JPH0246734A - Semiconductor integrated circuit device having bipolar transistor - Google Patents

Semiconductor integrated circuit device having bipolar transistor

Info

Publication number
JPH0246734A
JPH0246734A JP19764588A JP19764588A JPH0246734A JP H0246734 A JPH0246734 A JP H0246734A JP 19764588 A JP19764588 A JP 19764588A JP 19764588 A JP19764588 A JP 19764588A JP H0246734 A JPH0246734 A JP H0246734A
Authority
JP
Japan
Prior art keywords
film
layer
base
electrode
polysilicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19764588A
Other languages
Japanese (ja)
Inventor
Kimiharu Uga
宇賀 公治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19764588A priority Critical patent/JPH0246734A/en
Publication of JPH0246734A publication Critical patent/JPH0246734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To realize reduced base-collector junction capacitance and to obtain reduced resistance value of base current by forming an insulating layer directly under an external base layer and providing a conductor for providing a base electrode in contact with the side wall of an active base region. CONSTITUTION:After a resist film 704 and a nitride film 301 on a polysilicon film 102 are removed, a P-type dopant and an N-type dopant are implanted sequentially into the polysilicon film 102 which is to serve as an emitter electrode lead-out layer. By annealing, an active base layer 7 and an emitter layer 9 are formed concurrently. Simultaneously therewith, an external base layer 8 is also obtained by diffusion of the P-type dopant from the polysilicon film 101 doped with the P-type dopant. Then, a PSG film 400 is deposited all over the surface and annealed to bake it. Contacts are formed at predetermined positions and an emitter electrode 600, a base electrode 601 and a collector electrode 602 are provided.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は半導体集積回路装置に関し、特に高速の動作
が要求されるバイポーラトランジスタを有する半導体集
積回路装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device, and particularly to a semiconductor integrated circuit device having bipolar transistors that are required to operate at high speed.

[従来の技術] 第2A図〜第2F図は従来の半導体集積回路装置の製造
方法であって、バイポーラトランジスタの主要製造工程
段階を示す断面図である。
[Prior Art] FIGS. 2A to 2F are cross-sectional views showing the main manufacturing process steps of a bipolar transistor in a conventional method for manufacturing a semiconductor integrated circuit device.

以下、図を参照して従来の製造方法について簡単に説明
する。
Hereinafter, a conventional manufacturing method will be briefly explained with reference to the drawings.

低不純物濃度のp型(p−型)シリコン基板1に高不純
物濃度のn型(n+型)のコレクタ埋め込み層2を形成
した後、これらの上に低不純物濃度のn型(n−型)エ
ピタキシャル層3を成長させる。次に、素子間分離溝1
0を半導体基板1に到達する深さまで形成し、チャンネ
ルカット用p型層5を形成した後、分離用酸化膜4を溝
10に充填する。その後、全面エッチバックによりエピ
タキシャル層3表面を露出させ、全面にポリシリコン膜
100を何首させた後、酸化膜、窒化膜および酸化膜を
この順に所定厚さで順次付着する。
After forming an n-type (n+ type) collector buried layer 2 with a high impurity concentration on a p-type (p-type) silicon substrate 1 with a low impurity concentration, an n-type (n-type) with a low impurity concentration is formed on the collector buried layer 2. Grow epitaxial layer 3. Next, the inter-element isolation groove 1
0 is formed to a depth that reaches the semiconductor substrate 1, and after forming the p-type layer 5 for channel cut, the groove 10 is filled with the isolation oxide film 4. Thereafter, the surface of the epitaxial layer 3 is exposed by etching back the entire surface, and after several polysilicon films 100 are formed on the entire surface, an oxide film, a nitride film, and an oxide film are sequentially deposited in this order to a predetermined thickness.

次に写真製版および選択エツチング技法を用いてパター
ニングし、外部ベースとなるべき領域上に酸化膜200
、窒化膜300および酸化膜201よりなる複合膜を形
成する(第2A図参照)。
Next, patterning is performed using photolithography and selective etching techniques to form an oxide film 200 on the area that is to become the external base.
, a composite film consisting of a nitride film 300 and an oxide film 201 is formed (see FIG. 2A).

