JPH01122124A - Dry etching method - Google Patents

Dry etching method

Info

Publication number
JPH01122124A
JPH01122124A JP28000787A JP28000787A JPH01122124A JP H01122124 A JPH01122124 A JP H01122124A JP 28000787 A JP28000787 A JP 28000787A JP 28000787 A JP28000787 A JP 28000787A JP H01122124 A JPH01122124 A JP H01122124A
Authority
JP
Japan
Prior art keywords
etching
etched
frequency power
dry etching
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28000787A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tomita
和之 富田
Yasuo Tanaka
靖夫 田中
Masuo Tanno
丹野 益男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28000787A priority Critical patent/JPH01122124A/en
Publication of JPH01122124A publication Critical patent/JPH01122124A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To form a taper, and to improve its dimensional accuracy by performing an isotropic etching by an intermittent etching, and then anisotropically etching by continuous etching. CONSTITUTION:High frequency power is intermittently applied from the start of etching to an article 12 to be etched to etch the article 12 to its midway, and then the power is applied continuously to the article 12 to etch the article 12 to a finishing base 13. That is, it is isotropically etched in a first step to form a taper, and a resist mask is then anisotropically etched in a second step. In the first step, when the application of the high frequency power is stopped, the isotropic etching is proceeded with remaining activated neutral reaction gas. Since the etching conditions except the presence or absence of the application of the high frequency power may be all constant through the first and second steps, a loss time of switching the steps is eliminated. Further, since all are dry etched, an accurate working without contamination can be performed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体等の電子部品製造工程に用いるドライエ
ツチングに関するもので、とくにテーパーエツチングに
関するものである0 従来の技術 近年、半導体菓子の微細化は著しく、配線間隔やコンタ
クトホール径等も縮小化してきている0そのため膜形成
時のステップカバレージの問題で、配線やコンタクトホ
ールにテーパーを形成するエツチング技術が不可欠とな
っている。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to dry etching used in the manufacturing process of electronic components such as semiconductors, and in particular to taper etching. The spacing between interconnects and the diameter of contact holes are also becoming smaller. Therefore, due to the problem of step coverage during film formation, etching technology for forming tapers in interconnects and contact holes has become indispensable.

テーパーエツチングには従来、ウエッpxフチングとド
ライエツチングを組み合せた方法、ドライエツチングに
よるレジスト後退を用いた方法等がある。
Conventional taper etching methods include a method that combines wet x etching and dry etching, and a method that uses resist regression by dry etching.

第4図はウェットエツチングとドライエツチングを組み
合せた方法の工程図である0第1の工程としてウェット
エツチングによりレジストマスク41を介して被エツチ
ング物42をエツチングし、43のようにレジスト直下
にアンダーカットを発生させる。第2の工程としてドラ
イエツチングによりレジストマスク41に対し、被エツ
チング物42を垂直に異方性エツチングする。異方性ド
ライエツチングには通常反応性イオンエツチング(以下
R,I 、E  と称す)による手法が用いられる。
FIG. 4 is a process diagram of a method combining wet etching and dry etching. In the first step, the object to be etched 42 is etched through a resist mask 41 by wet etching, and an undercut is created directly under the resist as shown in 43. to occur. As a second step, the object to be etched 42 is anisotropically etched perpendicularly to the resist mask 41 by dry etching. For anisotropic dry etching, a method based on reactive ion etching (hereinafter referred to as R, I, E) is usually used.

この方法により、レジスト除去後、被エツチング物エツ
ジ部にテーパーが形成される。
By this method, a taper is formed at the edge of the object to be etched after the resist is removed.

第6図はドライエツチングによるレジスト後退を用いた
方法の工程図である。ドライエツチング行なう際、レジ
ストマスク61のエツチング速度が被エツチング物52
のエツチング速度に比べ同等あるいはそれ以上となるエ
ツチング条件を選択する。ドライエツチングの方式はR
,1,Eを用いる場合が多い。上記条件にてエツチング
を行なうと、エツチング進行に伴ってレジスト後退がお
こり、被エツチング物62にテーパーが形成される。
FIG. 6 is a process diagram of a method using resist regression by dry etching. When performing dry etching, the etching speed of the resist mask 61 is higher than that of the object to be etched 52.
Select etching conditions that are equivalent to or faster than the etching speed of The dry etching method is R.
,1,E are often used. When etching is performed under the above conditions, the resist recedes as the etching progresses, and a taper is formed in the object 62 to be etched.

