JPS60107831A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS60107831A
JPS60107831A JP21665783A JP21665783A JPS60107831A JP S60107831 A JPS60107831 A JP S60107831A JP 21665783 A JP21665783 A JP 21665783A JP 21665783 A JP21665783 A JP 21665783A JP S60107831 A JPS60107831 A JP S60107831A
Authority
JP
Japan
Prior art keywords
layer
insulating film
silicon
semiconductor device
metal silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21665783A
Other languages
Japanese (ja)
Inventor
Toru Mochizuki
徹 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21665783A priority Critical patent/JPS60107831A/en
Publication of JPS60107831A publication Critical patent/JPS60107831A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To lead out an electrode positively even in a small hole by burying the inside of an opening with a laminate consisting of polycrystalline Si and a Pt silicide layer and forming an Al wiring to the upper section of the opening when source-drain regions are diffused and shaped to the surface layer section of a semiconductor substrate, the whole surface is coated with an inter-layer insulating film, the opening is bored and electrodes are each formed to these regions. CONSTITUTION:A thick field insulating film 12 is formed to the peripheral section of a P type Si substrate 11, N<+> type source-drain regions 16 are diffused and shaped to the surface layer section of the substrate 11 surrounded by the insulating film 12, and a gate electrode 14 surrounded by an insulating film 15 is formed between these regions 16. The whole surface is coated with an inter-layer insulating film 17, contact holes 18 are bored made to correspond to the regions 16, and platinum silicide layers 19 are buried in the contact holes first. A polycrystalline Si layer 20 is grown on the whole surface, and annealed in an atmosphere at approximately 600 deg.C, Si atoms in the layer 20 are diffused in the direction of the substrate 11 through the layers 19, and Si layers 21 are grown under the layers 19. The unnecessary layer 20 remaining on the film 17 is removed through etching, and Al wirings 22 are applied on the layers 19.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置に関するもので、trflCコンタ
クト孔の小さなLSIに使用されるものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device, and is used in an LSI having a small trflC contact hole.

〔発明の技術的背景〕[Technical background of the invention]

第1図に従来のnチャネルMO8型半導体装置を示す。 FIG. 1 shows a conventional n-channel MO8 type semiconductor device.

これによれば、p型シリコン基板lの上面には素子間分
離のための厚い酸化膜コと絶縁膜5に囲まれた多結晶シ
リコンのゲート電極グが設けられており、これらの間の
シリコン基板lの上面付近にはn拡散頭載であるソース
、ドレイン領域6が形成され、ゲート電極ダと基板lと
の間に介在する絶縁膜はゲート酸化膜Jとなっている。
According to this, a polycrystalline silicon gate electrode surrounded by a thick oxide film for isolation between elements and an insulating film 5 is provided on the upper surface of a p-type silicon substrate l, and the silicon Near the upper surface of the substrate l, source and drain regions 6, which are n-diffusion tops, are formed, and the insulating film interposed between the gate electrode and the substrate l is a gate oxide film J.

これらの全体の上には層間絶縁膜7が形成されているが
ソース、ドレイン領域すとのコンタクトを行うために開
口部gが設けられアルミニウム蒸着により形成された電
極配線9が設けられている。
An interlayer insulating film 7 is formed on all of these, and an opening g is provided for contacting the source and drain regions, and electrode wiring 9 formed by aluminum evaporation is provided.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、このような開口部における蒸着アルミニ
ウムの付着厚さは一様ではない〇すなわち、第2図(a
)に示すように開口部gの周囲の絶縁膜り上のアルミニ
ウム層tの厚さaに比べ開口部ざの内枠における厚さb
は開口部が一辺/、5μmの正方形状の場合jtO%程
度の厚さにすぎない。これは絶縁膜の段差部が蒸着時の
影となるためて、開口部がさらに小さくなった場合、第
2図(b)に示すようにアルミニウムの蒸着厚さは絶縁
膜上と開口内部で著しく差を生じて段差被僚状態(ステ
ップ力・々レージ)が悪化し、開口壁の途中で蒸着膜の
不連続部が発生することもある。このような不連続部の
発生によってソース、ドレイン領域と配線との接続が不
良または不完全とカリ、大電流による断線等による信頼
性の低下や製品不良を招くという問題lがある。
However, the deposition thickness of vapor-deposited aluminum in such openings is not uniform.
), compared to the thickness a of the aluminum layer t on the insulating film around the opening g, the thickness b at the inner frame of the opening is
When the opening has a square shape with a side of 5 μm, the thickness is only about jtO%. This is because the step part of the insulating film becomes a shadow during vapor deposition, so if the opening becomes even smaller, the thickness of the aluminum vapor deposited on the insulating film and inside the opening will be significantly reduced, as shown in Figure 2 (b). This may cause a difference in step strength and worsen the step force, and may cause a discontinuous portion of the deposited film in the middle of the opening wall. The occurrence of such discontinuities causes problems such as poor or incomplete connections between the source and drain regions and the wiring, leading to decreased reliability and product defects due to potions, disconnections due to large currents, and the like.

