JPS60117773A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60117773A
JPS60117773A JP58225815A JP22581583A JPS60117773A JP S60117773 A JPS60117773 A JP S60117773A JP 58225815 A JP58225815 A JP 58225815A JP 22581583 A JP22581583 A JP 22581583A JP S60117773 A JPS60117773 A JP S60117773A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
insulating film
silicon
region
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58225815A
Other languages
Japanese (ja)
Inventor
Hidetaro Watanabe
渡辺 秀太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58225815A priority Critical patent/JPS60117773A/en
Publication of JPS60117773A publication Critical patent/JPS60117773A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Element Separation (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To make it possible to manufacture a semiconductor device characterized by a high speed and high degree of integration readily, by laminating insulating films and polycrystalline silicon on a substrate, opening a hole after the lamination, selectively performing epitaxial growth, and forming a transistor region in the epitaxial region. CONSTITUTION:An N type embedded layer 302 is formed in a P type silicon substrate 301. An insulating film 303 and a polycrystalling silicon film 304 are formed. P type impurities are introduced in the polycrystalline silicon 304 by ion implantation and the like. A part of the polycrystal silicon 304 is converted into an insulating film 305. Thereafter, an insulating film 306 is formed by thermal oxidation and the like. An opening part 307 is provided by anisotropic dry etching. Thereafter, pressure reduced epitaxial growing including a hydrogen chloride gas is carried out. An epitaxial layer 308 is selectively grown on the opening part 307 to the approximate height of the insulating film 306. Then, an insulating film 309 is formed on the surface by a CVD method and the like. The unnecessary part is masked, boron ions are implanted, and an active base region 312 for a transistor is formed. A nitride film 310 for passivation is grown. Finally, electrode extracting windows are formed, and electrodes 314 are formed.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は半導体装置の製造方法に関する。[Detailed description of the invention] (Technical field of invention) The present invention relates to a method for manufacturing a semiconductor device.

(従来技術) 最近の半導体装置は、そのデバイスを使用するシステム
が低消費霜−力を要求する為と部品数をへらす為に、高
速比及び大集積化が進んでいる。この要望?I−満たす
為の一手段として、集積注入論理回路(Integra
ted Injection hogic=以下、ニー
と略記する)が実用化されている。こ゛れは、I2Lが
高密度に集積でき、低消費電力であるという利点を有し
、さらに製造が簡単であるという利点を有しているから
であシ、バイポーラトランジスタや抵抗体と組み合せて
なる複合的なデバイスとして一つの分野を形成している
(Prior Art) Recent semiconductor devices are becoming increasingly high-speed and highly integrated because systems using the devices require low frost power consumption and reduce the number of components. This request? As a means to meet I-I, integrated injection logic circuits (Integra
ted Injection hogic (hereinafter abbreviated as knee) has been put into practical use. This is because I2L has the advantages of high density integration, low power consumption, and is easy to manufacture, and can be combined with bipolar transistors and resistors. It is forming a field as a complex device.

第1図に従来構造の一例の断面図を示す、101はP型
基板、102はNfJ1埋込層、103はN型エピタキ
シャル層、104はP型絶縁層、105はインジェクタ
のエミッタおよびコレクタであシ。
FIG. 1 shows a cross-sectional view of an example of a conventional structure. 101 is a P-type substrate, 102 is an NfJ1 buried layer, 103 is an N-type epitaxial layer, 104 is a P-type insulating layer, and 105 is an injector emitter and collector. Sh.

さらにNPN)ランジスタのベース領域、106−1は
インジェクタのベース%106−2ハNPNトランジス
タのコレクタ、106−3はN)’N)ランジスタのエ
ミッタでアシ、そして107は電極をそれぞれ示す、か
かる従来の構造では、 NPNトランジスタはコレクタ
106−2.ベース105゜エミッタ106−3の順に
各領域の面積が小さくなる・しかし、エミッタ106−
3とコレクタ106−2を逆にして使うI2L では、
エミッタ106−3の面積がベース1050面積より大
きいと。
In addition, 106-1 is the base region of the NPN transistor, 106-1 is the base of the injector, 106-2 is the collector of the NPN transistor, 106-3 is the emitter of the NPN transistor, and 107 is the electrode, respectively. In the structure of the NPN transistor, the collector 106-2. The area of each region becomes smaller in the order of base 105° emitter 106-3. However, emitter 106-
In I2L using 3 and collector 106-2 in reverse,
If the area of emitter 106-3 is larger than the area of base 1050.