次に、レジスト膜(図示せず)をマスクとしてコレクタ
電極の取出層となる領域(図において右側の分離用酸化
膜4の左側領域)のポリシリコン膜100のみを除去す
る。そして、複合膜上層の酸化膜201を除去した後、
窒化膜300をマスクとして選択酸化を行なうことによ
り、ポリシリコン膜100を酸化膜110,111に変
化させるとともに、露出したエピタキシャル層3の表面
に厚い酸化114112を成長させる。次に、これらの
選択酸化膜110,111,112をマスクとして、窒
化膜300下のポリシリコン膜101中にn型不純物イ
オンを注入する(第2B図参照)。
Next, using a resist film (not shown) as a mask, only the polysilicon film 100 in the area that will become the extraction layer of the collector electrode (the left side area of the isolation oxide film 4 on the right side in the figure) is removed. After removing the oxide film 201 on the upper layer of the composite film,
By performing selective oxidation using the nitride film 300 as a mask, the polysilicon film 100 is changed into oxide films 110 and 111, and a thick oxide 114112 is grown on the exposed surface of the epitaxial layer 3. Next, using these selective oxide films 110, 111, and 112 as masks, n-type impurity ions are implanted into the polysilicon film 101 under the nitride film 300 (see FIG. 2B).

酸化膜112に選択的に拡散窓あけを行ない、高濃度の
n型不純物の拡散を行なってコレクタ電極取出層6を形
成する。コレクタ電極取出層6の表面を酸化し、酸化膜
210を形成した後、活性ベース層となるべき領域上の
酸化膜110を窒化膜300をマスクにエツチング除去
する。このとき酸化膜111,112,210をエツチ
ングされないようにレジスト膜(図示せず)で覆い隠し
、酸化膜110のエツチングを行なう。上記レジスト膜
(図示せず)を除去した後、ポリシリコン膜101上の
窒化膜300.酸化膜200を除去する。その後イオン
注入時の保護マスクとして酸化膜202を形成し、n型
不純物を注入した後シンタリングを行なうことにより、
活性ベース層7、同時に先の注入でn型不純物を含aし
ているポリシリコン膜102からn型不純物の拡散を行
なって外部ベース層8を形成する(第2C図参照)。
A diffusion window is selectively opened in the oxide film 112 and a high concentration n-type impurity is diffused to form the collector electrode extraction layer 6. After the surface of the collector electrode extraction layer 6 is oxidized to form an oxide film 210, the oxide film 110 on the region to become the active base layer is removed by etching using the nitride film 300 as a mask. At this time, the oxide films 111, 112, and 210 are covered with a resist film (not shown) to prevent them from being etched, and the oxide film 110 is etched. After removing the resist film (not shown), the nitride film 300 on the polysilicon film 101 is removed. The oxide film 200 is removed. After that, an oxide film 202 is formed as a protective mask during ion implantation, and sintering is performed after implanting n-type impurities.
At the same time as the active base layer 7, an n-type impurity is diffused from the polysilicon film 102 containing the n-type impurity in the previous implantation to form the external base layer 8 (see FIG. 2C).

酸化膜203を全面に付着後、エミッタとなるべき領域
上の酸化膜202,203のみを除去し、第2のポリシ
リコン膜120を形成してn型不純物イオンを注入した
後、アニールを行なってn型不純物を含むポリシリコン
膜120からn型不純物の拡散を行なってエミツタ層9
を形成させる。
After depositing the oxide film 203 on the entire surface, only the oxide films 202 and 203 on the region to become the emitter are removed, a second polysilicon film 120 is formed, n-type impurity ions are implanted, and annealing is performed. The emitter layer 9 is formed by diffusing n-type impurities from the polysilicon film 120 containing n-type impurities.
to form.

その後ポリシリコン膜120の上に窒化膜301を形成
させる(第2D図参照)。
Thereafter, a nitride film 301 is formed on the polysilicon film 120 (see FIG. 2D).