〔発明の目的〕[Purpose of the invention]

本発明は上述の問題点を解決しようとしてなされたもの
で、小さなコンタクト孔においても電極引出しが確実に
行われる半導体装置、を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a semiconductor device in which electrodes can be drawn out reliably even in small contact holes.

〔発明の概要〕[Summary of the invention]

上記目的達成のため、本発明にかかる半導体装置におい
てはシリコン基板上に形成された層間絶縁膜に開口され
たコンタクト孔と、このコンタクト孔内の前記シリコン
基板上に形成されたシリコン同相拡散層およびその上層
である金属珪化物層と、この金属珪化物層の上に形成さ
れたアルミニウム配線層とを有するようにしており、従
来高密度半導体装置における小さなコンタクト孔で発生
しがちであった接続不良を防止できるものである。
To achieve the above object, a semiconductor device according to the present invention includes a contact hole opened in an interlayer insulating film formed on a silicon substrate, a silicon common-mode diffusion layer formed on the silicon substrate in the contact hole, It has a metal silicide layer as an upper layer, and an aluminum wiring layer formed on the metal silicide layer, which causes connection failures that tend to occur in small contact holes in conventional high-density semiconductor devices. can be prevented.

またこのような半導体装置を実現する本発明にかかる半
導体装置の製造方法においては、シリコン基板上に形成
された層間絶縁膜に開口を行いコンタクト孔を形成する
工程と、金属膜な全面に形成する工程と、所定の加熱雰
囲気中でアニールを行って金属珪化物層を形成する工程
と、前記層間絶縁股上に残存している前記金属膜を除去
する工程と、多結晶シリコン層を全面に形成する工程と
、所定の加熱雰囲気中でアニールを行ってシリコンの同
相拡散によりシリコン成長層を形成する工程と、前記層
間絶縁股上に残存している前記多結晶シリコン層をエッ
テンク゛除去する工程と、前記コンタクト孔内に形成さ
れた金属珪化物層に接触する配線層を形成する工程とを
有するようにしているO 〔発明の実施例〕 最初に本発明の基本原理となっているシリコンの同相成
長現象について説、明する。
Further, in the semiconductor device manufacturing method according to the present invention for realizing such a semiconductor device, there are a step of forming a contact hole by making an opening in an interlayer insulating film formed on a silicon substrate, and a step of forming a contact hole on the entire surface of a metal film. a step of annealing in a predetermined heating atmosphere to form a metal silicide layer; a step of removing the metal film remaining on the interlayer insulation crotch; and forming a polycrystalline silicon layer on the entire surface. a step of annealing in a predetermined heating atmosphere to form a silicon growth layer by in-phase diffusion of silicon; a step of removing the polycrystalline silicon layer remaining on the interlayer insulation crotch by etching; and a step of etching the contact. Embodiments of the Invention First, we will explain the in-phase growth phenomenon of silicon, which is the basic principle of the present invention. explain.

これは/?75年アメリカの応用物理学会誌(J。this is/? 1975 Journal of the American Society of Applied Physics (J.