発明が解決しようとする問題点 しかしながら、上記のウェットエツチングとドライエツ
チングを組み合せた方法においてはアンダーカット部に
異物が付着し汚染源となったり、レジストマスクが膨張
し寸法精度良く加工ができない等の問題点を有している
。また上記ドライエツチングによるレジスト後退を用い
た方法ではレジスト膜厚の違いによりテーパー形状も変
化するため寸法精度が得難いという問題点を有している
Problems to be Solved by the Invention However, in the above-mentioned method that combines wet etching and dry etching, there are problems such as foreign matter adhering to the undercut portion and becoming a source of contamination, and the resist mask expanding and making it impossible to process with good dimensional accuracy. It has points. Further, the method using resist regression by dry etching has a problem in that it is difficult to obtain dimensional accuracy because the taper shape changes depending on the difference in resist film thickness.

本発明は上記問題点に鑑み容易にテーパー形成ができか
つ寸法精度の良いドライエツチング方法を提供すること
を目的とするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a dry etching method that can easily form a taper and has good dimensional accuracy.

問題点を解決するだめの手段 上記目的を達成するために本発明のドライエツチング方
法は、平行平板型電極に高周波電力を印加し反応ガスを
プラズマ化して被エツチング物のエツチングを行なうド
ライエツチング方法においで、エツチング開始時より前
記高周波電力を間欠に印加し前記被エツチング物を途中
までエツチングする第1の工程と、以降前記高周波電力
の印加を連続的に行ない被エツチング物を終点までエツ
チングする第2の工程とからなることを特徴とする。
Means for Solving the Problems In order to achieve the above object, the dry etching method of the present invention is a dry etching method in which a high frequency power is applied to parallel plate electrodes to turn a reactive gas into plasma to etch the object to be etched. There is a first step in which the high-frequency power is applied intermittently from the start of etching to etch the object to be etched halfway, and a second step in which the high-frequency power is continuously applied thereafter to etch the object to be etched to the end point. It is characterized by consisting of the following steps.

作  用 本発明は上記した構成によって第1の工程で等方的にエ
ツチングを行ないテーパー形成し、第2の工程でレジス
トマスクに対して異方性にエツチングを行なうものであ
る。第1の工程では高周波電力印加を停止した際、残留
する活性化した中性反応ガスにより等方的にエツチング
が進む。第1の工程、第2の工程を通して高周波電力の
印加有無以外のエツチング条件は全て一定でよいため工
程切換のロス時間もない。また全てドライエツチングで
行なうため汚染のない精度良い加工が可能となる。
Function The present invention uses the above-described structure to perform isotropic etching to form a taper in the first step, and perform anisotropic etching on the resist mask in the second step. In the first step, when the application of high frequency power is stopped, etching proceeds isotropically due to the remaining activated neutral reaction gas. Since all the etching conditions except whether or not high frequency power is applied may be kept constant throughout the first step and the second step, there is no lost time due to process switching. In addition, since all processes are performed by dry etching, highly accurate processing without contamination is possible.

実施例 以下本発明の一実施例のドライエツチング方法について
、図面を参照しながら説明する。
EXAMPLE Hereinafter, a dry etching method according to an embodiment of the present invention will be explained with reference to the drawings.

第2図は本発明の実施例に用いるドライエツチング装置
の構成図を示すものである。21は基板電極、22は対
向電極であり、基板電極21上に被エツチング物23が
載置され、高周波電源24より高周波電力が印加される
。26は基板電極21側に漏えい磁界を発生させるよう
設置された回転手段を有するマグネットであり、有磁場
型反応性イオンエツチング装置の構成をとっている。
FIG. 2 shows a block diagram of a dry etching apparatus used in an embodiment of the present invention. Reference numeral 21 indicates a substrate electrode, and 22 indicates a counter electrode. An object to be etched 23 is placed on the substrate electrode 21, and high frequency power is applied from a high frequency power source 24. Reference numeral 26 denotes a magnet having a rotating means installed to generate a leakage magnetic field on the side of the substrate electrode 21, and is configured as a magnetic field type reactive ion etching apparatus.