次に、エミツタ層9以外の窒化膜301、n+ポリシリ
コン膜1201酸化膜203,202をレジスト膜をマ
スクとして順次除去した後、レジスト膜を除去する。さ
らに窒化膜301をマスクとして低温酸化(800〜8
50℃)を行なってn+ポリンリコン膜120側壁に厚
い酸化膜220を、p+ポリシリコン11!102の表
面上に薄い酸化膜(図示せず)を形成する。その後窒化
膜301をマスクにポリシリコン膜102上の薄い酸化
膜(図示せず)を除去し、さらに窒化膜301を全面ウ
ェット(リン酸)除去した後、シリサイド膜500,5
01を形成する(第2E図参照)。
Next, the nitride film 301, the n+ polysilicon film 1201, and the oxide films 203 and 202 other than the emitter layer 9 are sequentially removed using the resist film as a mask, and then the resist film is removed. Furthermore, using the nitride film 301 as a mask, low-temperature oxidation (800~800
50° C.) to form a thick oxide film 220 on the side wall of the n+ polysilicon film 120 and a thin oxide film (not shown) on the surface of the p+ polysilicon 11!102. Thereafter, the thin oxide film (not shown) on the polysilicon film 102 is removed using the nitride film 301 as a mask, and the entire surface of the nitride film 301 is wet-removed (with phosphoric acid).
01 (see Figure 2E).

その後P S 0M400をデポジションし、アニール
して焼きしめした後、コンタクトを形成しエミッタ電極
600.ベース電極601、コレクタ電極602をそれ
ぞれ形成する(第2F図参照)。
Thereafter, P S 0M400 is deposited, annealed and hardened, and contacts are formed to form emitter electrodes 600. A base electrode 601 and a collector electrode 602 are respectively formed (see FIG. 2F).

[発明が解決しようとする課題] 従来の半導体装置は以上のように構成されているので、
不活性ベース領域(外部ベース)によるベース〜コレク
タ間の接合容量が大きい。これかベース電流の流れにと
って寄生容量として働き、また、活性ベース層とベース
電極とが外部ベース層を介して導通ずる距離が長いため
ベース電流に対する抵抗が大きく、これらがトランジス
タの高速動作を低下させる原因となっていた。
[Problem to be solved by the invention] Since the conventional semiconductor device is configured as described above,
The base-collector junction capacitance due to the inactive base region (external base) is large. This acts as a parasitic capacitance for the flow of base current, and the long conduction distance between the active base layer and the base electrode via the external base layer creates a large resistance to the base current, which reduces the high-speed operation of the transistor. It was the cause.

この発明は上記のような課題を解決するためになされた
もので、ベース〜コレクタ間の接合容量を低減し、かつ
ベース電流の抵抗値を低減させるバイポーラトランジス
タを有する半導体集積回路装置を提供することを目的と
する。
The present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a semiconductor integrated circuit device having a bipolar transistor that reduces the junction capacitance between the base and the collector and also reduces the resistance value of the base current. With the goal.

[課題を解決するための手段] この発明に係るバイポーラトランジスタを有する半導体
集積回路装置は、主面を有する第1導電型式の半導体基
板と、半導体基板の主面から第1の深さで形成される第
2導電型式の第1の半導体層と、第1の半導体層内であ
って、第1の深さより浅い第2の深さに埋め込まれた導
電体と、第1の半導体層内であって、導電体の側壁に接
して形成される第1導電型式の第2の半導体層と、第2
の半導体層内に形成される第2導電型式の第3の半導体
層と、第1の半導体層に接続される第1の導通端子と、
導電体に接続される第2の導通端子と、第3の半導体層
に接続される制御端子と、導電体の下面領域に形成され
る第1の絶縁膜と、第1の導通端子が一接続される箇所
側であって、第2の半導体層の側壁に形成される第2の
絶縁膜とを備えたものである。
[Means for Solving the Problems] A semiconductor integrated circuit device having a bipolar transistor according to the present invention includes a semiconductor substrate of a first conductivity type having a main surface, and a semiconductor integrated circuit device formed at a first depth from the main surface of the semiconductor substrate. a first semiconductor layer of a second conductivity type, a conductor buried within the first semiconductor layer at a second depth shallower than the first depth; a second semiconductor layer of the first conductivity type formed in contact with the sidewall of the conductor;
a third semiconductor layer of a second conductivity type formed within the semiconductor layer; a first conduction terminal connected to the first semiconductor layer;
A second conduction terminal connected to the conductor, a control terminal connected to the third semiconductor layer, a first insulating film formed on the lower surface area of the conductor, and the first conduction terminal are connected together. and a second insulating film formed on the side wall of the second semiconductor layer.

