JPH05283520A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05283520A
JPH05283520A JP7496492A JP7496492A JPH05283520A JP H05283520 A JPH05283520 A JP H05283520A JP 7496492 A JP7496492 A JP 7496492A JP 7496492 A JP7496492 A JP 7496492A JP H05283520 A JPH05283520 A JP H05283520A
Authority
JP
Japan
Prior art keywords
type
oxide film
groove
silicon oxide
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7496492A
Other languages
Japanese (ja)
Inventor
Naoya Matsumoto
直哉 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7496492A priority Critical patent/JPH05283520A/en
Publication of JPH05283520A publication Critical patent/JPH05283520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To obtain a high speed bipolar LSI by preventing a channel stopper from expanding beyond the bottom face of a trench in trench isolation (isolation by filling trenches) and by reducing the parasitic capacitance. CONSTITUTION:An n-type buried layer 2a, n-type epitaxial layer 3, silicon oxide film 4 and silicon nitride film 5 are formed on a p-type silicon substrate 1 in this order. A trench is formed such that it reaches the p-type silicon substrate 1. A normal pressure CVD silicon oxide film 6 is formed, and then ion implantation is performed to form a p-type channel stopper 7. The normal pressure CVD silicon oxide film 6 and the silicon oxide film 4a on the surface are etched, and thermal oxidation is performed to form a silicon oxide film 4b. Polysilicon 8 is deposited, which is then flattened by etching back. Thermal oxidation is performed to form a silicon oxide film 9 on the surface, and the silicon nitride film 5 is removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特にトレンチアイソレーション(溝埋込分離)の
形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming trench isolation (groove filling isolation).

【0002】[0002]

【従来の技術】従来のトレンチアイソレーションについ
て、図3(a)および(b)を参照して説明する。
2. Description of the Related Art A conventional trench isolation will be described with reference to FIGS. 3 (a) and 3 (b).

【0003】はじめに図3(a)に示すように、P型シ
リコン基板1にN型埋込層2aを形成したのちN型エピ
タキシャル層3を成長する。つぎに酸化シリコン膜4、
窒化シリコン膜5、酸化シリコン膜4cを順次形成す
る。つぎにフォトレジスト(図示せず)をマスクとし
て、酸化シリコン膜4c、窒化シリコン膜5、酸化シリ
コン膜4をエッチングする。つぎにフォトレジストを除
去したのち、酸化シリコン膜4cをマスクとしてシリコ
ンをエッチングしてP型シリコン基板1に達する溝(ト
レンチ)を形成する。つぎに熱酸化により溝表面に酸化
シリコン膜4aを形成する。
First, as shown in FIG. 3 (a), an N type buried layer 2a is formed on a P type silicon substrate 1, and then an N type epitaxial layer 3 is grown. Next, the silicon oxide film 4,
A silicon nitride film 5 and a silicon oxide film 4c are sequentially formed. Next, using the photoresist (not shown) as a mask, the silicon oxide film 4c, the silicon nitride film 5, and the silicon oxide film 4 are etched. Next, after removing the photoresist, silicon is etched using the silicon oxide film 4c as a mask to form a trench reaching the P-type silicon substrate 1. Next, a silicon oxide film 4a is formed on the groove surface by thermal oxidation.

【0004】つぎに図3(b)に示すように、酸化シリ
コン膜4cをマスクとしてボロンをイオン注入してP型
チャネルストッパ7を形成する。
Next, as shown in FIG. 3B, boron ions are implanted using the silicon oxide film 4c as a mask to form a P-type channel stopper 7.

【0005】[0005]

【発明が解決しようとする課題】従来のトンレンチアイ
ソレーションでは溝の底面だけでなく、側面にまでボロ
ンが拡がるのを避けることができなかった。溝の側面に
PN接合が形成されて、コレクタ−基板容量が大きくな
って、バイポーラトランジスタの性能を低下させる。
In the conventional ton wrench isolation, it is unavoidable that boron is spread not only to the bottom surface of the groove but also to the side surface thereof. A PN junction is formed on the side surface of the groove to increase the collector-substrate capacitance, which deteriorates the performance of the bipolar transistor.

