを回転電界発生用電極部5として形成し
、これら各電極sa、sb及び5c。
According to the configuration of the above embodiment, two electrodes 5m and 5b are arranged in a conical shape with respect to one upper electrode I forming parallel electrodes.
, 5c and 5d are formed as the rotating electric field generating electrode section 5, and these electrodes sa, sb and 5c.

5dに対してその機構的角度差と等しい90度の電気位
相角をもつ高周波信号つまシ第4図(a)に示すSIN
波信号EX及び第4図に示すCO8波信号EFをそれぞ
れ給電することにより、両者の合成による回転電界ベク
トルは第4図(c)に示すようにな9、交番の回転電界
と発生できる。ただし、第4図(0)の合成回転電界ベ
クトルは、Y軸にコサイン波、X軸にサイン波を給電し
た時のものを示す。
A high-frequency signal block having an electrical phase angle of 90 degrees equal to its mechanical angle difference with respect to 5d, the SIN shown in FIG. 4(a)
By respectively feeding the wave signal EX and the CO8 wave signal EF shown in FIG. 4, a rotating electric field vector resulting from the combination of both can be generated as an alternating rotating electric field 9 as shown in FIG. 4(c). However, the composite rotating electric field vector shown in FIG. 4(0) is obtained when a cosine wave is fed to the Y axis and a sine wave is fed to the X axis.

しかして、本実施例のエツチング方式においては、ガス
導入口11からプラズマエツチング用ガスを導入後、こ
のガスを、相対向する2つの電極5m、5b及び5c、
5dからなる円錐状の電極部5よシ発生する交番回転電
界中を通すことによシ高周波によシ励起し、そのラジカ
ル分子、電離分子(イオン)及び電子がよシー層の分離
を促進する。
Therefore, in the etching method of this embodiment, after introducing the plasma etching gas from the gas inlet 11, this gas is applied to the two opposing electrodes 5m, 5b and 5c.
By passing through the alternating rotating electric field generated by the conical electrode part 5 consisting of 5d, it is excited by high frequency, and the radical molecules, ionized molecules (ions) and electrons promote the separation of the sheath layer. .

さらに、円錐状の電極部5のため、円回転しながら下方
の方向への速度を持たせ、尚かり平行電極をなす上部電
極7.下部電極8間にて形成される平行電界領域にプラ
ズマ分子を進入させる。これによシ、その平行電界によ
ってプラズマ分子の運動を円運動から直動運動に変化さ
せ、ウエノ・10上にプラズマ分子を衝突させてエツチ
ングを行うことかで皐る。これにより、プラズマ密度を
上げてプラズマ発生の効率アップが計れ、しかもプラズ
マの均一性が計れる利点を有する。
Furthermore, because of the conical electrode section 5, it has downward speed while rotating in a circle, and the upper electrode 7, which forms a parallel electrode. Plasma molecules are caused to enter the parallel electric field region formed between the lower electrodes 8. In this case, the motion of the plasma molecules is changed from circular motion to linear motion by the parallel electric field, and etching is performed by colliding the plasma molecules onto the Ueno layer 10. This has the advantage of increasing the plasma density and increasing the efficiency of plasma generation, as well as ensuring uniformity of the plasma.