[作用コ この発明においては、外部ベース層真下に絶縁層が形成
されるので、トランジスタの寄生容量が低減され、かつ
ベース電極となる導電体が活性ベース領域の側壁に接す
るので寄生抵抗が低減される。
[Operations] In this invention, since the insulating layer is formed directly under the external base layer, the parasitic capacitance of the transistor is reduced, and the conductor that becomes the base electrode is in contact with the sidewall of the active base region, so the parasitic resistance is reduced. Ru.

[実施例] 第1A図〜第1G図はこの発明の一実施例による半導体
集積回路装置の製造方法における主要工程段階を示す断
面図である。
[Embodiment] FIGS. 1A to 1G are cross-sectional views showing main process steps in a method for manufacturing a semiconductor integrated circuit device according to an embodiment of the present invention.

以下、図を参照してこの発明の一実施例による半導体集
積回路装置の製造方法について説明する。
Hereinafter, a method for manufacturing a semiconductor integrated circuit device according to an embodiment of the present invention will be described with reference to the drawings.

まず、p−型シリコン基板1にn中型フレクタ埋め込み
層2を形成した後、シリコンU板1に到達する素子間分
離溝10を形成する。溝10の底部にp型の不純物を注
入してチャンネルカット用p型層5を形成した後、分離
用酸化膜4を溝1゜に充填させ、全面エッチバックによ
りコレクタ埋め込み層2上面を露出させる。その後、コ
レクタ埋め込み層2上に酸化膜110.ポリシリコン膜
101、酸化膜111をこの順に所定厚さで順次付着す
る(第1A図参照)。
First, after forming an n medium flexor buried layer 2 on a p-type silicon substrate 1, an inter-element isolation trench 10 reaching the silicon U plate 1 is formed. After forming a p-type layer 5 for channel cut by injecting p-type impurities into the bottom of the groove 10, the isolation oxide film 4 is filled in the groove 1°, and the upper surface of the collector buried layer 2 is exposed by etching back the entire surface. . After that, an oxide film 110 is formed on the collector buried layer 2. A polysilicon film 101 and an oxide film 111 are deposited in this order to a predetermined thickness (see FIG. 1A).

その後、活性トランジスタ領域およびコレクタ電極取出
領域を開口するために、写真製版技術を用いてレジスト
膜700をマスクとして、酸化膜111、ポリシリコン
膜101.酸化膜110を順次異方性エツチング法を用
いて除去し、コレクタ埋め込み層2を露出させる。この
とき外部ベース取出電極となるポリシリコン膜101は
、後に形成されるエミツタ層との短絡を防止するため、
若干サイドエツチングされ、酸化膜110の開口幅より
大きく開口される(第1B図参照)。
Thereafter, in order to open the active transistor region and the collector electrode extraction region, photolithography is used to open the oxide film 111, the polysilicon film 101, and the like using the resist film 700 as a mask. The oxide film 110 is sequentially removed using an anisotropic etching method to expose the collector buried layer 2. At this time, the polysilicon film 101 which becomes the external base extraction electrode is
The side is slightly etched to form an opening larger than the opening width of the oxide film 110 (see FIG. 1B).

