JPH0353521A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0353521A
JPH0353521A JP18944189A JP18944189A JPH0353521A JP H0353521 A JPH0353521 A JP H0353521A JP 18944189 A JP18944189 A JP 18944189A JP 18944189 A JP18944189 A JP 18944189A JP H0353521 A JPH0353521 A JP H0353521A
Authority
JP
Japan
Prior art keywords
oxide film
etching
thermal oxide
resist
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18944189A
Other languages
Japanese (ja)
Inventor
Takao Akiyama
秋山 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18944189A priority Critical patent/JPH0353521A/en
Publication of JPH0353521A publication Critical patent/JPH0353521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable the tapered shape to be easily taken by a method wherein an oxide film or a nitride film is deposited on a thermal oxide film patterned on an Si substrate and after etching back the deposited film, the sidewall deposited on the thermal oxide film together with the patterned thermal oxide film is used as a mask. CONSTITUTION:Firstly, a thermal oxide film 2 is deposited on an Si substrate 1 and then the oxide film 2 is evenly coated with a resist 3. Next, fine patterns are transferred to this resist 3 for development using an exposure device so as to form the resist 3 having the fine patterns on the thermal oxide film 2. The thermal oxide film 2 is dry-etched away using the resist 3 as a mask. After finishing the dryetching process, the resist 3 used as the mask is removed to form the oxide film 2 having the fine patterns. Next, another oxide film 4 is evenly deposited using a CVD device. Finally, Si trenches are etched away.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a semiconductor device.

〔従来の技術〕[Conventional technology]

半導体集積回路の集積度の向上に伴い、素子分離あるい
は容量等の二次元的面積を縮小させるために、Siトレ
ンチエッチングが必要な技術となってきている.特に、
集積度が向上するにつれて、Si基板の狭い領域に深い
穴を掘る、いわゆる高アスベクト比のエッチングが要求
されてきている.この場合、開口部は非常に微細に寸法
のため、エッチングの際には反応、排気、形状制御とい
ったあらゆる困難が伴う。このうち、形状に関しては、
U字型、V字型、Y字型とした様々な形状が要求される
As the degree of integration of semiconductor integrated circuits increases, Si trench etching has become a necessary technique to reduce the two-dimensional area for element isolation or capacitance. especially,
As the degree of integration increases, so-called high aspect ratio etching, in which deep holes are dug in a narrow region of a Si substrate, is required. In this case, the dimensions of the openings are very fine, so that etching is accompanied by all kinds of difficulties such as reaction, evacuation, and shape control. Regarding the shape,
Various shapes such as U-shape, V-shape, and Y-shape are required.

第2図(a)〜(C)は従来のSi}レンチエッチング
方法を説明するための工程順に示した断面図である. まず、第2図(a)に示すように、Si基板1の上に熱
酸化膜2を厚く形成する。次に、この熱酸化膜2上にポ
ジ型のレジスト3を均一に塗布し、露光、現像により、
微細なパターンを有するレジストのマスクを形成する。
FIGS. 2(a) to 2(C) are cross-sectional views showing the conventional Si} wrench etching method in order of steps. First, as shown in FIG. 2(a), a thick thermal oxide film 2 is formed on a Si substrate 1. Next, a positive resist 3 is uniformly coated on this thermal oxide film 2, exposed to light, and developed.
A resist mask having a fine pattern is formed.