【0006】溝の側面が垂直に切り立っていれば、側面
にボロンが拡がらない代りに、あとの工程でポリシリコ
ンを埋め込むのが困難になり、“す”(空洞)が発生し
易くなる。
If the side surface of the groove is vertically raised, boron does not spread on the side surface, but it becomes difficult to fill the polysilicon in a later step, and "porosity" (cavity) easily occurs.

【0007】また溝の近傍にチャネルストッパと同じ導
電型の拡散層を形成するとき、溝から一定の間隔をとら
ないと、基板と導通してしまうという問題があった。
Further, when a diffusion layer having the same conductivity type as the channel stopper is formed in the vicinity of the groove, there is a problem in that the diffusion layer is electrically connected to the substrate unless a certain distance is provided from the groove.

【0008】[0008]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板の一主面上に溝を形成する工程
と、常圧CVD法によって前記溝の底面には薄く他の領
域には厚くなるように絶縁膜を堆積する工程と、前記絶
縁膜をマスクとしてイオン注入することにより、前記溝
の底面直下に不純物層を形成する工程とを含むものであ
る。
A method of manufacturing a semiconductor device according to the present invention comprises a step of forming a groove on one main surface of a semiconductor substrate, and a step of forming a groove on the bottom surface of the groove by atmospheric pressure CVD to form another area on the other surface. Includes a step of depositing an insulating film so as to be thick, and a step of forming an impurity layer just below the bottom surface of the groove by ion implantation using the insulating film as a mask.

【0009】[0009]

【実施例】本発明の第1の実施例について、図1(a)
および(b)を参照して説明する。
EXAMPLE FIG. 1A shows a first example of the present invention.
This will be described with reference to (b) and.

【0010】はじめに図1(a)に示すように、P型シ
リコン基板1に深さ2〜3μmのN型埋込層2aを形成
したのち厚さ0.8〜1.5μmのN型エピタキシャル
層3を成長する。つぎに厚さ30〜60nmの酸化シリ
コン膜4、厚さ50〜150nmの窒化シリコン膜5、
厚さ、300〜500nmの酸化シリコン膜(図示せ
ず)を順次形成する。つぎにフォトレジスト(図示せ
ず)をマスクとして、酸化シリコン膜(図示せず)、窒
化シリコン膜5、酸化シリコン膜4をエッチングする。
このとき開口の幅は1.2μmとする。つぎにフォトレ
ジストを除去したのち、表面の酸化シリコン膜(図示せ
ず)をマスクとしてシリコンをエッチングしてP型シリ
コン基板1に達する溝(トレンチ)を形成する。つぎに
表面の酸化シリコン膜(図示せず)を除去したのち、熱
酸化により溝表面に酸化シリコン膜4aを形成する。
First, as shown in FIG. 1 (a), an N type buried layer 2a having a depth of 2 to 3 μm is formed on a P type silicon substrate 1, and then an N type epitaxial layer having a thickness of 0.8 to 1.5 μm. Grow three. Next, a silicon oxide film 4 having a thickness of 30 to 60 nm, a silicon nitride film 5 having a thickness of 50 to 150 nm,
A silicon oxide film (not shown) having a thickness of 300 to 500 nm is sequentially formed. Next, using the photoresist (not shown) as a mask, the silicon oxide film (not shown), the silicon nitride film 5, and the silicon oxide film 4 are etched.
At this time, the width of the opening is 1.2 μm. Next, after removing the photoresist, silicon is etched using a silicon oxide film (not shown) on the surface as a mask to form a trench reaching the P-type silicon substrate 1. Next, after removing the silicon oxide film (not shown) on the surface, a silicon oxide film 4a is formed on the groove surface by thermal oxidation.

