JPS6010663A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6010663A
JPS6010663A JP58118905A JP11890583A JPS6010663A JP S6010663 A JPS6010663 A JP S6010663A JP 58118905 A JP58118905 A JP 58118905A JP 11890583 A JP11890583 A JP 11890583A JP S6010663 A JPS6010663 A JP S6010663A
Authority
JP
Japan
Prior art keywords
region
gate
type
transistor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58118905A
Other languages
Japanese (ja)
Other versions
JPH0576770B2 (en
Inventor
Masaharu Hamazaki
浜崎 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP58118905A priority Critical patent/JPS6010663A/en
Publication of JPS6010663A publication Critical patent/JPS6010663A/en
Publication of JPH0576770B2 publication Critical patent/JPH0576770B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Abstract

PURPOSE:To read out an ultrafine signal charge in high sensitivity by forming an MOS transistor through a gate insulating layer on a semiconductor region which stores signal charge, and using the region as the gate of the transistor. CONSTITUTION:After N<+> type region 33 to become a gate as divided by a channel stop region 31 is formed on the main surface of a P type substrate 1, a silicon semiconductor layer 35 is formed through a gate insulating layer 34. A P type channel forming unit 36 is formed, N<+> type regions 37, 38 are formed to become source and drain at both sides, thereby forming an output MOS transistor FET-1. Further, a P type channel forming unit 39, and an N<+> type region 40 are formed, N<+> type regions 38, 40 disposed at both sides of the unit 39 are used as the source and the drain, the region 33 at the substrate 1 side is used as the gate, thereby forming an MOS transistor FET-2 as a load.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、CCD電荷転送素子、MOS−ダイナミック
RAM等の如き半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to semiconductor devices such as CCD charge transfer devices, MOS-dynamic RAMs, and the like.

背景技術とその問題点 CCD電荷転送素子においては、CCD転送レジスタ部
を通じて転送された信号電荷が一旦フローティング・デ
ィツージョン領域に蓄積され、その後出力MO3)ラン
ジスタにより読み出される。
Background Art and Its Problems In a CCD charge transfer device, signal charges transferred through a CCD transfer register section are once stored in a floating desorption region, and then read out by an output MO3) transistor.

第1図はこのCCD電荷転送素子の出力部の構成を示す
。図中、(1)は第1導電形例えばP形のシリコン半導
体基体、(2)は基体(1)の所定領域に形成されたC
CD転送レジスタ部で、これは基体(1)上にS +0
2等の絶縁層(3)を介して複数の転送電極(4)を被
着形成して構成される。このCCD転送レジスタ部(2
)の終端に第2導電形即ちN十形のフローティング・デ
ィツージョン領域(5)が形成される。(6)はプリチ
ャージ・ドレイン領域、(7)はリセットパルスφRが
与えられるゲート電極である。フローティング・ディツ
ージョン領域(5)は、ソース、ドレインとなるN十形
領域(8)及び(9)と両領域間上に絶縁N(3)を介
して設けられたゲート電極00)とから成る出力MO3
)ランジスタ(PUT−1)のゲートに接続される。(
PET−2)は出力MO3)ランジスタ(F[!T−1
)に接続された負荷としてのMOSトランジスタでN十
形領域(91,(11)と絶縁層(3)上のゲート電極
(12)で構成される。(13)は電極i1である。
FIG. 1 shows the configuration of the output section of this CCD charge transfer device. In the figure, (1) is a silicon semiconductor substrate of a first conductivity type, for example, P type, and (2) is a silicon semiconductor substrate formed in a predetermined region of the substrate (1).
In the CD transfer register section, this is S +0 on the base (1).
It is constructed by depositing a plurality of transfer electrodes (4) through an insulating layer (3) such as No. 2 or the like. This CCD transfer register section (2
) is formed with a floating desorption region (5) of a second conductivity type, that is, an N+ type. (6) is a precharge/drain region, and (7) is a gate electrode to which a reset pulse φR is applied. The floating desorption region (5) is formed from the N-shaped regions (8) and (9) which become the source and drain, and the gate electrode 00) provided between the two regions via the insulating N (3). Output MO3 consisting of
) is connected to the gate of the transistor (PUT-1). (
PET-2) is the output MO3) transistor (F[!T-1
) is a MOS transistor as a load, and is composed of an N-shaped region (91, (11)) and a gate electrode (12) on an insulating layer (3). (13) is an electrode i1.