ペース105からエミ、り106−3へ注入される正孔
の数が増加する。この結果、畜積キャリアを放電する為
の時間が増加しさらに電流増巾率が下がる為に、トラン
ジスタの速度が遅くなるという欠点がある。
The number of holes injected from the paste 105 to the emitter 106-3 increases. As a result, the time required to discharge the accumulated carriers increases and the current amplification rate decreases, resulting in a disadvantage that the speed of the transistor decreases.

かかる構造上の欠点を改筈する為に提案されている輩y
′従来例を第2図(a)〜(d)に示す、すなわち、P
型半導体基似201にN+の埋込層202を設け、N型
エピタキシャル層203を成長式せた後に、熱酸化シリ
コン換204.チッ化シリコン)114205. シリ
コン酸化膜206を成長させ。
The methods proposed to correct such structural defects
'Conventional examples are shown in FIGS. 2(a) to (d), that is, P
After providing an N+ buried layer 202 in the semiconductor substrate 201 and growing an N-type epitaxial layer 203, thermal oxidation silicon conversion 204. silicon nitride) 114205. A silicon oxide film 206 is grown.

分離領域207を異方性ドライエ、チング(以下、RI
Eと略記する)で削シ取る(第2図(a) )。
The separation region 207 is formed by anisotropic dry etching (hereinafter referred to as RI).
(abbreviated as E) (Fig. 2(a)).

次に、全面に薄い熱酸化シリコン族208およびチッ化
シリコン腺を形成し、HIEによシ側面にのみチッ化膜
209を残して長時間の熱処理によシ厚い酸化膜210
を形成する(第2図fb))−エミ、り引き出し以外の
側面の酸化膜208とチッ化膜209を除去して多結晶
シリコン211を全面に成長させ、さらにフォトレジス
ト212を塗布し、O冨プラズマエツチングによシ多結
晶シリコン211を産出させて平担する(第2図(C)
)。
Next, a thin thermally oxidized silicon group 208 and a silicon nitride gland are formed on the entire surface, and a thick oxide film 210 is formed by a long-time heat treatment, leaving a nitride film 209 only on the side surface by HIE.
(FIG. 2fb)) - Remove the oxide film 208 and nitride film 209 on the sides other than the emitter and lead-out, grow polycrystalline silicon 211 on the entire surface, and then apply photoresist 212, and Polycrystalline silicon 211 is produced by rich plasma etching and flattened (Fig. 2(C)).
).

その後、レジスト212で覆われていない部分り多結晶
シリコンを(CF’4 +f12 )ガスで工、チング
し、ボロンをイオン注入して多結晶シリコンの引き出し
電極215.P酸活性ベース領域214およびP型領域
215を形成し、選択酸化により不要の多結晶シリコン
を酸化膜に変え、さらに表面に酸化膜219を形成し、
チッ化腺213會パッシベーション用に付けた後、コレ
クタ領域およびエミッタ領域を開口して薄い多結晶シリ
コン217を付け、ヒ素のイオン注入を行って面談UN
型領域220を形成し、最後にベースコンタクト孔の門
口と金属電極218の形成を行う(第2図(d) )。
Thereafter, the portion of the polycrystalline silicon that is not covered with the resist 212 is etched with (CF'4 +f12) gas, boron ions are implanted, and the polycrystalline silicon extraction electrode 215. A P acid active base region 214 and a P type region 215 are formed, unnecessary polycrystalline silicon is changed into an oxide film by selective oxidation, and an oxide film 219 is further formed on the surface.
After attaching the nitride gland 213 for passivation, the collector region and emitter region are opened, a thin polycrystalline silicon layer 217 is attached, and arsenic ions are implanted.
A mold region 220 is formed, and finally the gate of the base contact hole and the metal electrode 218 are formed (FIG. 2(d)).

