JPS60126815A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60126815A
JPS60126815A JP58235873A JP23587383A JPS60126815A JP S60126815 A JPS60126815 A JP S60126815A JP 58235873 A JP58235873 A JP 58235873A JP 23587383 A JP23587383 A JP 23587383A JP S60126815 A JPS60126815 A JP S60126815A
Authority
JP
Japan
Prior art keywords
layer
poly
crystal
single crystal
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58235873A
Other languages
Japanese (ja)
Inventor
Ryoichi Mukai
良一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58235873A priority Critical patent/JPS60126815A/en
Publication of JPS60126815A publication Critical patent/JPS60126815A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Abstract

PURPOSE:To control the temperature gradient of heating and cooling, and temperature distribution of the surface of a crystallizing region into single crystal, and to enhance the faculty and yield of a semiconductor device by a method wherein a laser beam is projected to an energy beam absorbing layer to heat the layer, and a non-single crystal semiconductor layer is molten making the former layer as a heat source. CONSTITUTION:A poly-Si layer 17 having high argon laser absorptivity is formed as an energy beam absorbing layer on an insulating layer. A laser beam is scanned thereon to heat the poly-Si layer 17 of energy beam absorbing layer through cap layers (reflection checking films) 18, 19, and moreover a poly-Si layer 14 is heated to be molten in order to the lateral direction from a seed part according to conduction heating from the poly-Si layer 17 thereof through an Si nitride film 16 and an SiO2 film 15 forming isolation layers, and the poly-Si layer 14 is recrystallized to be converted into a single crystal.

Description

【発明の詳細な説明】 (a)、発明の技術分野 本発明は半導体装置の製造方法に係り、特にラテラルエ
ピタキシャル成長法によるSo工(sx(5aon o
n In5ulat、or’ 、)構造の半導体装tl
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and in particular to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a semiconductor device using a lateral epitaxial growth method.
n In5ulat, or' , ) structure semiconductor device tl
.

製造方法に関する。Regarding the manufacturing method.

(6)技術の背景 近年SO工の三次元集積図W!rを実現するための技術
としてラテラルエピタキシャル成長が注目されている。
(6) Technology background Three-dimensional accumulation map of SO engineering in recent years! Lateral epitaxial growth is attracting attention as a technology for realizing r.

これはたとえばシリコン基板とにパターンニングされた
島状のシリコン酸化膜、或は酸化膜の一部に単結晶シー
ド部が設けられた酸化@とに非単結晶半導体層を被着し
、そのシリコン基板との一ケ所(或はシード部)から再
結晶化を開始して、前記シリコン酸化膜上の非拳′結晶
゛半導体層全域に及ばずもので基板シリコンと同一結晶
方位の単結晶が横方向に成長することからラテラルエビ
タキシャ/l/成長と呼ばれる。
For example, a non-single-crystal semiconductor layer is deposited on an island-shaped silicon oxide film patterned on a silicon substrate, or on an oxide film in which a single-crystal seed portion is provided in a part of the oxide film, and the silicon Recrystallization is started from one point (or seed part) with the substrate, and a non-crystalline crystal on the silicon oxide film, which does not cover the entire semiconductor layer, forms a single crystal with the same crystal orientation as the substrate silicon. It is called lateral epitaxia/l/ growth because it grows in the direction.

たとえばシリコン基板上の絶縁膜の一部に開孔部が設け
られ、該開孔部内に選択的にノンドープエピタキシャル
単結晶層のシード部を有する絶縁膜との非単結晶半導体
層を融解し、再結晶化させ 。
For example, an opening is provided in a part of an insulating film on a silicon substrate, and a non-single-crystal semiconductor layer with an insulating film having a seed part of a non-doped epitaxial single crystal layer selectively inside the opening is melted and re-melted. Let it crystallize.

や従来方法の例を第1図に示す。An example of the conventional method is shown in FIG.