なお、上記実施例では回転電界発生用の電極構造を円錐
状板で示したが、これは、シンクロスコープのように平
行平板の組み合せ、または、円筒状板を分割しても構成
することができる。また、給電方式は電気位相角π/2
で示したが、多相交流で給電しても良い。さらに、平行
平板電極を形成する上部電極7社実施例では回転電界発
生用電極部5の下部に配置しているが、該回転電界発生
用電極部5を上部電極7の下に配置し、平行電界の上部
に回転電界発生部を設けたシ、あるいはπ/2移相器4
はケーブル長による位相遅れを利用することもできる。
In the above example, the electrode structure for generating a rotating electric field is shown as a conical plate, but this can also be constructed by a combination of parallel flat plates as in a synchroscope, or by dividing a cylindrical plate. . In addition, the power feeding method has an electrical phase angle of π/2
However, power may be supplied using polyphase alternating current. Furthermore, in the example of the seven upper electrodes forming parallel plate electrodes, the rotating electric field generating electrode section 5 is arranged under the rotating electric field generating electrode part 5, but the rotating electric field generating electrode part 5 is arranged under the upper electrode 7 and parallel A rotating electric field generator is provided above the electric field, or a π/2 phase shifter 4
It is also possible to use the phase delay caused by the cable length.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、プラズマ発生の効率を上
げるために回転電界部をチャンバー内に構成し九ため、
プラズマ分子の電離の促進とともに、プラズマの均一性
が計れる。そのため、従来装置の回転磁界によるプラズ
マ均一性を計る手法に較べ装置が安価にできる。また給
電用の高周波信号も、従来の電源よυ高周波l・ランス
等を用いて分割することにより容易に得ることができる
等の効果がある。
As described above, according to the present invention, in order to increase the efficiency of plasma generation, the rotating electric field section is configured in the chamber.
Along with promoting the ionization of plasma molecules, the uniformity of the plasma can be measured. Therefore, compared to the conventional method of measuring plasma uniformity using a rotating magnetic field, the device can be made at a lower cost. Furthermore, the high frequency signal for power supply can be easily obtained by dividing the conventional power supply using a high frequency lance or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるプラズマエツチング装置の一実施
例を示す概略図、第2図は第1図のA−A視の断面図、
第3図は第1図p回転電界発生用の電極構造及び給電系
を示す電気系統図、第4図は回転電界用の給電信号波形
及び合成回転電界ベクトルを示す図、第5図は従来の平
行平板を用いたRIE装置を示す概略図、第6図は同じ
〈従来の回転磁界を用いたRIE装置を示す概略構造の
断面図である。 1・φ・・高周波電源、3・・・−トランス、4e**
−π/2移相器、5・書・・回転電界発生用電極部、6
・・・・電極保持リング、T・・・・上部電極、8・−
睡−下部電極、9・瞭・・真空チャンバー 10−@Φ
・ウェハ、11・拳・・ガス導入口、12@φ自e真空
引口。
FIG. 1 is a schematic diagram showing an embodiment of a plasma etching apparatus according to the present invention, FIG. 2 is a sectional view taken along line A-A in FIG.
Figure 3 is an electrical system diagram showing the electrode structure and power supply system for generating the rotating electric field shown in Figure 1. Figure 4 is a diagram showing the power supply signal waveform and composite rotating electric field vector for the rotating electric field. FIG. 6 is a schematic diagram illustrating an RIE apparatus using parallel flat plates, and FIG. 6 is a cross-sectional view of a schematic structure showing the same conventional RIE apparatus using a rotating magnetic field. 1・φ・・High frequency power supply, 3・・・Transformer, 4e**
-π/2 phase shifter, 5, writing... Electrode section for generating rotating electric field, 6
... Electrode holding ring, T ... Upper electrode, 8 -
Sleep-lower electrode, 9.Vacuum chamber 10-@Φ
・Wafer, 11・Fist・Gas inlet, 12@φ self-evacuation port.

Claims (1)

【特許請求の範囲】[Claims] プラスマを利用したドライエッチング装置において、チ
ャンバー内に配置される平行電極の一方側に、所定形状
の電極部材を分割してそれぞれに機構的角度差をつけた
回転電界発生用電極部を設け、この電極部に前記機構的
角度差に対応する位相差をもつ電気信号を給電すること
により、前記チャンバー内の電界分布を回転電界とする
ようにしたことを特徴とするプラズマエッチング装置。
In a dry etching device that uses plasma, an electrode part of a predetermined shape is divided into two parts on one side of parallel electrodes arranged in a chamber, and an electrode part for generating a rotating electric field is provided in each part with a mechanical angle difference. A plasma etching apparatus characterized in that the electric field distribution in the chamber is made into a rotating electric field by feeding an electric signal having a phase difference corresponding to the mechanical angle difference to the electrode portion.
JP1167789A 1989-06-28 1989-06-28 Plasma processing apparatus and method Expired - Lifetime JP2643457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1167789A JP2643457B2 (en) 1989-06-28 1989-06-28 Plasma processing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1167789A JP2643457B2 (en) 1989-06-28 1989-06-28 Plasma processing apparatus and method

Publications (2)

Publication Number Publication Date
JPH0330424A true JPH0330424A (en) 1991-02-08
JP2643457B2 JP2643457B2 (en) 1997-08-20

Family

ID=15856145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1167789A Expired - Lifetime JP2643457B2 (en) 1989-06-28 1989-06-28 Plasma processing apparatus and method

Country Status (1)

Country Link
JP (1) JP2643457B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215430A (en) * 1990-12-14 1992-08-06 Matsushita Electric Ind Co Ltd Plasma generation and its apparatus
JPH0645094A (en) * 1992-03-31 1994-02-18 Matsushita Electric Ind Co Ltd Method for generating plasma and device therefor
US5330606A (en) * 1990-12-14 1994-07-19 Matsushita Electric Industrial Co., Ltd. Plasma source for etching
US5332880A (en) * 1992-03-31 1994-07-26 Matsushita Electric Industrial Co., Ltd. Method and apparatus for generating highly dense uniform plasma by use of a high frequency rotating electric field
US5345145A (en) * 1992-03-31 1994-09-06 Matsushita Electric Industrial Co., Ltd. Method and apparatus for generating highly dense uniform plasma in a high frequency electric field
US5404079A (en) * 1992-08-13 1995-04-04 Matsushita Electric Industrial Co., Ltd. Plasma generating apparatus
US5424905A (en) * 1992-03-31 1995-06-13 Matsushita Electric Company, Ltd. Plasma generating method and apparatus
US5609690A (en) * 1994-02-15 1997-03-11 Matsushita Electric Industrial Co., Ltd. Vacuum plasma processing apparatus and method
EP0838841A2 (en) * 1996-10-18 1998-04-29 Applied Materials, Inc. Inductively coupled parallel-plate plasma reactor with a conical dome
JP2008525080A (en) * 2004-12-27 2008-07-17 スタンデン・リミテッド Method for treating a tumor or the like using differently oriented electric fields
JP2009105030A (en) * 2007-10-22 2009-05-14 New Power Plasma Co Ltd Capacity coupling plasma reactor
CN109786194A (en) * 2018-12-20 2019-05-21 丰豹智能科技(上海)有限公司 A kind of device changing ion beam direction