次に、第2図(b)に示すように、この形成ざれたレジ
スト3をマスクとして熱酸化膜2をドライエッチングす
る。このドライエッチングは、通常は平行平板電極に1
3.56MHzの高周波を印加し、適当なガスを導入す
ることでプラズマを発生させ、エッチングを行う、いわ
ゆる反応性イオンエッチング(RIE)により行うこと
で、異方性の高いエッチングが実現でき、熱酸化膜2は
ほぼ垂直にエッチングされる。熱酸化膜2のエッチング
後、マスクとして用いたレジスト3を除去すれば、Si
基板1上に熱酸化膜2がパターニングされる. 次に、第2図(c)に示すように、この微細なパターン
を有する熱酸化JI!2をマスクとして、Si基板1の
反応性イオンエッチングすることにより、微細なパター
ンを有する溝5が形成される。
Next, as shown in FIG. 2(b), the thermal oxide film 2 is dry-etched using the formed resist 3 as a mask. This dry etching is usually done once on parallel plate electrodes.
By applying a high frequency of 3.56 MHz and introducing an appropriate gas to generate plasma, etching is performed using so-called reactive ion etching (RIE), which allows highly anisotropic etching to be achieved. Oxide film 2 is etched almost vertically. After etching the thermal oxide film 2, if the resist 3 used as a mask is removed, the Si
A thermal oxide film 2 is patterned on a substrate 1. Next, as shown in FIG. 2(c), thermally oxidized JI! 2 as a mask, the Si substrate 1 is subjected to reactive ion etching to form grooves 5 having a fine pattern.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したように、St基板11こ対して垂直にパターニ
ングされた熱酸化M2をマスクとしてSi基板1のトレ
ンチエッチングを行った場合、エッチングの際にプラズ
マ中からSi基板1へ入射してくるイオンはSi基板1
に対して垂直であるため、マスクパターンに忠実にSt
基板1のエッチングが進行し、垂直な形状が得られると
考えられ勝ちであるが、実際にはトレンチ形状に大きく
影響するエッチング圧力や高周波電力などのプラズマ諸
量を正確に制御するのが難しく、またチャンバーの構造
、雰囲気等によっても、形状は左右されるため、アンダ
ーカットが入ったり、ボーイング形状になり易く、この
後のCVD工程で酸化膜や多結晶Si膜を堆積する時に
、いわゆる「す」という隙間を発生させてしまうという
問題点を生ずる。
As mentioned above, when trench etching of the Si substrate 1 is performed using the thermally oxidized M2 patterned perpendicularly to the St substrate 11 as a mask, the ions that enter the Si substrate 1 from the plasma during etching are Si substrate 1
Since it is perpendicular to the St
It is thought that etching of the substrate 1 will progress and a vertical shape will be obtained, but in reality it is difficult to accurately control various plasma quantities such as etching pressure and high frequency power, which greatly affect the trench shape. In addition, the shape is influenced by the structure and atmosphere of the chamber, so it is easy to have an undercut or a bowing shape, so when depositing an oxide film or polycrystalline Si film in the subsequent CVD process, it is difficult to This creates a problem in that a gap is created.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、半導体基板上に第1
の絶縁膜を形戒し該第1の絶縁膜をパターニングする工
程と、前記第1の絶縁膜を含む前記半導体基板表面に前
記第1の絶縁膜とエッチング特性がほぼ同等である第2
の絶縁膜を堆積する工程と、前記第2の絶縁膜と半導体
基板を異方性エッチングして前記“第1の絶縁膜の側壁
にのみ前記第2の絶縁膜を残し次にエッチング用ガスを
変えて前記第1及び第2の絶縁膜をマスクにして前記半
導体基板を異方性エッチングして前記半導体基板に溝を
形戒する工程とを含んで構戒される.〔実施例〕 次に、本発明の実施例について図面を用いて説明する。
In the method for manufacturing a semiconductor device of the present invention, a first
patterning the first insulating film, and patterning the first insulating film on the surface of the semiconductor substrate including the first insulating film, the second insulating film having substantially the same etching characteristics as the first insulating film.
depositing an insulating film, and anisotropically etching the second insulating film and the semiconductor substrate to leave the second insulating film only on the sidewalls of the first insulating film, and then applying an etching gas. Alternatively, the method includes the step of anisotropically etching the semiconductor substrate using the first and second insulating films as masks to form a groove in the semiconductor substrate. [Example] Next, , embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(d)は、本発明の一実施例を説明する
ための工程順に示した断面図である.まず、第1図(a
)に示すように、St基板1の上に厚さ約1μmの熱酸
化膜2を成長させ、この上に厚さ1.0〜1.5μmの
レジ゜スト3を均一に塗布する。次に、露光装置を用い
て微細なパターンをこのレジスト3に転写し、現像を行
なうことにより、熱酸化膜2上には微細なパターンを有
するレジスト3が形成される. 次に、第1図(b)に示すように、このレジスト3をマ
スクとして熱酸化膜2をドライエッチングする。エッチ
ングの手順は以下の通りである。
FIGS. 1(a) to 1(d) are cross-sectional views shown in order of steps for explaining an embodiment of the present invention. First, Figure 1 (a
), a thermal oxide film 2 with a thickness of about 1 .mu.m is grown on an St substrate 1, and a resist 3 with a thickness of 1.0 to 1.5 .mu.m is uniformly applied thereon. Next, a fine pattern is transferred onto this resist 3 using an exposure device and developed, whereby a resist 3 having a fine pattern is formed on the thermal oxide film 2. Next, as shown in FIG. 1(b), the thermal oxide film 2 is dry-etched using the resist 3 as a mask. The etching procedure is as follows.