図において1はシリコン基板、2はたとえば二酸化シリ
コン(5iC)Q )よりなる絶縁膜、8は該絶縁膜の
一部に設けられた開孔部内にノンドープエピタキシャル
単結晶−によって形成されたシード部、4はたとえばポ
リシリコン層よりなる非単結晶半導体層、5は二酸化シ
リコン膜、6は窒化シリコン膜である。
In the figure, 1 is a silicon substrate, 2 is an insulating film made of, for example, silicon dioxide (5iC)Q), and 8 is a seed portion formed of non-doped epitaxial single crystal in an opening provided in a part of the insulating film. 4 is a non-single crystal semiconductor layer made of, for example, a polysilicon layer, 5 is a silicon dioxide film, and 6 is a silicon nitride film.

ただし本従来例において二酸化シリコン膜5及び窒化シ
リコン膜はキャップ層を形成し、ポリシリコン層4の加
熱融解後の表面形状の乱れを防止し、かつ加熱をレーザ
等の光照射で行なう場合の反射を抑制する目的で設けて
いる。
However, in this conventional example, the silicon dioxide film 5 and the silicon nitride film form a cap layer to prevent the surface shape from being disturbed after heating and melting the polysilicon layer 4, and to prevent reflection when heating is performed by light irradiation such as a laser. It is established for the purpose of suppressing.

シリコンに選択的に吸収されるエネルギー線として、た
とえばアμゴン(Ar)レーザ光を照射することによっ
てポリシリコン層4はシード部より融解されて再び結晶
化する。
The polysilicon layer 4 is melted from the seed portion and re-crystallized by irradiating it with an energy beam selectively absorbed by silicon, such as an argon (Ar) laser beam.

しかしながらこのポリシリコン層4の冷却過程において
はその中央部分に比較して周辺部分が温度が低く、周辺
部分から結晶化が開始されるために、単結晶化されたシ
リコン層にダレイン状の欠陥を生じ易く、又ポリシリコ
ン層4に直にレーザビームによって加熱されるため、該
レーザビームの照射位置の移動に伴なって温度の44.
下降が急激に行なわれるために単結晶化さ九たシリコン
層にはがれの現象を生ずるなどの問題があり、そのため
単結晶化されたシリコン層に形成される素子の性能が損
なわれて半導体装置の歩留まりが低下するという問題が
あった。
However, during the cooling process of this polysilicon layer 4, the temperature of the peripheral part is lower than that of the central part, and crystallization starts from the peripheral part, so that defects in the form of dales are formed in the single-crystal silicon layer. Also, since the polysilicon layer 4 is directly heated by the laser beam, the temperature will increase to 44.5 mm as the irradiation position of the laser beam moves.
Because of the rapid drop, there are problems such as peeling of the single-crystal silicon layer, which impairs the performance of devices formed on the single-crystal silicon layer, resulting in problems with semiconductor devices. There was a problem that the yield decreased.

(中 発明の目的 本発明の目的はかかる問題点に鑑みなされたもので、ラ
テラルエピタキシャル成長によるSO工構造の半導体装
置の性能と歩留まりを向としうる半導体装置の製造方法
の提供にある。
OBJECTS OF THE INVENTION The object of the present invention was made in view of the above problems, and is to provide a method for manufacturing a semiconductor device that can improve the performance and yield of a semiconductor device having an SO structure using lateral epitaxial growth.

(e) 発明の構成 その目的を達成するため本発明は部分的に単結晶シード
に接した非単結晶半導体層が絶縁膜とに設けられ、該非
単結晶半導体層が分離層を介して設けられたエネルギー
線吸収層によって被覆された試料の該エネルギー線吸収
層にエネルギー線を照射して加熱し、これを熱源とした
ヒート・フローにより、該非単結晶半導体層を溶融し、
前記単結晶シードから横方向にエピタキシャル成長させ
ることによlll該非単結晶半導体層を単結晶化する工
程が含まれてなることを特徴とする。
(e) Structure of the Invention In order to achieve the object, the present invention provides a method in which a non-single-crystal semiconductor layer partially in contact with a single-crystal seed is provided on an insulating film, and the non-single-crystal semiconductor layer is provided with a separation layer interposed therebetween. The energy ray absorption layer of the sample covered with the energy ray absorption layer is heated by irradiating the energy ray absorption layer, and the non-single crystal semiconductor layer is melted by heat flow using this as a heat source,
The method is characterized in that it includes a step of monocrystallizing the non-single-crystal semiconductor layer by epitaxially growing it in the lateral direction from the single-crystal seed.