かかる従来例は、4#造的には、I2L のエミ。Such a conventional example is an I2L emitter in terms of 4# construction.

りとコレクタがほぼ同一面積であって電流増巾率が大き
く取れ、かつエミ、り面積が小さい為にペース214か
らエミ、りへの逆注入がへる事と。
Since the area of the emitter and the collector are almost the same, a large current amplification rate can be obtained, and since the area of the emitter and the collector is small, back injection from the pace 214 to the emitter and the emitter is reduced.

ペースの引き出し電極215が酸化膜で囲まれている為
、活性ベース以外の不要な接合容量が少くなシ高速動作
には優れている。
Since the extraction electrode 215 of the paste is surrounded by an oxide film, there is less unnecessary junction capacitance other than the active base, which is excellent for high-speed operation.

しかし、その製造方法としては、次の様ないくつかの欠
点がある。
However, this manufacturing method has several drawbacks as follows.

(1)g2図(a)に示すように、トランジスタの活性
領域を残して、単結晶をドライエッチする為に側面にダ
メージが残9やすい。
(1) As shown in Figure 2 (a), since the single crystal is dry-etched leaving the active region of the transistor intact, damage tends to remain on the side surfaces.

(2)第2図(b)のように、分離領域を選択酸化によ
シ形成する為結晶歪による欠陥を発生させやすい。
(2) As shown in FIG. 2(b), since the isolation region is formed by selective oxidation, defects due to crystal distortion are likely to occur.

(3)第2図(C)のように凹凸面に多結晶シリコン2
11を成長させる為、選択的に多結晶シリコンを残した
シ除去したシして1表面を平担にする手が非常にむずか
しい0%に、第2図では、レジスト212を塗布して凹
部にレジスト212を残し、ドライエッチによシ凸部の
多結晶シリコンを除去する方法と示したが、これとて凸
凹がせまい間隔で並んでいれは可能だが、広い凹部があ
ると塗布した時にこの部分のレジストは薄くなりmu*
プラズマ処理に持たないという欠点がある。このため、
多結晶シリコン211の一部をペース電極引き出し以外
の目的で使用した′い場合(例えば抵抗体)に無理を生
ずる・(4)@2図(a)乃至(d)に示されるように
、エピタキシャル成長後にRIBによシ単結晶シリコン
203をst+ r、その後に単結晶シリコンの選択酸
化と多結晶シリコン211の選択酸化を行うが、選択酸
化は高温で長時間処理となる為に、埋込層202のエピ
タキシャル、rm203への上方拡散が大きくなってベ
ース領域214,216との余裕が大きく取れず、この
結果、NPN)ランジスタの耐圧が不足する。
(3) As shown in Figure 2 (C), polycrystalline silicon 2 is placed on the uneven surface.
In order to grow 11, the remaining polycrystalline silicon was selectively removed to 0%, which is very difficult to flatten the surface. The method described above leaves the resist 212 and removes the polycrystalline silicon on the convex parts by dry etching, but this is possible if the concavities and convexities are lined up at narrow intervals, but if there are wide concave areas, it will be difficult to coat the area. The resist becomes thinner and mu*
The drawback is that it does not hold up to plasma treatment. For this reason,
If you want to use a part of the polycrystalline silicon 211 for a purpose other than drawing out a pace electrode (for example, as a resistor), it will be difficult. (4) @2 As shown in Figures (a) to (d), epitaxial growth Later, the monocrystalline silicon 203 is subjected to ST+R using RIB, and then selective oxidation of the monocrystalline silicon and selective oxidation of the polycrystalline silicon 211 are performed. The upward diffusion into the epitaxial and rm203 becomes large, making it difficult to maintain a large margin with respect to the base regions 214 and 216, resulting in insufficient breakdown voltage of the NPN transistor.

(5)前述したように、工程があまシにも複雑な為。(5) As mentioned above, the process is extremely complex.