A、 P、、 VOl、4’lコgJベージ)に掲載さ
れたカナIJ (0anali )等の論文によって報
告された現象であって、シリコン基板の上に金属珪化物
例えば珪化白金の層とその上に多結晶シリコン層を形成
してboo ’cの雰囲気中でアニールを行うと、多結
晶シリコン中のシリコン基板が珪化白金層を通して固相
拡散し、シリコン基板上にシリコンの固相成長層が得ら
れる現象である。このとき珪化白金層はシリコン層の成
長に伴って上方に移動し、最終的に多結晶シリコン層と
置き換わる・以下、図面を参照しながら本発明の一実施
例を説明する。
This is a phenomenon reported in a paper by Kana IJ (0anali) and others published in A, P, VOl, 4'l CogJ Page), in which a layer of a metal silicide, such as platinum silicide, is deposited on a silicon substrate. When a polycrystalline silicon layer is formed on top and annealed in a boo'c atmosphere, the silicon substrate in the polycrystalline silicon undergoes solid phase diffusion through the platinum silicide layer, forming a solid phase growth layer of silicon on the silicon substrate. This is a phenomenon that can be obtained. At this time, the platinum silicide layer moves upward as the silicon layer grows and is finally replaced by the polycrystalline silicon layer.Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第3図は、本発明にかかる半導体装置の製造方法におけ
るコンタクト孔およびその引出し部の形成工程を各工程
ごとに示した断面図であって、第3図(e)は本発明に
かかる半導体装置の完成状態を示している。この完成状
態のnチャネルMO8半導体装置においては、p型シリ
コン基板l/の表面側に形成されたn+饋頭載あるソー
ス、ドレイン頭載/Lの上に形成された層間絶縁膜17
の一部にこれらソース、ドレイン頭載/6から引出しを
行うために開口されたコンタクト孔/gが設けられ、こ
のコンタクト孔1g内にはシリコン基板ll上にシリコ
ン固相成長層21とその上に金属珪化物層/9が形成さ
れ・さらにこの金属珪化物層の上にアルミニウム配線層
22が形成されている。
FIG. 3 is a cross-sectional view showing each step of forming a contact hole and its lead-out portion in the method for manufacturing a semiconductor device according to the present invention, and FIG. The completed state is shown. In this completed n-channel MO8 semiconductor device, an interlayer insulating film 17 is formed on the source and drain heads /L formed on the surface side of the p-type silicon substrate /L.
A contact hole /g is provided in a part of the source/drain head /6 for drawing out the source and drain, and in this contact hole 1g there is a silicon solid phase growth layer 21 on the silicon substrate 11 and a silicon solid phase growth layer 21 on the silicon substrate 11. A metal silicide layer /9 is formed on the metal silicide layer, and an aluminum wiring layer 22 is further formed on this metal silicide layer.

次にこのような構成の半導体装置を製造する工程を11
員を追って説明する。
Next, the process of manufacturing a semiconductor device having such a configuration is described in 11.
Follow the staff and explain.

第3図(a)はコンタクト孔を開口した状態のフローテ
ィンダゲート型nチャネルMO8半導体装置を示し、番
号//〜/gは第1図の従来例における番号/ −II
と対応しており、通常のMO8製造技術を用いて製造さ
れる。
FIG. 3(a) shows a floating gate type n-channel MO8 semiconductor device with a contact hole opened, and the numbers // to /g are the numbers /-II in the conventional example in FIG.
and is manufactured using normal MO8 manufacturing techniques.

この状態で白金を蒸着法、スパッタ法等により全体に約
1000 A被着させ、約’100 ’Cの雰囲気中で
アニールを約7時間行うとシリコン基板//のn+鎮域
と接触している白金層は珪化白金層/9として成長する
。コンタクト孔以外の層間絶縁膜上に残存している白金
層を王水によって除去すると第3図φ)に示す状態が得
られる〇 次に多結晶シリコン層にを全体に約5000 Aの厚さ
にCVD法により形成する( 14 J図(C))。
In this state, approximately 1000 A of platinum is deposited on the entire surface by vapor deposition, sputtering, etc., and annealing is performed in an atmosphere of approximately 100 C for approximately 7 hours, resulting in contact with the n+ region of the silicon substrate. The platinum layer is grown as a platinum silicide layer/9. When the platinum layer remaining on the interlayer insulating film other than the contact hole is removed using aqua regia, the state shown in Figure 3 φ) is obtained.Next, the polycrystalline silicon layer is coated to a total thickness of about 5000 A. It is formed by the CVD method (Figure 14 J (C)).

この状態で約6θθ°Cの雰囲気中でアニールな約2時
間行うと、固体拡散現象によって、多結晶シリコンJ中
のシリコン原子は珪化白−f、、Psiqを通してシリ
コン基板//め方へ拡散するので、シリコン基板ll上
にはシリコン成長層2/が形成され、珪化シリコン層/
9はこのシリコン成長層21の成長に伴って上方へ移動
する(第3図(d))。
When annealing is performed in this state for about 2 hours in an atmosphere of about 6θθ°C, the silicon atoms in the polycrystalline silicon J diffuse into the silicon substrate through the silicide white -f, Psiq due to solid state diffusion phenomenon. Therefore, a silicon growth layer 2/ is formed on the silicon substrate ll, and a silicon silicide layer 2/ is formed on the silicon substrate ll.
9 moves upward as the silicon growth layer 21 grows (FIG. 3(d)).