第3図は本発明の比較例におけるドライエツチング方法
のエツチング断面形状を示す。上記構成のドライエツチ
ング装置を用い、圧カニ 1 mTorr。
FIG. 3 shows the etched cross-sectional shape of a dry etching method in a comparative example of the present invention. Using the dry etching apparatus with the above configuration, the pressure was set at 1 mTorr.

高周波電カニ350W、反応ガス:CR2/BCR3=
 80/20 SCCM ’+基板電極21上の磁束密
度:約2ooガウスで本発明の第1の工程のみにてエツ
チングを行なったもので、高周波電力の印加時間と停止
時間を変化させた際のエツチング形状を調べたものであ
る。被エツチング物23は表面に5lO3膜を有する6
インチSL基板上にスパッタリングされた膜厚111m
のA4−1 % S i −0、5%Cu膜31で、レ
ジストマスク32を介してエツチングを行なった。
High frequency electric crab 350W, reaction gas: CR2/BCR3=
80/20 SCCM' + Magnetic flux density on substrate electrode 21: About 20 Gauss. Etching was performed only in the first step of the present invention. This is a study of the shape. The object to be etched 23 has a 5lO3 film on its surface 6
Film thickness 111m sputtered on inch SL substrate
Etching was performed using an A4-1% Si-0, 5% Cu film 31 through a resist mask 32.

第3図aは高周波電力を連続的に印加した際のエツチン
グ断面形状を示している。高周波電力を連続的に印加す
るとエツチング断面形状は図のように異方性となる。こ
の際エツチングに要した時間は65秒である0第3図す
は高周波電力の印加と停止を5秒間隔で行なったもので
エツチング時間は80秒、第3図c、dはそれぞれ10
秒、15秒間隔で行なったもので、エツチング時間は9
0秒。
FIG. 3a shows the etched cross-sectional shape when high frequency power is continuously applied. When high frequency power is continuously applied, the etched cross-sectional shape becomes anisotropic as shown in the figure. At this time, the time required for etching was 65 seconds. In Figure 3, high frequency power was applied and stopped at intervals of 5 seconds, and the etching time was 80 seconds.
The etching time was 9 seconds, and the etching time was 15 seconds.
0 seconds.

103秒であった。It was 103 seconds.

エツチング断面形状は高周波電力の印加と停止の間隔を
長くするに従いテーパー角度が緩やかになり等方的な形
状となる。間欠エツチングと連続エツチングをエツチン
グ時間で比較すると間欠エツチングでは高周波電力を印
加している時間はエツチング時間のtso%であり、従
って高周波電力を停止している間にもエツチングが進行
していることがわかる。従ってエツチング断面形状から
、高周波電力を停止した際に残留する活性化中性反応ガ
スにより等方的にエツチングが進行するものと考えられ
る。
The etched cross-sectional shape becomes isotropic as the taper angle becomes gentler as the interval between application and stop of high-frequency power becomes longer. Comparing intermittent etching and continuous etching in terms of etching time, in intermittent etching the time during which high-frequency power is applied is tso% of the etching time, so it is clear that etching is progressing even when high-frequency power is stopped. Recognize. Therefore, from the etching cross-sectional shape, it is considered that etching proceeds isotropically due to the activated neutral reaction gas remaining when the high frequency power is stopped.

以上のように高周波電力の印加を間欠に行なうことによ
り通常異方性エツチングの条件においても等方性エツチ
ングが可能となることがわかる。
As described above, it can be seen that isotropic etching is possible even under normal anisotropic etching conditions by intermittently applying high frequency power.

しかしながら上記間欠エツチング前グでは寸法精度が得
られない。そこで上記間欠エツチングを第1の工程とし
、第2の工程としてレジストをマスクとした連続エツチ
ングにより異方性エツチングを行なうことで寸法精度を
確保することができる。
However, dimensional accuracy cannot be obtained with the above-mentioned intermittent pre-etching. Therefore, dimensional accuracy can be ensured by using the intermittent etching as the first step and performing anisotropic etching by continuous etching using the resist as a second step.