(f)@明の実施例 以下本発明の実施例について図面を参照して説明する。(f) @Akira’s example Embodiments of the present invention will be described below with reference to the drawings.

第2図乃至第5図は本発明の一実施例の工程順要部断面
図である。
FIGS. 2 to 5 are sectional views of essential parts in the process order of an embodiment of the present invention.

先ず第2図においてシリコン基板11.1:に熱酸化法
等によって二酸化シリコン層12の絶縁膜を厚さ約1μ
m程度に形成し、該絶縁膜12の一部に図示したように
開孔部を設け、該開孔部内に選択的にノンドープエピタ
キシャル単結晶層のシード部13を形成する。次いで該
シード部18を含む絶縁膜北にたとえば化学気相成長法
(CVD法)によって、厚さ約400OAのポリシリコ
ン層よりなる非単結晶半導体層を被着し、パターンニン
グによってa状のポリシリコン層14を形成する。
First, in FIG. 2, an insulating film of a silicon dioxide layer 12 is formed on a silicon substrate 11.1 to a thickness of about 1 μm by thermal oxidation or the like.
A hole is formed in a part of the insulating film 12 as shown in the figure, and a seed portion 13 of a non-doped epitaxial single crystal layer is selectively formed in the hole. Next, a non-single-crystal semiconductor layer made of a polysilicon layer with a thickness of about 400 OA is deposited on the north side of the insulating film including the seed portion 18 by, for example, chemical vapor deposition (CVD), and patterned to form an a-shaped polysilicon layer. A silicon layer 14 is formed.

次いで第8図に示すように熱酸化法によって前記ポリシ
リコン層140表出面に厚さ約850A程度の二酸化シ
リコン膜(Sing ) 15を形成した後、更にその
北面に窒化シリコン膜(Si8N4 )16を厚さ約8
00A程度に形成する。上記二酸化シリコン膜15と窒
化シリコン膜の二層は分離層として機能する。
Next, as shown in FIG. 8, a silicon dioxide film (Sing) 15 with a thickness of about 850 Å is formed on the exposed surface of the polysilicon layer 140 by thermal oxidation, and then a silicon nitride film (Si8N4) 16 is further formed on the north surface thereof. Thickness approx. 8
It is formed to about 00A. The two layers of the silicon dioxide film 15 and the silicon nitride film function as separation layers.

次いで第4図に示すように分離層とにエネルギー線吸収
層としてア7レゴンレーザーの吸収率が高いポリシリコ
ン層17を約800A程度CVD法によって形成する。
Next, as shown in FIG. 4, a polysilicon layer 17 having a high absorption rate for the Areggon laser is formed on the separation layer and the polysilicon layer 17 as an energy ray absorbing layer to a thickness of about 800 A by CVD.

その後熱酸化法によってポリシリコン層17の一部を酸
化して厚さ約800A程度の二酸化シリコン膜18を形
成し、更に窒化シリコン膜19を厚さ約800A程度に
形成する。二酸化シリコン膜18及び窒化シリコン81
%19は照射光の反射防止及び融解後のポリシリコン層
の安定を目的とするキャップ層であって、何れも必ずし
も必要でないが、これらを設けることが望ましい。
Thereafter, a part of the polysilicon layer 17 is oxidized by a thermal oxidation method to form a silicon dioxide film 18 with a thickness of about 800 Å, and a silicon nitride film 19 is further formed with a thickness of about 800 Å. Silicon dioxide film 18 and silicon nitride 81
%19 is a cap layer for the purpose of preventing reflection of irradiated light and stabilizing the polysilicon layer after melting, and although neither of these is necessarily necessary, it is desirable to provide them.