高い歩留?維持する事がむずかしい。High yield? Difficult to maintain.

(発明の目的) 本発明の目的は、高速で集積度の高い半導体装置をよシ
答易に作る製造方法を提供することにある。
(Objective of the Invention) An object of the present invention is to provide a manufacturing method for easily manufacturing a high-speed, highly integrated semiconductor device.

(発明の構成) かかる目的を達成する為に、不発明では、基板上に絶縁
膜と多結晶7リコンを積んだ後でRIEによシ開口し、
塩化水素ガス雰囲気中で選択的にエピタキシャル成長を
行い1選択エピタキシャル領域中にトランジスタ領域を
形成する事を特徴とする。
(Structure of the Invention) In order to achieve the above object, in the present invention, after stacking an insulating film and polycrystalline silicon on a substrate, opening is performed by RIE,
The method is characterized in that epitaxial growth is selectively performed in a hydrogen chloride gas atmosphere to form a transistor region in one selective epitaxial region.

(実施例) 以下図面を用いて不発明の詳細な説明する。(Example) The invention will be described in detail below with reference to the drawings.

第3図に不発明の一実施例を示す、2Mシリコン基板3
01に層抵抗10〜30Ω/口程度のN型埋込層302
を形成し←第3図(a) ) 、絶縁膜303を500
0〜1ooooλ、多結晶シリコン304を約5000
λそれぞれ形成し、熱拡散又はイオン注入によシP型不
純物を多結晶シリコン304に導入する(第3図(b)
 )、選択酸化法によシ、多結晶シリコン304を部分
的に絶縁膜305に変換せしめた後、熱酸化又はCVD
法によシ絶縁膜306(1 をさら嵯付ける(第3図(C) )。
FIG. 3 shows an embodiment of the invention, a 2M silicon substrate 3.
01 has an N-type buried layer 302 with a layer resistance of about 10 to 30 Ω/hole.
←Fig. 3(a)), and an insulating film 303 of 500
0~1ooooλ, polycrystalline silicon 304 about 5000
λ, and introduce P-type impurities into the polycrystalline silicon 304 by thermal diffusion or ion implantation (FIG. 3(b)).
), after partially converting the polycrystalline silicon 304 into an insulating film 305 by selective oxidation, thermal oxidation or CVD
An insulating film 306 (1) is further deposited by a method (FIG. 3(C)).

異方性ドライエ、チングによシ、所定の位置に開口を施
して開口部307を設ける(第3図(dl )。
Using an anisotropic dryer and coating, an opening is formed at a predetermined position to form an opening 307 (FIG. 3(dl)).

この場合、多結晶シリコン304と絶縁膜3o3゜30
5.306との工、チングレイトが同じである条件を選
んでドライエ、チしてやると、一度で主、チングが終了
するので具合が良い。
In this case, polycrystalline silicon 304 and insulating film 3o3°30
If you select a condition where the working and ching rate are the same as 5.306 and do the drying and ching, it will be convenient because the main and ching will be completed in one go.

その後、塩化水素ガスを含む減圧エピタキシャル成長を
行い、開口部307に約1【λ−cmの比抵抗のエピタ
キシャル層308を絶縁[306の高さ程度に選択的に
成長する。エピタキシャル成長前に多結晶シリコンを付
けRlEにょ)開口部307の側面に多結晶シリコンを
残してエピタキシャル成長にも良い、こうする事によシ
、エピタキシャル成長した時に表面の平担化は一層優れ
たものになシ、かつP型不純物をドープさせた多結晶シ
リコン304からのエピタキシャル成長時のオートドー
ピングも軽減される。
Thereafter, low-pressure epitaxial growth using hydrogen chloride gas is performed to selectively grow an epitaxial layer 308 having a resistivity of about 1 [λ-cm in the opening 307 to a height of approximately the height of the insulation [306]. It is also good for epitaxial growth by adding polycrystalline silicon before epitaxial growth and leaving polycrystalline silicon on the side surfaces of the opening 307. By doing this, the surface becomes even better when epitaxially grown. Furthermore, autodoping during epitaxial growth from polycrystalline silicon 304 doped with P-type impurities is also reduced.