その後、層間絶縁膜/7上に残存している多結晶シリコ
ン層〃をダ沸化メタン(CF4)を用いたプラズマエラ
テン〆によって除去し、アルミニウム配線コニを形成す
ると第3図(θ)の完成状態となる。
After that, the polycrystalline silicon layer remaining on the interlayer insulating film/7 is removed by plasma elastane using defluorinated methane (CF4), and an aluminum wiring layer is formed, as shown in Fig. 3 (θ). It will be in a completed state.

以上の工程において、シリコン成長層、2/上の珪化白
@層/qの上面は層間絶R膜17の上面と同一平面をガ
すようにするのがアルミニウム配線の形成を容易化する
In the above steps, the upper surface of the white silicide layer /q on the silicon growth layer 2/ is flush with the upper surface of the interlayer R film 17 to facilitate the formation of the aluminum wiring.

以上の実施例においてはシリコンの固相成長のために必
要な金属珪化物として珪化白金を用いたが、この輩属と
して白金以外にパラジウム(PCl)、クロム(Or)
、ニッケル(IJi)4Fを用いることができる0また
多結晶シリコンの代りにアモルファスシリコン八」を用
いてもよい)。
In the above embodiments, platinum silicide was used as the metal silicide necessary for solid-phase growth of silicon, but in addition to platinum, palladium (PCl) and chromium (Or) were used as metal silicides.
, nickel (IJi) 4F may be used, and amorphous silicon may be used instead of polycrystalline silicon).

また、実施例ではnチャネルMO8型半導体装置につい
て述べたが、pナヤネルMOBm半導体装置にも同様に
適用することができる。
Further, in the embodiment, an n-channel MO8 type semiconductor device has been described, but the present invention can be similarly applied to a p-channel MOBm semiconductor device.

〔発明の効果〕〔Effect of the invention〕

以上のような本発明にかかる半導体装置においては、コ
ンタクト孔内をシリコン固相成長層とその上に形成沁れ
た金属珪化物層で埋めているので、コンタクト孔が小さ
な場合でもアルミニウム配線を形成する蒸元時に層間絶
#膜の段差部が影とならず、不連続部のない信頼性の高
い電体引出しを行うことができる。これは特に金属珪化
物層の上面か層間絶縁1!e、、の上面と一致するとぎ
に特に良好な結果を得ることができる。
In the semiconductor device according to the present invention as described above, the inside of the contact hole is filled with a silicon solid-phase growth layer and a metal silicide layer formed thereon, so even if the contact hole is small, aluminum wiring can be formed. During the evaporation process, the stepped portion of the interlayer insulation film does not become a shadow, and highly reliable electric conductor extraction without discontinuities can be performed. This is particularly important for the upper surface of the metal silicide layer or the interlayer insulation 1! Particularly good results can be obtained if the upper surfaces of e, .

また本発明にかかる半導体装置の製造方法は、上記半導
体装置を安定に製造することを可能にするものである。
Further, the method for manufacturing a semiconductor device according to the present invention makes it possible to stably manufacture the semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMO8半導体装置の構成を示す断面図、
第2図は従来の半導体装置においてコンタクト孔が小さ
く外っだときの問題点7示す図、第3図は本発明にかか
る半導体装置およびその製造方法を示す各f程ごとの断
面図である・/、//・・・シリコン基板、2./2・
・・厚し)酸化膜、3、/3・・・ゲート饅化膜、弘、
/4’・・ゲート電極、S。 15・・・絶縁膜、6,16・・・ソース、ドレイン頭
載、t。 17・・・ル1間絶縁膜、g、1g・・・コンタクト孔
、ツ、22・・・電極配線、/?・・・珪化白金層、ユ
θ・・・多結晶71137層、ニド・シリコン固相成長
層。 出願人代理人 猪 股 清 巧 1 口 (b) b2 霞 6(e) ら 3 図
FIG. 1 is a cross-sectional view showing the configuration of a conventional MO8 semiconductor device,
FIG. 2 is a diagram showing problem 7 when a contact hole is small and out of place in a conventional semiconductor device, and FIG. 3 is a cross-sectional view for each f degree showing a semiconductor device and its manufacturing method according to the present invention. /, //... silicon substrate, 2. /2・
... Thick) Oxide film, 3, /3... Gate oxide film, Hiroshi,
/4'...Gate electrode, S. 15... Insulating film, 6, 16... Source, drain overhead, t. 17... Le 1 insulating film, g, 1g... Contact hole, 22... Electrode wiring, /? ...Platinum silicide layer, Uθ...polycrystalline 71137 layer, Nido silicon solid phase growth layer. Applicant's agent Seitaku Inomata 1 Kuchi (b) b2 Kasumi 6 (e) et al. 3 Figure

Claims (1)