次いで第5図に示すように基板とを連続波アルゴン(0
WAr )レーザビームLにより走査し、キャップ層(
反射防止膜)18.19を通してエネルギー線吸収層の
ポリシリコン層17を加熱し、更に分離層である窒化シ
リコン膜16及び二酸化シリコン膜15を介して該ポリ
シリコン層17からの伝導加熱(,8印)によりシード
部から横方向へポリシリコンN14を順次加熱融解し、
再結晶させて単結晶化する。
The substrate is then exposed to continuous wave argon (0
WAr) scanned by laser beam L, and the cap layer (
The polysilicon layer 17, which is an energy ray absorption layer, is heated through the anti-reflection film 18 and 19, and conductive heating from the polysilicon layer 17 is conducted through the silicon nitride film 16 and silicon dioxide film 15, which are separation layers. ), heat and melt the polysilicon N14 in the lateral direction from the seed part,
Recrystallize to form a single crystal.

尚と記CWArレーザビームの照射条件はたとえばビー
ム径=80μm、レーザ・パワー:8〜6W。
The irradiation conditions for the CWAr laser beam are, for example, beam diameter = 80 μm, laser power: 8 to 6 W.

走査スピード10〜20n/secである。The scanning speed is 10 to 20 n/sec.

この場合ポリシリコン層14は分離Mを介して上部及び
周辺側部より伝導熱によって加熱されるので昇温、降温
の温度勾配がゆるやかになり、かつ周辺側面が伝導′熱
によって加熱されるため第6図に示したように周辺−か
ら中心部に向かう温度勾配が形成されることになる。尚
第6図(a)はポリシリコン層14及びシード部18の
要部平面図であり、第6図tb>は第6図fa)におけ
るA−A’面における温度分布(C線)t−示す図であ
りM線はポリシリコン層の融解、く温度を示す。
In this case, the polysilicon layer 14 is heated by conduction heat from the upper part and the peripheral side through the separation M, so the temperature gradient of temperature rise and temperature becomes gentle, and the peripheral side is heated by conduction' heat, so that the temperature gradient becomes gentler. As shown in Figure 6, a temperature gradient is formed from the periphery to the center. FIG. 6(a) is a plan view of the main parts of the polysilicon layer 14 and the seed part 18, and FIG. 6tb> is the temperature distribution (C line) t- on the A-A' plane in FIG. In the figure, the M line indicates the melting temperature of the polysilicon layer.

以とのことからグレイン状陥の少ない良質な単結晶が形
成でき、かつはがれ現象のない単結晶層の形成が可能と
なる。
From the above, a high-quality single crystal with few grain-like defects can be formed, and a single crystal layer without peeling phenomenon can be formed.

又本発明の池の実施例として第7図を用いて説明する。Further, an embodiment of the pond of the present invention will be explained using FIG. 7.

同図においてシリコン基板21上に選択的に形成された
二酸化シリコンよりなる絶縁膜22を形成し、該絶縁膜
22を含む基板21全簡に以下前述したと同様に厚さ約
4000人程度のポリシリコン層よりなる非単結晶半導
体層23を被着し、該ポリシリコン層28..l:に分
離層として二酸化シリコン模24と窒化シリコン膜25
を形成し、該分離層とにエネルギー線吸収層としてポリ
シリコン層26を被着し、該ポリシリコン層26J:に
二酸化シリコン膜27及び窒化シリコン膜28をキャッ
プ層として形成する。
In the same figure, an insulating film 22 made of silicon dioxide is selectively formed on a silicon substrate 21, and the entire substrate 21 including the insulating film 22 is coated with a polyester film having a thickness of about 4000 mm as described above. A non-monocrystalline semiconductor layer 23 consisting of a silicon layer is deposited, and the polysilicon layer 28. .. l: A silicon dioxide pattern 24 and a silicon nitride film 25 are used as separation layers.
A polysilicon layer 26 is formed on the separation layer as an energy ray absorbing layer, and a silicon dioxide film 27 and a silicon nitride film 28 are formed on the polysilicon layer 26J as a cap layer.