【0011】つぎに常圧CVD(化学気相成長)法によ
り酸化シリコン膜6を形成する。常圧では分子の平均自
由工程が小さいので、溝が深くなるにつれて側面および
底面に成長する膜厚が薄くなる。そのため、成長温度、
ガス流量、溝の開口幅および深さを選ぶことにより溝の
底面およびその近傍に成長する酸化シリコン膜を充分に
薄くすることができる。
Next, the silicon oxide film 6 is formed by the atmospheric pressure CVD (chemical vapor deposition) method. Since the mean free path of the molecule is small under normal pressure, the film thickness growing on the side surface and the bottom surface becomes smaller as the groove becomes deeper. Therefore, the growth temperature,
By selecting the gas flow rate and the opening width and depth of the groove, the silicon oxide film grown on the bottom surface of the groove and its vicinity can be made sufficiently thin.

【0012】つぎに常圧CVD酸化シリコン膜6をマス
クとしてボロンを加速エネルギー50〜70keV、注
入量(ドース)5×1013〜2×1014cm-2イオン注
入してP型チャネルストッパ7を形成する。
Next, using the atmospheric pressure CVD silicon oxide film 6 as a mask, boron is ion-implanted at an acceleration energy of 50 to 70 keV and an implantation dose (dose) of 5 × 10 13 to 2 × 10 14 cm -2 to form a P-type channel stopper 7. Form.

【0013】つぎに図1(b)に示すように、弗酸を用
いて常圧CVD酸化シリコン膜6および溝の表面の酸化
シリコン膜4aをウェットエッチングする。つぎに窒化
シリコン膜5をマスクとして熱酸化して、溝内部のみに
厚さ100〜200nmの酸化シリコン膜4bを形成す
る。つぎに厚さ1.5〜2.0μmのポリシリコン8を
堆積したのち、RIE(反応性イオンエッチング)によ
りエッチバックして、溝の内部に埋め込まれたポリシリ
コン8のみを残す。
Next, as shown in FIG. 1B, the atmospheric pressure CVD silicon oxide film 6 and the silicon oxide film 4a on the surface of the groove are wet-etched using hydrofluoric acid. Next, thermal oxidation is performed using the silicon nitride film 5 as a mask to form a silicon oxide film 4b having a thickness of 100 to 200 nm only inside the groove. Next, a polysilicon 8 having a thickness of 1.5 to 2.0 μm is deposited and then etched back by RIE (reactive ion etching) to leave only the polysilicon 8 embedded inside the groove.

【0014】つぎに窒化シリコン膜5をマスクとして熱
酸化することにより、埋め込まれたポリシリコン8の表
面に厚さ100〜200nmの酸化シリコン膜9を形成
する。最後に窒化シリコン膜5を除去して、トレンチア
イソレーションが完成する。
Next, thermal oxidation is performed using the silicon nitride film 5 as a mask to form a silicon oxide film 9 having a thickness of 100 to 200 nm on the surface of the embedded polysilicon 8. Finally, the silicon nitride film 5 is removed to complete the trench isolation.

【0015】つぎに本発明の第2の実施例として、バイ
ポーラトランジスタとMOSFETとが混在した半導体
集積回路について、図2を参照して説明する。
Next, as a second embodiment of the present invention, a semiconductor integrated circuit in which bipolar transistors and MOSFETs are mixed will be described with reference to FIG.