レジスト膜700を除去した後、n+型エピタキシャル
層3a、3bをトランジスタの活性領域およびコレクタ
電極取出領域としてコレクタ埋め込み層2上に形成する
。なお、上記エピタキシャル層3a、3bは、外部ベー
ス取出電極となるポリシリコン膜101の上面まで成長
させるようにする。その後、エピタキシャル層3a、3
bの上にポリシリコン膜102.窒化膜301を順次付
むさせる。次に、n型コレクタ領域となるエピタキシャ
ル層3bと外部ベース取出電極となるポリシリコン膜1
01とを分離するために、写真製版技術を用いてレジス
ト膜700の所定領域を開口する。開口されたレジスト
膜701をマスクとして、ポリシリコン膜102上の露
出した窒化膜301を除去する(第1C図参照)。
After removing the resist film 700, n+ type epitaxial layers 3a and 3b are formed on the collector buried layer 2 as an active region and a collector electrode extraction region of the transistor. Incidentally, the epitaxial layers 3a and 3b are grown up to the upper surface of the polysilicon film 101 which becomes the external base extraction electrode. After that, the epitaxial layers 3a, 3
A polysilicon film 102.b is formed on the polysilicon film 102. A nitride film 301 is sequentially deposited. Next, an epitaxial layer 3b which will become an n-type collector region and a polysilicon film 1 which will become an external base extraction electrode.
01, a predetermined region of the resist film 700 is opened using photolithography. Using the opened resist film 701 as a mask, the exposed nitride film 301 on the polysilicon film 102 is removed (see FIG. 1C).

上記レジスト膜701を除去した後、窒化膜301をマ
スクとして選択酸化を行なうことによりポリシリコン膜
101.102を酸化する。この酸化によって酸化膜1
11と一体となった酸化膜112が形成され、エピタキ
シャル層3bと外部ベース電極となるポリシリコン膜1
01との間に分離酸化膜112が形成される。
After removing the resist film 701, selective oxidation is performed using the nitride film 301 as a mask to oxidize the polysilicon films 101 and 102. This oxidation causes the oxide film 1
An oxide film 112 is formed which is integrated with the epitaxial layer 3b and the polysilicon film 1 which becomes the external base electrode.
An isolation oxide film 112 is formed between 01 and 01.

次に、写真製版技術によりコレクタ電極取出領域上方の
みが開口されたレジスト膜703をマスクとして、n−
エピタキシャル層3b上方の窒化膜301を除去する。
Next, using a resist film 703 with an opening only above the collector electrode extraction area by photolithography as a mask, the n-
The nitride film 301 above the epitaxial layer 3b is removed.

さらに、高濃度n型不純物を露出したポリシリコン膜1
02に注入した後、シンタリングを行なうことによりn
+型のコレクタ電極取出層6を形成する(第1D図参照
)。
Furthermore, the polysilicon film 1 with the high concentration n-type impurity exposed
After injecting into 02, by sintering, n
A +-type collector electrode extraction layer 6 is formed (see FIG. 1D).

続いて、レジスト膜703を除去した後、窒化膜301
をマスクに再度選択酸化を行なうことにより、フレフタ
電極取出層6上のポリシリコン層102を所定の深さの
酸化膜121に変化させる。
Subsequently, after removing the resist film 703, the nitride film 301 is removed.
By performing selective oxidation again using the mask as a mask, the polysilicon layer 102 on the flapper electrode extraction layer 6 is changed into an oxide film 121 having a predetermined depth.

さらに、外部ベース電極層上方を開口するために、写真
製版技術によりレジスト膜704を形成し、これをマス
クとして露出した窒化膜301、ポリシリコン膜102
を除去し、さらに酸化膜111真下のポリシリコン膜1
01中に高濃度n型不純物イオンを注入する。なおこの
注入においては、十分厚い酸化膜121がイオン注入の
マスキングになっているためコレクタ電極取出層6中に
は、注入はされない(第1E図参照)。
Furthermore, in order to open above the external base electrode layer, a resist film 704 is formed by photolithography, and this is used as a mask to expose the exposed nitride film 301 and polysilicon film 102.
, and then remove the polysilicon film 1 directly below the oxide film 111.
High concentration n-type impurity ions are implanted into 01. In this implantation, since the sufficiently thick oxide film 121 serves as a mask for the ion implantation, the ions are not implanted into the collector electrode extraction layer 6 (see FIG. 1E).

レジスト膜704、ポリシリコン膜102上の窒化膜3
01を除去した後、エミッタ電極取出層となるポリシリ
コン膜102中にn型不純物、n型不純物を順次注入す
る。アニールを行なうと、p型ならびにn型不純物を含
有しているポリシリコン膜102からn−エピタキシャ
ル層3へ不純物拡散が行なわれ、その拡散度の違いによ
って活性ベース層7、エミツタ層9が同時に形成される
Resist film 704, nitride film 3 on polysilicon film 102
After removing 01, an n-type impurity and an n-type impurity are sequentially implanted into the polysilicon film 102 which will become an emitter electrode extraction layer. When annealing is performed, impurities are diffused from the polysilicon film 102 containing p-type and n-type impurities into the n-epitaxial layer 3, and an active base layer 7 and an emitter layer 9 are simultaneously formed due to the difference in the degree of diffusion. be done.