ところで、かかる構成の出力部ではフローティング・デ
ィツージョン領域(5)と出力MO3I−ランジスク(
FET−1)のゲートとが配線(14)を介して接続さ
れているために、配線(14)の浮遊容量分Cstだげ
出力電圧Voutが小さくなってしまう。
By the way, in the output section with such a configuration, there is a floating dispersion area (5) and an output MO3I-range disk (
Since the gate of FET-1) is connected via the wiring (14), the output voltage Vout becomes smaller by the stray capacitance Cst of the wiring (14).

今、フローティング・ディツージョン領域(5)におけ
る容量をCFD + 出力MO3I−ランジスク(FE
T−1)のゲート容量をCgとすると、出力電圧Vou
tはVout =Qsig −G/ (Cg+Cst+
CpD)・・・・・(1) となる。ここで、Q 5iIXは信号型4’r+Gは出
力MO3+−ランジスタの利得である。通常ばCst>
Cg+CFDとなっており、出力電圧が極めて小さくな
る。
Now, the capacitance in the floating dispersion area (5) is calculated by CFD + output MO3I-Ranjisk (FE
If the gate capacitance of T-1) is Cg, the output voltage Vou
t is Vout =Qsig -G/ (Cg+Cst+
CpD)...(1). Here, Q5iIX is the signal type 4'r+G is the gain of the output MO3+- transistor. Normally Cst>
Cg+CFD, and the output voltage becomes extremely small.

一方、同様のことがMOS−ダイナミックRAMの場合
にも生じる。第2図は従来のダイナミックRAMのユニ
ッI・・セルの平面図、第3図はそのA−A線−ヒの断
面図、第4図はその等価回路である。図中、(21)は
例えばP形シリコン基体で、その−主面にソース、ドレ
インとなるN十形領域(22)及び(23)が形成され
、両N十形領域(22)及び(23)間の基体(21)
上にゲート絶ε3・層(24)を介して多結晶シリコン
よりなるゲート電極(25)が被着されてMOSトラン
ジスタ(Trl)が構成される。一方のN十形領域(2
2)上には絶縁層(24)を介して多結晶シリコンより
なる電極(26)が形成され、ごのN十形領域(22)
と電極(26)間で情報蓄積用の容量CHが構成される
。(27)はワード線、(28)はビット線である。こ
の構成では情報蓄積用の容量CHを構成するN十形領域
(22)が前述のフローティング・ディツージョン領域
に相当し、その容Fit CHが前述のCPDに相当す
る。
On the other hand, the same thing occurs in the case of MOS-dynamic RAM. FIG. 2 is a plan view of a unit I cell of a conventional dynamic RAM, FIG. 3 is a sectional view taken along line A--A, and FIG. 4 is an equivalent circuit thereof. In the figure, (21) is, for example, a P-type silicon substrate, on the main surface of which are formed N-type regions (22) and (23), which become sources and drains. ) Substrate (21) between
A gate electrode (25) made of polycrystalline silicon is deposited thereon via a gate insulation layer (24) to form a MOS transistor (Trl). One N-decade region (2
2) An electrode (26) made of polycrystalline silicon is formed on the top via an insulating layer (24), and an N-shaped region (22) is formed on the top.
A capacitor CH for information storage is formed between the electrode (26) and the electrode (26). (27) is a word line, and (28) is a bit line. In this configuration, the N-shaped area (22) constituting the information storage capacity CH corresponds to the above-mentioned floating detour area, and the capacity CH corresponds to the above-mentioned CPD.

とごろで、このようなダイナミックRAMでは、ビット
線(27)が非常に長く、ビット線の浮遊容1cstが
Cst>>CHとなるために出力が非常に小さくなる。
In such a dynamic RAM, the bit line (27) is very long and the stray capacitance 1cst of the bit line becomes Cst>>CH, so the output becomes very small.

従来は、チャージ・アンプを使用してかかる欠点を回避
しているが、信号が小さいためノイズ等による誤動作が
生じ易い欠点があった。
Conventionally, this drawback has been avoided by using a charge amplifier, but since the signal is small, there is a drawback that malfunctions are likely to occur due to noise or the like.

またこの構成では情報を読み出すとQstgを外部に取
り出してしまうため、読み出し後、元の状態に戻す動作
が必要である。
Furthermore, in this configuration, when information is read, Qstg is taken out to the outside, so an operation is required to restore the original state after reading.