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793126B2 (en) 2010-08-04 2017-10-17 Lam Research Corporation Ion to neutral control for wafer processing with dual plasma source reactor
US9245761B2 (en) 2013-04-05 2016-01-26 Lam Research Corporation Internal plasma grid for semiconductor fabrication
US9230819B2 (en) 2013-04-05 2016-01-05 Lam Research Corporation Internal plasma grid applications for semiconductor fabrication in context of ion-ion plasma processing
US9017526B2 (en) * 2013-07-08 2015-04-28 Lam Research Corporation Ion beam etching system
US9147581B2 (en) 2013-07-11 2015-09-29 Lam Research Corporation Dual chamber plasma etcher with ion accelerator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153129A (en) * 1984-01-20 1985-08-12 Seiko Instr & Electronics Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153129A (en) * 1984-01-20 1985-08-12 Seiko Instr & Electronics Ltd Manufacture of semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215430A (en) * 1990-12-14 1992-08-06 Matsushita Electric Ind Co Ltd Plasma generation and its apparatus
US5593539A (en) * 1990-12-14 1997-01-14 Matsushita Electric Industrial Co., Ltd. Plasma source for etching
US5330606A (en) * 1990-12-14 1994-07-19 Matsushita Electric Industrial Co., Ltd. Plasma source for etching
US5424905A (en) * 1992-03-31 1995-06-13 Matsushita Electric Company, Ltd. Plasma generating method and apparatus
US5345145A (en) * 1992-03-31 1994-09-06 Matsushita Electric Industrial Co., Ltd. Method and apparatus for generating highly dense uniform plasma in a high frequency electric field
US5332880A (en) * 1992-03-31 1994-07-26 Matsushita Electric Industrial Co., Ltd. Method and apparatus for generating highly dense uniform plasma by use of a high frequency rotating electric field
JPH0645094A (en) * 1992-03-31 1994-02-18 Matsushita Electric Ind Co Ltd Method for generating plasma and device therefor
US5404079A (en) * 1992-08-13 1995-04-04 Matsushita Electric Industrial Co., Ltd. Plasma generating apparatus
US5609690A (en) * 1994-02-15 1997-03-11 Matsushita Electric Industrial Co., Ltd. Vacuum plasma processing apparatus and method
EP0838841A2 (en) * 1996-10-18 1998-04-29 Applied Materials, Inc. Inductively coupled parallel-plate plasma reactor with a conical dome
EP0838841A3 (en) * 1996-10-18 1998-12-30 Applied Materials, Inc. Inductively coupled parallel-plate plasma reactor with a conical dome
JP2008525080A (en) * 2004-12-27 2008-07-17 スタンデン・リミテッド Method for treating a tumor or the like using differently oriented electric fields
JP2009105030A (en) * 2007-10-22 2009-05-14 New Power Plasma Co Ltd Capacity coupling plasma reactor
CN109786194A (en) * 2018-12-20 2019-05-21 丰豹智能科技(上海)有限公司 A kind of device changing ion beam direction

Also Published As

Publication number Publication date
JP2643457B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
JPH0330424A (en) Plasma etching device
KR900005347B1 (en) Plasma processor
JP5391209B2 (en) Plasma processing equipment
TW312815B (en)
CN101363115B (en) Arc source of rotary magnetron arc ion plating
US20040168771A1 (en) Plasma reactor coil magnet
JP2002088472A5 (en)
KR0142041B1 (en) Plasma generating apparatus and method
JPH09283300A (en) Plasma treatment device
WO2003052806A1 (en) Plasma treatment apparatus and plasma generation method
US10242844B2 (en) Rotating RF electric field antenna for uniform plasma generation
JP2679756B2 (en) Plasma processing equipment
JPH0917598A (en) Ecr plasma working device and ecr plasma generating method
JP3055806B2 (en) Microwave plasma generator
JPH03162583A (en) Vacuum process device
JPH06120169A (en) Plasma generating apparatus
JPS63243286A (en) Rotating magnetic field type magnetron etching device
JP2577316B2 (en) Thin-film formation method using high-density plasma by multi-phase AC multi-electrode discharge and its apparatus
JPS6253920B2 (en)
JP2006032272A (en) Plasma treatment device
JPH02156089A (en) Plasma sticking device
KR101468727B1 (en) Plasma reactor apparatus having magnetism control constitution
JPS61119036A (en) Low temperature plasma electromagnetic field controlling mechanism
JPS62152127A (en) Plasma device
JPH071788Y2 (en) Plasma equipment