平行平板からなる一対の電極の一方に上記試料を裁置し
、これらの内蔵した真空チャンバー内にCHF,を20
〜50SCCM導入する。試料を置いた電極に13.5
6MHzの高周波電界を印加し、両電極間に高周波グロ
ー放電を生じさせる。この際使用した電力密度は2〜3
 W / c m 2であった。エッチング中のガス狂
はo.oi〜0.ITorrとした.この条件では、熱
酸化膜11のエッチング速度は約400n’m/min
であり、半導体基板面内均一性は±3%以内で熱酸化膜
2はほぼ垂直な壁を有するようにエッチングされた。な
お、St基板1と熱酸化膜2との選択比は約20であっ
た.エッチング後、マスクとして用いたレジスト3を除
去することで、微細なパターンを有する酸化膜2が得ら
れた。
The above sample was placed on one of a pair of parallel plate electrodes, and 20% of CHF was placed in the built-in vacuum chamber.
~50SCCM will be introduced. 13.5 on the electrode where the sample was placed.
A high frequency electric field of 6 MHz is applied to generate a high frequency glow discharge between both electrodes. The power density used at this time was 2 to 3
It was W/cm2. Gas madness during etching is o. oi~0. It was set to ITorr. Under these conditions, the etching rate of the thermal oxide film 11 is approximately 400 nm/min.
The in-plane uniformity of the semiconductor substrate was within ±3%, and the thermal oxide film 2 was etched to have substantially vertical walls. Note that the selectivity ratio between the St substrate 1 and the thermal oxide film 2 was approximately 20. After etching, the resist 3 used as a mask was removed to obtain an oxide film 2 having a fine pattern.

次に、第1図(c)に示すように、この試料に厚さ10
0〜200nmの酸化膜4をCVD装置を使用して均一
に堆積させる。
Next, as shown in FIG. 1(c), this sample was coated with a thickness of 10
An oxide film 4 with a thickness of 0 to 200 nm is uniformly deposited using a CVD device.