発明の目的 本発明は、上述の点に鑑み、高感度に微小電荷を読み出
すことができるC、CD電荷転送素子、MOS−ダイナ
ミックRAM等の半導体装置を提供するものである。
OBJECTS OF THE INVENTION In view of the above-mentioned points, the present invention provides a semiconductor device such as a C or CD charge transfer element, a MOS-dynamic RAM, etc., which can read minute charges with high sensitivity.

発明の概要 本発明は、信号電荷を蓄積する半導体領域上にゲート絶
縁層を介してMO3I−ランジスタを構成し、半導体領
域をMOSトランジスタのゲートとして用い、高感度に
微小電荷を読み出すようにしたものである。
Summary of the Invention The present invention configures a MO3I-transistor on a semiconductor region that stores signal charges via a gate insulating layer, and uses the semiconductor region as a gate of a MOS transistor to read minute charges with high sensitivity. It is.

実施例 以)、本発明の実施例について説明する。Example Hereinafter, embodiments of the present invention will be described.

第5図及び第6図は本発明をCOD電荷転送素子、特に
その出力部に適用した実施例である。第5し1は概隙的
平面図、第6図はそのB−B線上の断面図であり、第1
図と対応する部分には同一符号を付す。
FIGS. 5 and 6 show embodiments in which the present invention is applied to a COD charge transfer device, particularly to an output section thereof. 5th 1 is a rough plan view, FIG. 6 is a sectional view taken along the line BB, and 1st
Parts corresponding to those in the figure are given the same reference numerals.

第5図において、(2)は例えばP形のシリコン半導体
基体(1)の所定領域の主面に形成された第1図と同様
の構成をとるCCD転送レジスタ部、(31)はチャン
ネルストップ領域を示す。CCD転送レジスタ部(2)
の終端には斜線で示すN十形のフローティング・ディツ
ージョン領域(5)が形成され、これに接する領域(3
2)には図示せざるも第1図と同しプリチャージ・ドレ
イン領域(6)及びリセットパルスφRが印加されるゲ
ー)?4極(7)が形成される。
In FIG. 5, (2) is, for example, a CCD transfer register section formed on the main surface of a predetermined region of a P-type silicon semiconductor substrate (1) and has a configuration similar to that in FIG. 1, and (31) is a channel stop region. shows. CCD transfer register section (2)
An N-shaped floating detour area (5) shown with diagonal lines is formed at the end of the area, and an area (3
2) also includes a precharge/drain region (6) and a gate to which a reset pulse φR is applied, which are not shown in FIG. Four poles (7) are formed.

本発明においては、第5図及び第6図に示すようにフロ
ーティング・ディツージョン領域(5)の側部に対応す
るP形基体主面にチャンネルストップ領域(31)で区
分される如くゲートとなるN十形領域(33)を形成し
て後、このフローティング・ディツージョン領域(5)
、チャンネルストップ領域(31)及びN十形領域(3
3)を含む所要領域上にゲート絶縁層(34)を介して
シリコン半導体層(35)を形成する。この場合、シリ
コン半導体層(35)はゲート絶縁層(34)上に多結
晶又は非晶質シリコン層を形成し、これを再結晶化して
得る。
In the present invention, as shown in FIGS. 5 and 6, a gate and a channel stop region (31) are formed on the main surface of the P-shaped substrate corresponding to the side of the floating detour region (5). After forming the N-shaped region (33), this floating detour region (5)
, channel stop region (31) and N-shaped region (3
A silicon semiconductor layer (35) is formed on a required region including 3) via a gate insulating layer (34). In this case, the silicon semiconductor layer (35) is obtained by forming a polycrystalline or amorphous silicon layer on the gate insulating layer (34) and recrystallizing this layer.

そして、このシリコン半導体層(35)のフローティン
グ・ディツージョン領域(5)の直上に対応する部分に
P形のチャンネル形成部(36)を形成すると共に、こ
のチャンネル形成部(36)の両側にソ−ス、ドレイン
となるN十形領域(37)及び(38)を形成して出力
MO3)ランジスク(FnT−1’)を構成する。この
出力MO3+−ランジスタ(FIiT−1)はフローテ
ィング・ディツージョン領域(5)自身をゲートとじて
用いる。さらに、シリコン半導体層(35)の他部には
P形チャンネル形成部(39)及びN十形領域(40)
を形成し、チャンネル形成部(39)を挾む両側のN十
形領域(38)及び(40)をソース、ドレインとし、
基体+1.1側のN十形領域(33)をゲートとした負
荷としてのMOS)ランジスタ(PUT−2)を構成す
る。
Then, a P-type channel forming portion (36) is formed in a portion of this silicon semiconductor layer (35) corresponding to directly above the floating desorption region (5), and a P-type channel forming portion (36) is formed on both sides of this channel forming portion (36). N-shaped regions (37) and (38) serving as a source and a drain are formed to constitute an output MO3) transistor (FnT-1'). This output MO3+- transistor (FIiT-1) uses the floating desorption region (5) itself as a gate. Further, in other parts of the silicon semiconductor layer (35), a P-type channel forming portion (39) and an N-type region (40) are formed.
N-shaped regions (38) and (40) on both sides sandwiching the channel forming part (39) are used as a source and a drain,
A MOS (MOS) transistor (PUT-2) as a load is configured with the N-shaped region (33) on the +1.1 side of the base as a gate.