次に表面を熱酸化又はCVLJ法によシ絶縁膜309を
付け、不安な部分をマスクして、イオン注入法によシボ
ロンを例えは5QKevで101014ato/cm2
 程度打ち込み、トランジスタの活性ベース領域312
を形成し、そしてバッシベーVヨン用のチッ化IJ43
xoを成長させる。7!!択エビタキ7ヤル成長以後の
熱処理によシ、電極引き出し用多結晶シリコン304か
らエピタキシャル領域308への側面方向への拡散が生
じ、この結果、イオン注入によシ形成した活性ベース領
域312と接続された電極引き出し領域304が形成さ
れ、活性ベース領域312はこれを通して外部へ電極引
き出しが可能となる(第3図(e) )。
Next, an insulating film 309 is attached to the surface by thermal oxidation or CVLJ method, and unstable parts are masked.
level implant, the active base region 312 of the transistor
and nitride IJ43 for Bassibayon.
Grow xo. 7! ! Due to the heat treatment after selective epitaxial growth, lateral diffusion occurs from the polycrystalline silicon 304 for electrode extraction to the epitaxial region 308, and as a result, it is connected to the active base region 312 formed by ion implantation. An electrode lead-out region 304 is formed, through which electrodes can be drawn out from the active base region 312 (FIG. 3(e)).

次いで、不安の部分をマスクして、絶縁膜309゜31
0をエツチングし、N型にドープされた多結晶シリコン
313を付けるか、又はドープされていない多結晶シリ
コン313を成長した後、イオン注入法でヒ素を注入し
熱処理にトランジスタのエミッタ、コレクタ領域315
を形成し、ドライエ、チ又はウェットエッチによシネ要
な部分の多結晶シリコンを除去し必要な部分313を残
す。
Next, the insulating film 309°31 is formed by masking the anxious part.
After etching 0 and attaching N-type doped polycrystalline silicon 313 or growing undoped polycrystalline silicon 313, arsenic is implanted by ion implantation and heat treatment is performed to form the transistor emitter and collector regions 315.
The polycrystalline silicon in the necessary portions of the film is removed by dry etching, etching or wet etching, leaving the necessary portions 313.

最後に電極引き出し用の窓を開はアルミニウム電極31
4を形成する(第3図(f) )。
Finally, open the window for electrode extraction and open the aluminum electrode 31.
4 (Fig. 3(f)).

以上に述べた製造方法によシ、第1図で示した従来例で
指摘したスピードが遅いという欠点は。
The manufacturing method described above does not have the drawback of slow speed, which was pointed out in the conventional example shown in FIG.

トランジスタの活性領域以外が酸化膜303,305゜
306で囲まれる為に寄性答童が減少し、かつ、エミッ
タとコレクタの面積がほぼ等しい為にペースからエミッ
タへの逆注入かへシ、電流増巾率も大きく取れるので高
速化が達成される。
Since the area other than the active region of the transistor is surrounded by oxide films 303, 305, and 306, the number of parasitic electrons is reduced, and since the areas of the emitter and collector are almost equal, reverse injection from the paste to the emitter reduces current. Since the amplification rate can also be increased, high speed can be achieved.

しかも、第2図の他の従来例で示した製法上の欠点も、
選択エピタキシャル成長法を使用する事によシ、まず表
面の平担化が容易に出来る事、多結晶シリコン304の
選択酸化はエピタキシャル成長前に行っている墨、多結
晶シリコン304の下の絶縁膜303もエピタキシャル
成長前に行っている墨の為に、埋込層302のエピタキ
シャル層308への上方拡散が選択酸化とは無関係とな
シ耐圧劣化に対し充分なマージンが取れる。さらに単結
晶シリコン308をRIE又は選択酸化する事が無いの
で、結晶性が良くなシ、さらにまた製造工程が簡単なの
で、従来方法に比較して高い歩留が得られる。
Moreover, the drawbacks in the manufacturing method shown in the other conventional example in FIG.
By using the selective epitaxial growth method, first, the surface can be easily flattened, and the selective oxidation of the polycrystalline silicon 304 is performed before epitaxial growth. Because the ink is applied before epitaxial growth, there is a sufficient margin against breakdown voltage deterioration that is unrelated to selective oxidation due to upward diffusion of the buried layer 302 into the epitaxial layer 308. Furthermore, since the single crystal silicon 308 is not subjected to RIE or selective oxidation, the crystallinity is good, and the manufacturing process is simple, so a higher yield can be obtained compared to conventional methods.