かかるように構成された基Uを連続波アルゴン(、’C
WAr )レーザビームによりキャップ層27゜28を
通してエネルギー線吸収層のポリシリコン層26を加熱
し、更に分離層を介して該ポリシリコン層26からの伝
導加熱(8)によ斃基板一部C)V−ド部から横方向へ
ポリ゛シリコン層2Bを順次加熱融解し、再結晶させて
単結晶化する場合には基板21上と絶縁膜22J:のポ
リシリコン層の融解温度差が軽減されてはがれ現象を防
止するこ゛ 以下−実施例及び池の実施例においても図
示しないがキャップ層、エネルギー線吸収層1公離層を
夫々に適した処理液又は処理ガスによって除去し、ラテ
ラルエピタキシャル成長によって形成された単結晶層に
通常のプロセス技術を用いて半導体素子の形成がなされ
、配線形成0表面保護絶縁膜の形成等がなされてSO工
構造の半導体装置が提供される。
The group U thus constructed is treated with continuous wave argon (, 'C
WAr) The polysilicon layer 26 of the energy ray absorption layer is heated by a laser beam through the cap layer 27 and 28, and then a part of the substrate is heated by conductive heating (8) from the polysilicon layer 26 through the separation layer C) When the polysilicon layer 2B is successively heated and melted laterally from the V-domain and recrystallized to form a single crystal, the difference in melting temperature between the polysilicon layer on the substrate 21 and that on the insulating film 22J is reduced. In order to prevent the peeling phenomenon, the cap layer and the energy ray absorbing layer 1 release layer are removed using appropriate processing liquids or processing gases, respectively, and are formed by lateral epitaxial growth. A semiconductor element is formed on the single-crystal layer using a normal process technique, wiring is formed, a surface protection insulating film is formed, etc., and a semiconductor device having an SO structure is provided.