第1図は本発明の実施例におけるAjl−1%5t−0
,s%Cu膜のドライエツチング方法の工程図を示した
ものである。第1図において11はレジストマスク、1
2はへ2=11st−o、s%Cu膜(膜厚1 μm 
)、13は下地の5i02膜、14はsi基板である。
Figure 1 shows Ajl-1%5t-0 in an example of the present invention.
, s% A process diagram of a dry etching method for a Cu film is shown. In FIG. 1, 11 is a resist mask;
2 = 11 st-o, s% Cu film (film thickness 1 μm
), 13 is the underlying 5i02 film, and 14 is the Si substrate.

第1図aはエツチング前の断面形状、同図すは高周波電
力の印加と停止を10秒間隔で繰り返す第1の工程(間
欠エツチング)を40秒間行なった後のエツチング断面
形状、同図Cは高周波電力の印加を連続して行なう第2
の工程後のエツチング断面形状である。エツチングは比
較例と同じエツチング条件で行なった。同図dはエツチ
ング終了後レジストマスク11を除去したものでエツジ
部にテーパーが形成されており後のスパッタ成膜時にも
良好なステップカバレージが得られた。
Figure 1A shows the cross-sectional shape before etching, Figure 1C shows the etched cross-sectional shape after performing the first step (intermittent etching) for 40 seconds, in which high-frequency power is applied and stopped at 10-second intervals, and Figure C shows the etched cross-sectional shape. A second device that continuously applies high frequency power.
This is the etched cross-sectional shape after the process. Etching was carried out under the same etching conditions as in the comparative example. Figure d shows the resist mask 11 removed after etching, and a taper is formed at the edge, so that good step coverage can be obtained during subsequent sputtering film formation.

このように間欠エツチングで等方性エツチングを行ない
以降連続エツチングにより異方性エツチングを行なうこ
とでテーパー形成されかつ寸法精度のよい加工ができる
。該方法においては高周波電力の印加中停止のサイクル
を通常の工程に導入するだけで成り立つことより工程が
容易でかつウェットエツチングのように汚染を発生する
危険性もない加工ができる。
In this way, by performing isotropic etching with intermittent etching and then performing anisotropic etching with continuous etching, a taper can be formed and processing with good dimensional accuracy can be achieved. In this method, a cycle of applying and stopping high-frequency power is simply introduced into the normal process, so that the process is easy and there is no risk of contamination unlike wet etching.

なお、本実施例においてはA fl−1% S i −
0,5%Cu膜のエツチングについて示したが、活性化
した中性反応ガスで等方的にエツチングされる膜(S1
3N4膜、ポIJSi膜等)においても同様の効果が得
られる。また本実施例においては第1の工程で高周波電
力の印加と停止の間隔を10秒としたが、この間隔を変
化させることでテーパー形状を変化し得ることは本発明
の比較例に記載したとおりである。
In addition, in this example, Afl-1% Si-
Although the etching of a 0.5% Cu film was shown, a film that is isotropically etched with an activated neutral reaction gas (S1
Similar effects can be obtained with 3N4 films, PoIJSi films, etc.). Furthermore, in this example, the interval between application and stop of high-frequency power was set to 10 seconds in the first step, but as described in the comparative example of the present invention, the taper shape can be changed by changing this interval. It is.

発明の効果 以上のように本発明は高周波電力を間欠に印加する第1
の工程と高周波電力の印加を連続で行なう第2の工程を
もつドライエツチング方法を行なうことにより、被エツ
チング物のテーパーエツチングを寸法精度良く行なうこ
とができる。
Effects of the Invention As described above, the present invention provides a first method that applies high frequency power intermittently.
By performing a dry etching method having a second step in which the step and the application of high-frequency power are performed in succession, taper etching of the object to be etched can be performed with high dimensional accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるドライエツチング方法
の工程図、第2図は本発明の実施例及び比較例に用いる
ドライエツチング装置の構成図、第3図は本発明の比較
例におけるドライエツチング方法のエツチング断面図、
第4・6図は従来のドライエツチング方法における工程
図である。 21・・・・・・基板電極、22・・・・・・対向電極
、23・・・・・・被エツチング物、24・・・・・・
高周波電源。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 I レジスト献 第4図 (コ clll                     
 の      9派             派 第5図
Fig. 1 is a process diagram of a dry etching method in an embodiment of the present invention, Fig. 2 is a block diagram of a dry etching apparatus used in an embodiment of the present invention and a comparative example, and Fig. 3 is a diagram of a dry etching method in a comparative example of the present invention. Etching cross section of method,
4 and 6 are process diagrams of a conventional dry etching method. 21...Substrate electrode, 22...Counter electrode, 23...Object to be etched, 24...
High frequency power supply. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure I Resist figure 4
The 9th school of the 5th school