次に、第1図(d)に示すように、上記試料を用いて、
Siトレンチのエッチングを行う.用いた装置は、前記
した場合と同じ反応性イオンエッチング(RIE)装置
である.第1ステップとして、酸化膜4のエッチングを
行った.ガスはCHF.を用い、流量は20〜508C
CMとした.また、エッチング中のガス厚は0.01〜
Q.lTorr、使用した電力密度は2〜3W / c
 m 2であった。この条件下では、酸化膜4のエッチ
ングは約500nm/minであるため、酸化膜4が例
えば200nmの場合、エッチング時間は30秒とした
.エッチング後には、パターニングされた熱酸化膜2の
側壁に幅約150nmのサイドウ才一ル4aが形成され
た.なお、上記条件下では、Si基板1のエッチングさ
れていない.その後、十分にチャンバーを真空に引いた
後、第2ステップとして、Siのエッチングを続けて行
った。エッチングガスとして、CF4等のフロロカーボ
ン系のガスを3〜5SCCM導入し、電力密度は2〜3
W/cm2とした.ガス圧を0.2〜0.6Torrと
して行った場合、St基板1のエッチング速度は約1.
3μm/min、熱酸化[2との選択比は約10であっ
た.この条件で、例えば4分間エッチングを行うと、S
t基板1のエッチング深さは約5μmとなり、形状マス
クの酸化膜2のサイドウ才一ル4aの幅が狭っていくた
め、形状がG字型となることがSEM観察により観察さ
れた。
Next, as shown in FIG. 1(d), using the above sample,
Etch the Si trench. The equipment used was the same reactive ion etching (RIE) equipment as described above. As the first step, the oxide film 4 was etched. The gas is CHF. using, the flow rate is 20-508C
It was made into a commercial. Also, the gas thickness during etching is 0.01~
Q. lTorr, the power density used is 2-3W/c
It was m2. Under these conditions, the etching rate of the oxide film 4 is approximately 500 nm/min, so when the oxide film 4 is, for example, 200 nm thick, the etching time is set to 30 seconds. After etching, a side groove 4a having a width of about 150 nm was formed on the side wall of the patterned thermal oxide film 2. Note that under the above conditions, the Si substrate 1 is not etched. Thereafter, after the chamber was sufficiently evacuated, Si etching was continued as a second step. As an etching gas, 3 to 5 SCCM of fluorocarbon gas such as CF4 is introduced, and the power density is 2 to 3.
W/cm2. When etching the St substrate 1 at a gas pressure of 0.2 to 0.6 Torr, the etching rate is approximately 1.
3 μm/min, thermal oxidation [2] selectivity was about 10. For example, if etching is performed for 4 minutes under these conditions, S
It was observed by SEM observation that the etching depth of the T-substrate 1 was about 5 μm, and the width of the side groove 4a of the oxide film 2 of the shape mask became narrower, so that the shape became G-shaped.

上記方法によるSiトレンチエッチングを行うと、所定
のマスクパターンよりも微細のパターン形状が得られ、
パターン寸法のCVD法による酸化膜4の膜厚を変える
ことで、変化させることができる。
When Si trench etching is performed using the above method, a finer pattern shape than the predetermined mask pattern can be obtained,
The pattern dimensions can be changed by changing the thickness of the oxide film 4 formed by the CVD method.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、Siトレンチエッチン
グにおいて、先にSi基板上にバターニングした熱酸化
膜上にCVD法による酸化膜あるいは窒化膜を堆積し、
それをエッチバッグした後にパターニングされた熱酸化
膜の側壁についたサイドウォールを、パターニングされ
た熱酸化膜とともにマスクとして用いるため、テーパー
形状が得られ易く、次工程にて行うトレンチ壁面への不
純物拡散、あるいはトレンチ内への電極材料の堆積が容
易に行うことが可能となるという効果を有する。
As explained above, in Si trench etching, the present invention deposits an oxide film or a nitride film by a CVD method on a thermal oxide film that has been patterned on a Si substrate,
Since the sidewalls attached to the sidewalls of the patterned thermal oxide film are used as a mask together with the patterned thermal oxide film after etch bagging, it is easy to obtain a tapered shape, and the impurity diffusion to the trench wall surface is performed in the next process. Alternatively, the electrode material can be easily deposited into the trench.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は、本発明の一実施例を説明する
ための工程順に示した断面図、第2図(a)〜(c)は
従来のSiトレンチエッチングを説明するための工程順
に示した断面図である。
FIGS. 1(a) to (d) are cross-sectional views shown in the order of steps for explaining one embodiment of the present invention, and FIGS. 2(a) to (c) are for explaining conventional Si trench etching. FIG.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に第1の絶縁膜を形成し該第1の絶縁膜を
パターニングする工程と、前記第1の絶縁膜を含む前記
半導体基板表面に前記第1の絶縁膜とエッチング特性が
ほぼ同等である第2の絶縁膜を堆積する工程と、前記第
2の絶縁膜と半導体基板を異方性エッチングして前記第
1の絶縁膜の側壁にのみ前記第2の絶縁膜を残し次にエ
ッチング用ガスを変えて前記第1及び第2の絶縁膜をマ
スクにして前記半導体基板を異方性エッチングして前記
半導体基板に溝を形成する工程とを含むとこを特徴とす
る半導体装置の製造方法。
A step of forming a first insulating film on a semiconductor substrate and patterning the first insulating film, and etching the surface of the semiconductor substrate including the first insulating film with substantially the same etching characteristics as the first insulating film. a step of depositing a second insulating film; and anisotropic etching of the second insulating film and the semiconductor substrate to leave the second insulating film only on the sidewalls of the first insulating film, followed by etching. A method for manufacturing a semiconductor device, comprising the step of anisotropically etching the semiconductor substrate using different gases and using the first and second insulating films as masks to form a groove in the semiconductor substrate.
JP18944189A 1989-07-21 1989-07-21 Manufacture of semiconductor device Pending JPH0353521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18944189A JPH0353521A (en) 1989-07-21 1989-07-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18944189A JPH0353521A (en) 1989-07-21 1989-07-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0353521A true JPH0353521A (en) 1991-03-07