また、同時に前述の注入によりn型不純物を含有してい
るポリシリコン膜101からn型不純物の拡散による外
部ベース層8が形成される。なお、このn型不純物注入
時にも、外部ベース電極取出用のポリシリコン膜101
上の酸化膜111はその厚さによってイオン注入のマス
キングとして働く(第1F図参照)。
At the same time, the external base layer 8 is formed by diffusion of n-type impurities from the polysilicon film 101 containing n-type impurities by the aforementioned implantation. Note that during this n-type impurity implantation, the polysilicon film 101 for taking out the external base electrode is
The upper oxide film 111 acts as a mask for ion implantation due to its thickness (see FIG. 1F).

その後、PSG膜400を全面にデボジシジンし、これ
をアニールして焼き締める。その後、所定の位置にコン
タクトを形成し、エミッタ電極6001ベース電極60
1およびコレクタ電極602をそれぞれ形成する(第1
G図参照)。
Thereafter, the PSG film 400 is deposited on the entire surface and is annealed and baked. After that, contacts are formed at predetermined positions, and the emitter electrode 6001 base electrode 60
1 and collector electrode 602 (first
(See figure G).

以下、さらに上面に保護膜の形成等の工程が続くが、こ
の発明の範囲外であるのでここでの説明を省略する。
Thereafter, steps such as forming a protective film on the upper surface continue, but since they are outside the scope of the present invention, their explanation will be omitted here.

なお、上記実施例では、導電型式を特定したバイポーラ
トランジスタについて説明しているが、反対導電型式の
バイポーラトランジスタであっても同様に適用でき、同
様の効果を奏することはいうまでもない。
In the above embodiments, bipolar transistors with specific conductivity types are described, but it goes without saying that bipolar transistors of opposite conductivity types can be similarly applied and produce similar effects.

[発明の効果] 以上のように、この発明によれば外部ベース層真下に絶
縁層が形成され、かつベース電極が活性ベース領域の側
壁からとられているので寄生容量および寄生抵抗が低減
され、装置の動作の高速性に大いに寄与する効果がある
[Effects of the Invention] As described above, according to the present invention, since the insulating layer is formed directly under the external base layer and the base electrode is taken from the sidewall of the active base region, parasitic capacitance and parasitic resistance are reduced. This has the effect of greatly contributing to the high-speed operation of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図〜第1G図はこの発明の一実施例による半導体
集積回路装置の製造方法を示す工程断面図、第2A図〜
第2F図は、従来の半導体集積回路装置の製造方法を示
す主要工程断面図である。 図において、1はシリコン基板、2はコレクタ埋め込み
層、3はエピタキシャル層、6はコレクタ電極取出層、
7は活性ベース層、8は外部ベース層、9はエミツタ層
、101はポリシリコン膜、110は絶縁酸化膜、60
0はエミッタ電極、601はベース電極、602はコレ
クタ電極である。 なお、各図中、同一符号は同一または相当部分を示す。 第1A図 第1C図
1A to 1G are process cross-sectional views showing a method for manufacturing a semiconductor integrated circuit device according to an embodiment of the present invention, and FIGS.
FIG. 2F is a cross-sectional view of main steps showing a conventional method for manufacturing a semiconductor integrated circuit device. In the figure, 1 is a silicon substrate, 2 is a collector buried layer, 3 is an epitaxial layer, 6 is a collector electrode extraction layer,
7 is an active base layer, 8 is an external base layer, 9 is an emitter layer, 101 is a polysilicon film, 110 is an insulating oxide film, 60
0 is an emitter electrode, 601 is a base electrode, and 602 is a collector electrode. In each figure, the same reference numerals indicate the same or corresponding parts. Figure 1A Figure 1C

Claims (1)