第4図を参照して不発明の他の実施例について説明する
Another embodiment of the invention will be described with reference to FIG.

まず、第3図でボしたように、N型埋込領域402が形
成されたP型基板上に酸化膜403および多結晶シリコ
ン404を成長した後(第4図(a)、 (b)XP型
の不純物を多結晶シリコン404に熱拡欣又はイオン注
入によシ導入する。この段、薄い酸化膜405’ffi
付けた後、RIEによシ必要な部分に開口部406を設
け(第4図(C) ) 、塩化水素ガスを含む減圧エピ
タキシャル成長によシ選択的にエピタキシャル層407
を形成し、さらに1表面に薄い酸化膜408.チッ化膜
409を付け、多結晶シリコン4u4e#化映に変換し
たい部分のチ、化膜409とぽ化膜408をエツチング
して除去する(第4図(d) )。
First, as shown in FIG. 3, after growing an oxide film 403 and polycrystalline silicon 404 on a P-type substrate on which an N-type buried region 402 is formed (FIGS. 4(a) and 4(b)) type impurities are introduced into the polycrystalline silicon 404 by thermal expansion or ion implantation.At this stage, a thin oxide film 405'ffi is introduced.
After the deposition, openings 406 are formed in necessary portions by RIE (FIG. 4(C)), and an epitaxial layer 407 is selectively grown by low pressure epitaxial growth containing hydrogen chloride gas.
A thin oxide film 408. is formed on one surface. A nitride film 409 is applied, and the nitride film 409 and the nitride film 408 in the portion desired to be converted to polycrystalline silicon 4U4E# film are removed by etching (FIG. 4(d)).

その後、高温(900−1000℃)で常圧又は加圧に
よる熱酸化によシ多結晶シリコンを酸化g 410に選
択的に変換せしめる(第4図tel )、この後。
Thereafter, the polycrystalline silicon is selectively converted into oxidized G410 by thermal oxidation at high temperature (900-1000° C.) under normal pressure or pressure (FIG. 4, tel).

第3図(e)、 (f)に従って素子領域および電極の
形成を行なう。
Element regions and electrodes are formed according to FIGS. 3(e) and 3(f).

かかる、第2の実施例によれば、多結晶シリコン404
と絶縁膜403,405をI(IEで開口する時に、工
、チングレートの差があっても同じ深さにエツチングで
きるという利点がある。又、RIEによ多開口した後に
再度多結晶シリコンを付けRIEにより開口部側面にの
み多結晶シリコンを残して選択エピタキシャル成長して
も良い事は@lの実施例と同様である。
According to this second embodiment, polycrystalline silicon 404
When opening the insulating films 403 and 405 using IE, there is an advantage that they can be etched to the same depth even if there is a difference in etching rate.Also, after making multiple openings using RIE, polycrystalline silicon is etched again. As in the example of @l, selective epitaxial growth may be performed by leaving polycrystalline silicon only on the side surfaces of the opening by RIE.