Family

ID=16241303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18944189A Pending JPH0353521A (en) 1989-07-21 1989-07-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0353521A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469763B1 (en) * 2003-02-03 2005-02-02 매그나칩 반도체 유한회사 Method for forming isolation of semiconductor device
JP2006351637A (en) * 2005-06-13 2006-12-28 Shibaura Mechatronics Corp Etching method and process for fabricating device
JP2011129667A (en) * 2009-12-17 2011-06-30 Renesas Electronics Corp Semiconductor device and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194624A (en) * 1986-02-21 1987-08-27 Oki Electric Ind Co Ltd Forming method for fine pattern
JPS6428923A (en) * 1987-07-24 1989-01-31 Fujitsu Ltd Formation of taper-shaped trench

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194624A (en) * 1986-02-21 1987-08-27 Oki Electric Ind Co Ltd Forming method for fine pattern
JPS6428923A (en) * 1987-07-24 1989-01-31 Fujitsu Ltd Formation of taper-shaped trench

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469763B1 (en) * 2003-02-03 2005-02-02 매그나칩 반도체 유한회사 Method for forming isolation of semiconductor device
JP2006351637A (en) * 2005-06-13 2006-12-28 Shibaura Mechatronics Corp Etching method and process for fabricating device
JP4540058B2 (en) * 2005-06-13 2010-09-08 芝浦メカトロニクス株式会社 Etching method and device manufacturing method
JP2011129667A (en) * 2009-12-17 2011-06-30 Renesas Electronics Corp Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5354417A (en) Etching MoSi2 using SF6, HBr and O2
JP3202913B2 (en) How to make a deep vertical structure on a silicon substrate
JP3213803B2 (en) Method for forming slope contact hole in semiconductor using high-density plasma etching equipment
KR100702723B1 (en) Dry-etching method
US7125804B2 (en) Etching methods and apparatus and substrate assemblies produced therewith
JP3019367B2 (en) Method for manufacturing semiconductor device
JPH0353521A (en) Manufacture of semiconductor device
JPH04251926A (en) Manufacture of semiconductor device
JPH11150180A (en) Manufacture of semiconductor device
JP2906997B2 (en) Method for manufacturing semiconductor device
JPH11243080A (en) Etching method of semiconductor substrate
JPH0485928A (en) Dry etching method
JPH0220021A (en) Manufacture of semiconductor device
JP3865323B2 (en) Etching method and semiconductor device manufacturing method
JP2602285B2 (en) Method for manufacturing semiconductor device
JPH11330045A (en) Method for etching laminated film of oxide film and silicon layer
JPH06163465A (en) Dry etching device
JP4778715B2 (en) Semiconductor manufacturing method
JPH0661190A (en) Dry etching method
JPS58132933A (en) Selective dry etching method
JPH06181190A (en) Fabrication of semiconductor device
JP2811880B2 (en) Dry etching method
JPS6272129A (en) Manufacture of semiconductor device
JP2000156404A (en) Element isolation etching
JPH08148468A (en) Etching method