【0016】P型シリコン基板1上にN型埋込層2aお
よびP型埋込層2bを形成したのち、N型エピタキシャ
ル層(図示せず)を成長する。つぎにN型埋込層2aの
上のエピタキシャル層にNウェル3aを、P型埋込層2
bの上のエピタキシャル層にPウェル3bを形成する。
つぎにNウェル3aとPウェル3bとの接触部に溝を形
成する。そのあと第1の実施例と同様にして、溝の底面
のみにP型チャネルストッパ7を形成し、ゲート酸化膜
となる酸化シリコン膜4上にゲート電極10を形成して
から、P型ソース・ドレイン11を形成する。
After forming the N type buried layer 2a and the P type buried layer 2b on the P type silicon substrate 1, an N type epitaxial layer (not shown) is grown. Next, the N well 3a is formed in the epitaxial layer on the N type buried layer 2a, and the P type buried layer 2 is formed.
A P well 3b is formed in the epitaxial layer above b.
Next, a groove is formed in the contact portion between the N well 3a and the P well 3b. After that, in the same manner as in the first embodiment, the P-type channel stopper 7 is formed only on the bottom surface of the groove, the gate electrode 10 is formed on the silicon oxide film 4 serving as the gate oxide film, and then the P-type source. The drain 11 is formed.

【0017】本実施例ではP型ソース・ドレイン11が
溝とぶつかってもP型シリコン基板1と導通しない。P
型ソース・ドレイン11と溝との間にマージン(余裕)
を設ける必要がなくなって、MOSFETのサイズを縮
小することができる。
In this embodiment, even if the P-type source / drain 11 collides with the groove, the P-type silicon substrate 1 is not electrically connected. P
Margin between the source / drain 11 and the groove
Since it is not necessary to provide the device, the size of the MOSFET can be reduced.

【0018】[0018]

【発明の効果】溝の側面に不純物が導入されないので、
溝の側面にPN接合が形成されない。そのためバイポー
ラLSIの動作速度を遅らせるコレクタ−コレクタ容量
およびコレクタ−基板容量を大幅に低減することができ
た。
Since impurities are not introduced into the side surface of the groove,
No PN junction is formed on the side surface of the groove. Therefore, the collector-collector capacitance and the collector-substrate capacitance, which slow down the operation speed of the bipolar LSI, can be significantly reduced.

【0019】基本トランジスタサイズ7μm×5μm、
N型エピタキシャル層の厚さが1.0μm、N型埋込層
の厚さが2.0μm、溝の深さが5.0μm、P型シリ
コン基板の比抵抗が10Ωのとき、従来の約20fF
が、本発明では半分に減った。リングオシレータの周波
数は約10%向上した。
Basic transistor size 7 μm × 5 μm,
When the thickness of the N-type epitaxial layer is 1.0 μm, the thickness of the N-type buried layer is 2.0 μm, the depth of the groove is 5.0 μm, and the specific resistance of the P-type silicon substrate is 10Ω, it is about 20 fF.
However, in the present invention, it is reduced to half. The frequency of the ring oscillator is improved by about 10%.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を工程順に示す断面図で
ある。
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention in process order.

【図2】本発明の第2の実施例を示す断面図である。FIG. 2 is a sectional view showing a second embodiment of the present invention.

【図3】従来のトレンチアイソレーションの形成方法を
示す断面図である。
FIG. 3 is a sectional view showing a conventional method for forming trench isolation.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2a N型埋込層 2b P型埋込層 3 N型エピタキシャル層 3a Nウェル 3b Pウェル 4,4a,4b,4c 酸化シリコン膜 5 窒化シリコン膜 6 常圧CVD酸化シリコン膜 7 P型チャネルストッパ 8 ポリシリコン 9 酸化シリコン膜 10 ゲート電極 11 P型ソース・ドレイン 1 P-type silicon substrate 2a N-type buried layer 2b P-type buried layer 3 N-type epitaxial layer 3a N well 3b P well 4, 4a, 4b, 4c Silicon oxide film 5 Silicon nitride film 6 Normal pressure CVD silicon oxide film 7 P-type channel stopper 8 Polysilicon 9 Silicon oxide film 10 Gate electrode 11 P-type source / drain