【特許請求の範囲】 主面を有する第1導電型式の半導体基板と、前記半導体
基板の主面から第1の深さで形成される第2導電型式の
第1の半導体層と、 前記第1の半導体層内であって、前記第1の深さより浅
い第2の深さに埋め込まれた導電体と、前記第1の半導
体層内であって、前記導電体の側壁に接して形成される
第1導電型式の第2の半導体層と、 前記第2の半導体層内に形成される第2導電型式の第3
の半導体層と、 前記第1の半導体層に接続される第1の導通端子と、 前記導電体に接続される第2の導通端子と、前記第3の
半導体層に接続される制御端子と、前記導電体の下面領
域に形成される第1の絶縁膜と、 前記第1の導通端子が接続される箇所側であって、前記
第2の半導体層の側壁に形成される第2の絶縁膜とを備
えた、バイポーラトランジスタを有する半導体集積回路
装置。
[Scope of Claims] A semiconductor substrate of a first conductivity type having a main surface; a first semiconductor layer of a second conductivity type formed at a first depth from the main surface of the semiconductor substrate; a conductor embedded in the semiconductor layer at a second depth shallower than the first depth; and a conductor formed in the first semiconductor layer and in contact with a sidewall of the conductor. a second semiconductor layer of a first conductivity type; and a third semiconductor layer of a second conductivity type formed within the second semiconductor layer.
a first conduction terminal connected to the first semiconductor layer, a second conduction terminal connected to the conductor, and a control terminal connected to the third semiconductor layer; a first insulating film formed on the lower surface region of the conductor; and a second insulating film formed on the sidewall of the second semiconductor layer on the side where the first conduction terminal is connected. A semiconductor integrated circuit device having a bipolar transistor, comprising:
JP19764588A 1988-08-08 1988-08-08 Semiconductor integrated circuit device having bipolar transistor Pending JPH0246734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19764588A JPH0246734A (en) 1988-08-08 1988-08-08 Semiconductor integrated circuit device having bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19764588A JPH0246734A (en) 1988-08-08 1988-08-08 Semiconductor integrated circuit device having bipolar transistor

Publications (1)

Publication Number Publication Date
JPH0246734A true JPH0246734A (en) 1990-02-16

Family

ID=16377937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19764588A Pending JPH0246734A (en) 1988-08-08 1988-08-08 Semiconductor integrated circuit device having bipolar transistor

Country Status (1)

Country Link
JP (1) JPH0246734A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117773A (en) * 1983-11-30 1985-06-25 Nec Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117773A (en) * 1983-11-30 1985-06-25 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP2503460B2 (en) Bipolar transistor and manufacturing method thereof
JPH0628266B2 (en) Method for manufacturing semiconductor device
JPH0812865B2 (en) Bipolar transistor and manufacturing method thereof
JPH0557741B2 (en)
JPS60202965A (en) Method of producing improved oxide defined transistor and structure obtained as its result
JP2504567B2 (en) Method for manufacturing semiconductor device
JPH0246734A (en) Semiconductor integrated circuit device having bipolar transistor
JP2715494B2 (en) Method for manufacturing semiconductor device
JP2697631B2 (en) Method for manufacturing semiconductor device
JP2581548B2 (en) Method for manufacturing semiconductor device
JPH07106337A (en) Semiconductor device and manufacture thereof
JPH01214166A (en) Semiconductor integrated circuit device with bipolar transistor
JP2828264B2 (en) Method for manufacturing semiconductor device
JP2915040B2 (en) Method for manufacturing semiconductor device
KR0154308B1 (en) Method of fabricating bipolar transistor
JP2635439B2 (en) Semiconductor device and manufacturing method thereof
JP2764988B2 (en) Semiconductor device
JPH03152936A (en) Semiconductor integrated circuit device
JPH0475346A (en) Manufacture of semiconductor device
JPH06188259A (en) Manufacture of semiconductor device
JPH0621077A (en) Semiconductor device and manufacture thereof
JPH0488638A (en) Manufacture of semiconductor device
JPH0722433A (en) Semiconductor device and its manufacture
KR19980013700A (en) Semiconductor Transistor Manufacturing Method
JPH04112544A (en) Semiconductor device and manufacture