【特許請求の範囲】 1、シリコン基板上に形成された層間絶縁膜に開口され
たコンタクト孔と、 このコンタクト孔内の前記シリコン基板上に形成された
シリコン同相成長層およびその上に形成された金属珪化
物ノーと、 この金属珪化物層の上に形成されたアルミニウム配線層
、 とを有することを特徴とする半導体装置〇コ、金属珪化
物層の上面が層間絶縁膜の上面と略一致することを特徴
とする特許請求の範囲第7項記載の半導体装置。 J・金属珪化物が珪化白金である特許請求の範囲第1項
記載の半導体装置。 V、シリコン基板上に形成された層間絶縁膜に開口を行
いコンタクト孔を形成する工程と、金属膜な全面に形成
する工程と、 所定の加熱雰囲気中でアニールを行って金属珪化物層を
形成する工程と、 前記眉間絶縁膜上に残存している前記金属膜な除去する
工程と、 多結晶シリコン層を全面に形成する工程と、所定の加熱
雰囲気中でアニールを行ってシリコンの固相拡散により
シリコン固相成長層を形成す、る工程と、 前記層間絶縁I膜上に残存している前記多結晶シリコン
層をエツチング除去する工程と、前記コンタクト孔内に
形成された金属珪化物層に接触する配線層を形成する工
程、とt有することを特徴とする半導体装置の製造方法
[Claims] 1. A contact hole opened in an interlayer insulating film formed on a silicon substrate, a silicon in-phase growth layer formed on the silicon substrate in the contact hole, and a silicon in-phase growth layer formed on the silicon substrate. A semiconductor device comprising: a metal silicide layer; and an aluminum wiring layer formed on the metal silicide layer, wherein the top surface of the metal silicide layer substantially coincides with the top surface of the interlayer insulating film. A semiconductor device according to claim 7, characterized in that: J. The semiconductor device according to claim 1, wherein the metal silicide is platinum silicide. V. A process of forming an opening in an interlayer insulating film formed on a silicon substrate to form a contact hole, a process of forming a metal film on the entire surface, and annealing in a predetermined heating atmosphere to form a metal silicide layer. a step of removing the metal film remaining on the glabella insulating film; a step of forming a polycrystalline silicon layer on the entire surface; and annealing in a predetermined heating atmosphere to achieve solid phase diffusion of silicon. forming a silicon solid-phase growth layer by etching away the polycrystalline silicon layer remaining on the interlayer insulating I film, and etching the metal silicide layer formed in the contact hole. A method for manufacturing a semiconductor device, comprising the steps of: forming a contacting wiring layer.
JP21665783A 1983-11-17 1983-11-17 Semiconductor device and manufacture thereof Pending JPS60107831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21665783A JPS60107831A (en) 1983-11-17 1983-11-17 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21665783A JPS60107831A (en) 1983-11-17 1983-11-17 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60107831A true JPS60107831A (en) 1985-06-13

Family

ID=16691886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21665783A Pending JPS60107831A (en) 1983-11-17 1983-11-17 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60107831A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5198956A (en) * 1975-02-26 1976-08-31

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5198956A (en) * 1975-02-26 1976-08-31

Similar Documents

Publication Publication Date Title
JPH04346224A (en) Method for forming barrier metal structure
JP3240725B2 (en) Wiring structure and its manufacturing method
JPH0897384A (en) Semiconductor memory device and manufacture thereof
JPS6070743A (en) Manufacture of semiconductor device
JPS60107831A (en) Semiconductor device and manufacture thereof
JPH065674B2 (en) Method for manufacturing semiconductor device
JP2950620B2 (en) Semiconductor device
JPS62155537A (en) Manufacture of semiconductor device
JPS6230494B2 (en)
JPH067576B2 (en) Method of manufacturing semiconductor device having multilayer wiring structure
JPS5951549A (en) Manufacture of integrated circuit device
KR950013739B1 (en) Semiconductor device and the manufacturing method
JPH03112151A (en) Active layer stacked element
JP2797367B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2789938B2 (en) Semiconductor device
JPH01144671A (en) Manufacture of semiconductor memory device
JPH05166941A (en) Semiconductor self-alignment contact structure and manufacture thereof
JPH04326553A (en) Manufacture of semiconductor device
JPH01273333A (en) Manufacture of semiconductor device
JPS59194451A (en) Manufacture of semiconductor device
JPH06104428A (en) Semiconductor device and its manufacture
JPH01304726A (en) Preparation of semiconductor device
JPH0273651A (en) Semiconductor device
JPH1145936A (en) Semiconductor device and its manufacture
JPH0442952A (en) Electrode wiring of semiconductor device and formation thereof