なお、第1.第2の実施例共にP型、N型の不純物を逆
転しても良い事は勿論である。また、本発明をI2Lで
示したが、これに駆足されることはない。
In addition, 1. Of course, in the second embodiment, the P-type and N-type impurities may be reversed. Additionally, although the invention has been illustrated as I2L, it is not limited thereto.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す半導体装置の構造断面図である。 101・・・・・・P型基板、102・・・・・・N+
埋込層。 103・・・・・・Nmエピタキシャル層、104・・
・・・・P型分離層、105・・・・・・P型V)NP
N)ランジスタペース及びインジェクタのエミッタ、コ
レクタ、106・・・・・・NPN)ランジスタのエミ
ッタ及びコレクタ、107・・・・・電極、108・・
・・・・絶縁膜、第2図(a)〜fdlは他の従来例を
示す製造工程断面図である。 201・・・・・・P型基板、202・・・・・・N 
型埋入層、203、・・・・Nfiエピタキシャル層、
204・・・・・・絶縁酸化膜、205・・・・・・絶
縁チツ化膜、206・・・・・・絶縁酸化族、207・
・・・・・開口部、20B・・・・・・絶縁酸化族、2
09・・・・・・絶縁チツ化膜、210・・・・・・絶
縁酸化膜、211・・・・・・多結晶シリコン、212
・・・・・7オトレジス)、213・・・・・・ノくツ
シベーシ、ン用絶縁チッ化膜、214・・・・・・P型
NPN)ランジスタ活性ペース領域、215・・・・・
・ボロンドープ多結晶シリコン、216・・・・・・P
型領域、217・・・・・・ヒ索ドープ多結晶7リコン
、218・・・・・・アルミニウム電極、219・・・
・・・絶縁酸化族、第3図(a)〜(f)は本発明の第
1の実施例を示す工程断面図である。 301・・・・・・P型基板、302・・・・・・N+
型埋込層。 303・・・・・・絶縁酸化族、304・・・・・・多
結晶シリコン、305・・・・・・絶縁酸化族、306
・・・・・・絶縁酸化1ll(,307・・・・・・開
口部、308・・・・・・選択エピタキシャル層、30
9・・・・・・絶縁酸イヒ膜、310・・・・・・絶縁
チッ化課、311・・・・・・P型側面拡散層、312
・・・・・・PfiNPN)ランジスタ活性ベース領域
。 ′313・・・・・・ヒ累ドープ多結晶シ1ノコン% 
314・・・・・・アルミ電極% 315・・・・・・
N+型NPNトランジスタエミッタ及びコレクタ領域。 第4図(a)〜(e)は本発明の第2の実施例を示す工
程断面図である・ 401・・・・・・P型基板、402・・・・・・N+
型埋込層。 403・・・・・・絶縁酸化族、404・・・・・・多
結晶シリコン、405・・・・・・絶縁酸化膜、406
・・・・・・開口m%407・・・・・・選択エピタキ
シャル層、408・・・・・・絶縁酸化膜、409・・
・・・・絶縁チツ化膜、410・・・・・・絶縁酸化族
・ 第1 旧 」rし2て凹(b) め3制(f)
FIG. 1 is a structural sectional view of a conventional semiconductor device. 101...P type substrate, 102...N+
Embedded layer. 103...Nm epitaxial layer, 104...
...P type separation layer, 105...P type V) NP
N) Emitter and collector of transistor space and injector, 106... NPN) Emitter and collector of transistor, 107... Electrode, 108...
. . . Insulating film. FIGS. 2A to 2F are cross-sectional views of the manufacturing process showing another conventional example. 201...P-type substrate, 202...N
Mold buried layer, 203,...Nfi epitaxial layer,
204... Insulating oxide film, 205... Insulating silicon film, 206... Insulating oxide group, 207...
...Opening, 20B...Insulating oxide group, 2
09... Insulating silicon film, 210... Insulating oxide film, 211... Polycrystalline silicon, 212
213... Insulating nitride film for insulation base, 214... P-type NPN) transistor active space region, 215...
・Boron-doped polycrystalline silicon, 216...P
Mold region, 217...Hydraulic doped polycrystalline silicon, 218...Aluminum electrode, 219...
. . . Insulating oxidation group. FIGS. 3(a) to 3(f) are process cross-sectional views showing the first embodiment of the present invention. 301...P type substrate, 302...N+
mold embedding layer. 303...Insulating oxide group, 304...Polycrystalline silicon, 305...Insulating oxide group, 306
...Insulating oxidation 1ll (,307...Opening, 308...Selective epitaxial layer, 30
9...Insulating acid dielectric film, 310...Insulating nitriding section, 311...P-type side diffusion layer, 312
...PfiNPN) transistor active base region. '313...H-doped polycrystalline silicon %
314...Aluminum electrode% 315...
N+ type NPN transistor emitter and collector region. FIGS. 4(a) to 4(e) are process cross-sectional views showing the second embodiment of the present invention. 401...P-type substrate, 402...N+
mold embedding layer. 403... Insulating oxide group, 404... Polycrystalline silicon, 405... Insulating oxide film, 406
...Opening m%407...Selected epitaxial layer, 408...Insulating oxide film, 409...
...Insulating silicon film, 410...Insulating oxide group, 1.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の一主面上に絶縁膜を介して多結晶半導体層
を選択的に形成する工程と、前記半導体基板の一部を蕗
出させるような少なくとも一つの開口Sを設ける工程と
、前記開口部に単結晶半導体層を選択的に形成する工程
とを有し、前記単結晶半導体層内に素子領域を形成する
工程とを有することを特徴とする半導体装置の製造方法
a step of selectively forming a polycrystalline semiconductor layer on one main surface of a semiconductor substrate via an insulating film; a step of providing at least one opening S for protruding a part of the semiconductor substrate; 1. A method of manufacturing a semiconductor device, comprising: selectively forming a single crystal semiconductor layer in the single crystal semiconductor layer; and forming an element region within the single crystal semiconductor layer.
JP58225815A 1983-11-30 1983-11-30 Manufacture of semiconductor device Pending JPS60117773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58225815A JPS60117773A (en) 1983-11-30 1983-11-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58225815A JPS60117773A (en) 1983-11-30 1983-11-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60117773A true JPS60117773A (en) 1985-06-25