(2)発明の効果 以上説明したように本発明によれば、ラテラlレエビタ
キシャル成長法による絶縁膜上の非単結晶半導体層を加
熱融解し単結晶化するに際して、加熱冷却の温度勾配及
び単結晶化傾城面内の温度分布を制御することができ、
従って絶tm@’hにダレイン状の欠陥の少ない、かつ
はがれ現象のない良質の単結晶層を形成することが可能
となりSO工構造の半導体装置の歩留まりが向とする。
(2) Effects of the Invention As explained above, according to the present invention, when heating and melting a non-single-crystal semiconductor layer on an insulating film to single-crystallize it by the lateral L-layer epitaxial growth method, the heating and cooling temperature gradient and Temperature distribution within the single crystallization slope surface can be controlled,
Therefore, it is possible to form a high-quality single crystal layer with few dalein-like defects and no peeling phenomenon, thereby improving the yield of semiconductor devices having an SO-processed structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のラテラルエピタキシャル成長法第2図乃
至第5図は本発明の一実施例の工程順要部断面口、第6
図(a)は要部平面図、第6図(1))は第6図(a)
のA−A’面における温度分布を示す図、第7図は本発
明の池の実施例の工程要部断面図である。 図において、11.21はシリコン基板、12゜22は
絶縁膜、18はシード部、14.28は非f□□′単結
晶半導体層、15.24は分N1fIとしての二酸化シ
リコン膜、16.25は同じく分離層としての窒化シリ
コン膜、17.26はエネルギー線吸収層、18.27
はキャップ層としての二酸化シリコン膜、19.28は
同じくキャップ層としての窒化シリコン膜を示す。 第1図 j 第2図 第3図 第5図 第6図
FIG. 1 shows a conventional lateral epitaxial growth method. FIGS.
Figure (a) is a plan view of the main part, Figure 6 (1)) is Figure 6 (a)
FIG. 7 is a cross-sectional view of the main steps of the embodiment of the pond of the present invention. In the figure, 11.21 is a silicon substrate, 12.22 is an insulating film, 18 is a seed part, 14.28 is a non-f□□' single crystal semiconductor layer, 15.24 is a silicon dioxide film as N1fI, 16. 25 is also a silicon nitride film as a separation layer, 17.26 is an energy ray absorption layer, 18.27
19.28 shows a silicon dioxide film as a cap layer, and 19.28 shows a silicon nitride film also as a cap layer. Figure 1j Figure 2 Figure 3 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 部分的に単結晶シードに接した非単結晶半導体層が絶縁
膜上に設けられ、該非単結晶is体層が分離層を介して
設けられたエネルギー線吸収層によって被覆された試料
の該エネルギー線吸収層にエネルギー線を照射して加熱
し、これを熱源としたと一部・フローにより、該非単結
晶半導体層を溶融し、前記単結晶シードから横方向にエ
ピタキシャル成長させることにより、該非単結晶半導体
層を単結晶化する工程が含まれてなることを特徴とする
半導体装置の製造方法。
A non-single-crystal semiconductor layer partially in contact with a single-crystal seed is provided on an insulating film, and the non-single-crystal IS body layer is covered with an energy-ray absorbing layer provided via a separation layer. When the absorption layer is heated by irradiating energy rays and used as a heat source, the non-single-crystal semiconductor layer is partially melted by flow, and the non-single-crystal semiconductor layer is epitaxially grown laterally from the single-crystal seed. A method for manufacturing a semiconductor device, comprising the step of monocrystallizing a layer.
JP58235873A 1983-12-13 1983-12-13 Manufacture of semiconductor device Pending JPS60126815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58235873A JPS60126815A (en) 1983-12-13 1983-12-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58235873A JPS60126815A (en) 1983-12-13 1983-12-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60126815A true JPS60126815A (en) 1985-07-06

Family

ID=16992507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58235873A Pending JPS60126815A (en) 1983-12-13 1983-12-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60126815A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301994B1 (en) 1998-07-30 2001-10-16 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Shift lever apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301994B1 (en) 1998-07-30 2001-10-16 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Shift lever apparatus

Similar Documents

Publication Publication Date Title
EP0127323B1 (en) A process for producing a single crystal semiconductor island on an insulator
JPS60126815A (en) Manufacture of semiconductor device
JPH0282519A (en) Solid phase epitaxy method
JPS5939791A (en) Production of single crystal
JPS58184720A (en) Manufacture of semiconductor film
JP2699325B2 (en) Method for manufacturing semiconductor device
JP2643204B2 (en) Method of forming single crystal thin film
JPS5983993A (en) Growth of semiconductor layer of single crystal
JP2993107B2 (en) Semiconductor thin film manufacturing method
JPS59158515A (en) Manufacture of semiconductor device
JPH03286519A (en) Manufacture of semiconductor device
JPS61108121A (en) Manufacture of semiconductor device
JPH03292717A (en) Manufacture of crystalline semiconductor thin film
JPS5978999A (en) Manufacture of semiconductor single crystal film
JP2526380B2 (en) Method for manufacturing multilayer semiconductor substrate
JPS5919312A (en) Manufacture of semiconductor device
JPS5919311A (en) Manufacture of semiconductor device
JPH03250620A (en) Manufacture of semiconductor device
JPH01239093A (en) Method for crystal growth
JPS6156409A (en) Manufacture of semiconductor device
JPS5961117A (en) Manufacture of semiconductor device
JPS5837916A (en) Manufacture of semiconductor device
JPH0410214B2 (en)
JPH01161711A (en) Manufacture of semiconductor device
JPS60191090A (en) Manufacture of semiconductor device