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一主面上に溝を形成する工
程と、常圧CVD法によって前記溝の底面には薄く他の
領域には厚くなるように絶縁膜を堆積する工程と、前記
絶縁膜をマスクとしてイオン注入することにより、前記
溝の底面直下に不純物層を形成する工程とを含む半導体
装置の製造方法。
1. A step of forming a groove on one main surface of a semiconductor substrate, a step of depositing an insulating film by a normal pressure CVD method so that the bottom surface of the groove is thin and other areas are thick. And a step of forming an impurity layer just below the bottom surface of the groove by ion implantation using the insulating film as a mask.
【請求項2】 P型シリコン基板の一主面上にN型埋込
層を形成したのち、N型エピタキシャル層を成長する工
程と、前記N型エピタキシャル層および前記N型埋込層
を貫通して前記P型シリコン基板に達する溝を形成する
工程と、常圧CVD法によって前記溝の底面には薄く他
の領域には厚くなるように絶縁膜を堆積する工程と、前
記絶縁膜をマスクとしてイオン注入することにより、前
記溝の底面直下に不純物層を形成する工程とを含む半導
体装置の製造方法。
2. A step of forming an N-type buried layer on one main surface of a P-type silicon substrate and then growing an N-type epitaxial layer, and penetrating the N-type epitaxial layer and the N-type buried layer. To form a groove reaching the P-type silicon substrate, a step of depositing an insulating film by a normal pressure CVD method so that the bottom surface of the groove is thin and other areas are thick, and the insulating film is used as a mask. A step of forming an impurity layer just below the bottom surface of the groove by ion implantation.
【請求項3】 P型シリコン基板の一主面上の一部にN
型埋込層およびP型埋込層を形成したのち、N型エピタ
キシャル層を成長する工程と、前記N型埋込層上の前記
N型エピタキシャル層にはNウェルを形成し、前記P型
埋込層上の前記N型エピタキシャル層にはPウェルを形
成する工程と、前記Nウェルと前記Pウェルとの分離領
域に前記P型シリコン基板に達する溝を形成する工程
と、常圧CVD法によって前記溝の底面には薄く他の領
域には厚くなるように絶縁膜を堆積する工程と、前記絶
縁膜をマスクとしてイオン注入することにより、前記溝
の底面直下に不純物層を形成する工程とを含む半導体装
置の製造方法。
3. A P-type silicon substrate is provided with N on a part of its main surface.
A step of growing an N type epitaxial layer after forming the type buried layer and the P type buried layer, and forming an N well in the N type epitaxial layer on the N type buried layer, Forming a P-well in the N-type epitaxial layer on the buried layer, forming a groove reaching the P-type silicon substrate in an isolation region between the N-well and the P-well, and using an atmospheric pressure CVD method. A step of depositing an insulating film so that it is thin on the bottom surface of the groove and thick in other regions, and a step of forming an impurity layer just below the bottom surface of the groove by ion implantation using the insulating film as a mask. A method of manufacturing a semiconductor device including.
JP7496492A 1992-03-31 1992-03-31 Manufacture of semiconductor device Pending JPH05283520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7496492A JPH05283520A (en) 1992-03-31 1992-03-31 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7496492A JPH05283520A (en) 1992-03-31 1992-03-31 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05283520A true JPH05283520A (en) 1993-10-29