Claims (3)

【特許請求の範囲】[Claims] (1)平行平板型電極に高周波電力を印加し反応ガスを
プラズマ化して被エッチング物のエッチングを行なうド
ライエッチング方法において、エッチング開始時より前
記高周波電力を間欠に印加し前記被エッチング物を途中
までエッチングする第1の工程と、以降前記高周波電力
の印加を連続的に行ない被エッチング物を終点までエッ
チングする第2の工程とからなることを特徴とするドラ
イエッチング方法。
(1) In a dry etching method in which a high-frequency power is applied to a parallel plate type electrode and a reactive gas is turned into plasma to etch the object to be etched, the high-frequency power is intermittently applied from the start of etching to partially remove the object to be etched. A dry etching method comprising a first step of etching, and a second step of etching the object to be etched to the end point by continuously applying the high frequency power.
(2)平行平板電極内に磁場を重畳することを特徴とす
る特許請求の範囲第1項記載のドライエッチング方法。
(2) The dry etching method according to claim 1, characterized in that a magnetic field is superimposed within the parallel plate electrodes.
(3)被エッチング物がAl合金であることを特徴とす
る特許請求の範囲第1項記載のドライエッチング方法。
(3) The dry etching method according to claim 1, wherein the object to be etched is an Al alloy.
JP28000787A 1987-11-05 1987-11-05 Dry etching method Pending JPH01122124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28000787A JPH01122124A (en) 1987-11-05 1987-11-05 Dry etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28000787A JPH01122124A (en) 1987-11-05 1987-11-05 Dry etching method

Publications (1)

Publication Number Publication Date
JPH01122124A true JPH01122124A (en) 1989-05-15

Family

ID=17619005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28000787A Pending JPH01122124A (en) 1987-11-05 1987-11-05 Dry etching method

Country Status (1)

Country Link
JP (1) JPH01122124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303065A (en) * 2006-05-08 2007-11-22 Kamimura Tekko Kk Movable hood device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303065A (en) * 2006-05-08 2007-11-22 Kamimura Tekko Kk Movable hood device

Similar Documents

Publication Publication Date Title
JPH0258221A (en) Etching method using carbon or mask mainly comprising carbon
DE69934986D1 (en) PROCESS FOR ANISOTROPIC CORES
JPH01122124A (en) Dry etching method
JPS60153129A (en) Manufacture of semiconductor device
JP2650313B2 (en) Dry etching method
JP3211391B2 (en) Dry etching method
JP4301628B2 (en) Dry etching method
JPH02201925A (en) Deep-groove etching
JPH0353521A (en) Manufacture of semiconductor device
JP2001250862A (en) Method of forming contact hole
JPS58132933A (en) Selective dry etching method
JPH08148468A (en) Etching method
JPS62249420A (en) Apparatus for plasma treatment
JPS6132525A (en) Dry etching process
JPH03129821A (en) Manufacture of semiconductor device
JPH02275626A (en) Dry etching method
JPH05234953A (en) System and method for etching conductive thin film
JPH02253619A (en) Dry etching
JPH02165629A (en) Manufacture of conductive film pattern forming substrate
JPH0198227A (en) Manufacture of thin-film transistor
JPH04267337A (en) Manufacture of semiconductor device
JPS63226930A (en) Manufacture of semiconductor device
JPH01211922A (en) Ashing of resist layer
JPH01270332A (en) Formation of electrode wiring in semiconductor device
JPH06244157A (en) Manufacture of semiconductor device