Family

ID=16835226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58225815A Pending JPS60117773A (en) 1983-11-30 1983-11-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60117773A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214166A (en) * 1988-02-23 1989-08-28 Mitsubishi Electric Corp Semiconductor integrated circuit device with bipolar transistor
JPH0246734A (en) * 1988-08-08 1990-02-16 Mitsubishi Electric Corp Semiconductor integrated circuit device having bipolar transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214166A (en) * 1988-02-23 1989-08-28 Mitsubishi Electric Corp Semiconductor integrated circuit device with bipolar transistor
JPH0246734A (en) * 1988-08-08 1990-02-16 Mitsubishi Electric Corp Semiconductor integrated circuit device having bipolar transistor

Similar Documents

Publication Publication Date Title
US4378630A (en) Process for fabricating a high performance PNP and NPN structure
EP0039411B1 (en) Process for fabricating an integrated pnp and npn transistor structure
JPH08306700A (en) Semiconductor device and its manufacture
JPS6148784B2 (en)
JP2629644B2 (en) Method for manufacturing semiconductor device
JPH05235017A (en) Semiconductor device
JPH0340938B2 (en)
JPS60117773A (en) Manufacture of semiconductor device
KR100580115B1 (en) Self-aligned bipolar semiconductor device and manufacturing method of the same
JPS59108325A (en) Manufacture of semiconductor device
JPH05283520A (en) Manufacture of semiconductor device
JPH0482180B2 (en)
JP2763105B2 (en) Method for manufacturing semiconductor device
JP3082800B2 (en) Semiconductor device and manufacturing method thereof
JP3361110B2 (en) Method for fabricating a CMOS structure
JPH07235547A (en) Manufacture of semiconductor integrated circuit
KR100275537B1 (en) Method for fabricating bipolar transistor using over-growth of collector epitaxial layer
JP2858510B2 (en) Method for manufacturing semiconductor device
JP2812282B2 (en) Method for manufacturing semiconductor device
JP3001340B2 (en) Manufacturing method of bipolar integrated circuit
KR930011542B1 (en) Manufacturing method of bipolar transistor
JP3209443B2 (en) Manufacturing method of bipolar transistor
KR910005393B1 (en) Structure and manufacturing method of complex semiconductor element
JP2892436B2 (en) Method for manufacturing semiconductor device
JPH11354530A (en) Bi-polar type semiconductor device and its manufacture