Family

ID=13562500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7496492A Pending JPH05283520A (en) 1992-03-31 1992-03-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05283520A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0929098A1 (en) * 1998-01-13 1999-07-14 STMicroelectronics S.r.l. Process for selectively implanting dopants into the bottom of a deep trench
KR20010004674A (en) * 1999-06-29 2001-01-15 김영환 Manufacturing method for semiconductor device
US6750526B2 (en) 2001-11-22 2004-06-15 Renesas Technology Corp. Semiconductor device with trench isolation having reduced leak current
KR100729017B1 (en) * 2006-01-05 2007-06-14 주식회사 케이이씨 Isolation structure method of making of of semiconductor device
US7491614B2 (en) 2005-01-13 2009-02-17 International Business Machines Corporation Methods for forming channel stop for deep trench isolation prior to deep trench etch
JP2011138905A (en) * 2009-12-28 2011-07-14 Toshiba Corp Solid-state imaging device
WO2020209107A1 (en) * 2019-04-12 2020-10-15 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127147A (en) * 1984-11-26 1986-06-14 Hitachi Ltd Semiconductor device
JPH01251736A (en) * 1988-03-31 1989-10-06 Toshiba Corp Manufacture of semiconductor device
JPH0258368A (en) * 1988-08-24 1990-02-27 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127147A (en) * 1984-11-26 1986-06-14 Hitachi Ltd Semiconductor device
JPH01251736A (en) * 1988-03-31 1989-10-06 Toshiba Corp Manufacture of semiconductor device
JPH0258368A (en) * 1988-08-24 1990-02-27 Hitachi Ltd Manufacture of semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0929098A1 (en) * 1998-01-13 1999-07-14 STMicroelectronics S.r.l. Process for selectively implanting dopants into the bottom of a deep trench
US6235610B1 (en) 1998-01-13 2001-05-22 Stmicroelectronics S.R.L. Process for selectively implanting dopants into the bottom of a deep trench
KR20010004674A (en) * 1999-06-29 2001-01-15 김영환 Manufacturing method for semiconductor device
US6750526B2 (en) 2001-11-22 2004-06-15 Renesas Technology Corp. Semiconductor device with trench isolation having reduced leak current
US7491614B2 (en) 2005-01-13 2009-02-17 International Business Machines Corporation Methods for forming channel stop for deep trench isolation prior to deep trench etch
KR100729017B1 (en) * 2006-01-05 2007-06-14 주식회사 케이이씨 Isolation structure method of making of of semiconductor device
JP2011138905A (en) * 2009-12-28 2011-07-14 Toshiba Corp Solid-state imaging device
US8445950B2 (en) 2009-12-28 2013-05-21 Kabushiki Kaisha Toshiba Solid-state imaging device
WO2020209107A1 (en) * 2019-04-12 2020-10-15 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device

Similar Documents

Publication Publication Date Title
US6713790B2 (en) Semiconductor device and method for fabricating the same
US5171702A (en) Method for forming a thick base oxide in a BiCMOS process
US4897703A (en) Recessed contact bipolar transistor and method
EP0036082A1 (en) A self-aligned process for providing an improved high performance bipolar transistor
KR20020019560A (en) Bipolar transistor and method of manufacture thereof
JPS6347963A (en) Integrated circuit and manufacture of the same
US4853342A (en) Method of manufacturing semiconductor integrated circuit device having transistor
JPS63305560A (en) Manufacture of completely self-aligning bipolar transistor
US6352901B1 (en) Method of fabricating a bipolar junction transistor using multiple selectively implanted collector regions
JP3172031B2 (en) Method for manufacturing semiconductor device
US6319786B1 (en) Self-aligned bipolar transistor manufacturing method
EP0281235B1 (en) Bipolar transistor fabrication utilizing cmos techniques
EP0272491B1 (en) Deep trench isolation with surface contact to substrate
JPH0786296A (en) Manufacture of high-speed bipolar transistor
JPH05283520A (en) Manufacture of semiconductor device
US5065209A (en) Bipolar transistor fabrication utilizing CMOS techniques
JP3456864B2 (en) Semiconductor device and manufacturing method thereof
JP3361110B2 (en) Method for fabricating a CMOS structure
EP0409041B1 (en) A method for forming a thick base oxide in a BiCMOS process
JP3207561B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JP2697631B2 (en) Method for manufacturing semiconductor device
JP4213298B2 (en) Manufacturing method of semiconductor device
KR950000139B1 (en) Bipolar transistor and manufacturing method thereof
JP2677258B2 (en) Semiconductor device and manufacturing method thereof
KR920009365B1 (en) Manufacturing method of bipolar transistor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980707