かかる構成によれば、フローティング・ディツージョン
領域(5)上にゲート絶縁X (34)を介して出力M
O3)ランジスタ(FIiT−1)を形成し、そのゲー
トとしてフローティング・ディツージョン領域(5)を
利用しているので、フローティング・ディツージョン領
域(5)と出力MO3)ランジスタ(FET−1)のゲ
ート間の配線が省mBされる。従って配線の7!−遊客
量分Cstがなくなり、出力電圧Voutが大きくなる
。即ち高感度に微小電荷の読み出しが可能となる。また
上記配線はインピーダンスが高いのでノイズを拾い易い
が、本例では配線がないためにノイズの影響が小さい。
According to this configuration, the output M is placed on the floating detour region (5) via the gate insulation X (34).
Since the O3) transistor (FIiT-1) is formed and the floating detourion region (5) is used as its gate, the floating detourion region (5) and the output MO3) transistor (FET-1) are formed. wiring between gates can be saved in mB. Therefore, wiring 7! -The amount of visitors Cst is eliminated, and the output voltage Vout increases. That is, it becomes possible to read minute charges with high sensitivity. Further, since the above wiring has high impedance, it easily picks up noise, but in this example, since there is no wiring, the influence of noise is small.

第7図乃至第9図は本発明をMOS−ダイナミックRA
Mに適用した場合の実施例である。なお、第7図はダイ
ナミックRAMのユニット・セルの平面図、第8図はそ
のC−C線上の断面図、第9図はその等価回路であり、
第2図乃至第4図に対応する部分には同一符号を付す。
7 to 9 show the present invention in MOS-dynamic RA
This is an example when applied to M. 7 is a plan view of the unit cell of the dynamic RAM, FIG. 8 is a sectional view taken along the line CC, and FIG. 9 is its equivalent circuit.
Components corresponding to those in FIGS. 2 to 4 are given the same reference numerals.

本例ではP形シリコン基体(21)の主面にソース、ド
レインとなるN十形領域(22)及び(23)を形成し
、両N十形領域(22)及び(23)間の基体(1)上
にゲート絶縁層(24)を介して多結晶シリコンによる
ゲート電極(25)を形成してMOSトランジスタ(T
rx )を構成し、一方のN十形領域(22)にて情報
蓄積用の容量CHを構成する。このN十形領域(22)
上にはゲート絶縁層(24)を介してシリコン半導体層
(41)を形成する。この場合もシリコン半導体層(4
1)は前述と同様にゲート絶縁層(24)上に多結晶又
は非晶質シリコン1dを形成し、これを再結晶化してi
qる。そして、このシリコン半導体層(旧)のN十形領
域(22)に対応する部分にP形チャンネル形成部(4
2)を形成すると共に、その両側にソース、ドレインと
なるN十形領域(43)及び(44)を形成してMOS
トランジスタ(T’r2)を構成する。このMOSトラ
ンジスタ(Tr2)は信号型6:1が蓄積されるN十形
領域(22)自身をゲートとして用いる。(45)はチ
ャンネルストップ領域である。そして、等価回路で示す
ように一方のMos+−ランジスク(Trz )に書込
みビット線(46)及び書込めワード線(47)を、他
方のMOS)ランジスタ(Tr2)に読出しビット線(
46”)及び読j11シワード線(47’)を夫々接続
する。
In this example, N-type regions (22) and (23) that will become the source and drain are formed on the main surface of a P-type silicon substrate (21), and the substrate ( 1) A gate electrode (25) made of polycrystalline silicon is formed on the gate insulating layer (24) to form a MOS transistor (T
rx), and one N-shaped region (22) constitutes a capacitor CH for information storage. This N-decade area (22)
A silicon semiconductor layer (41) is formed thereon with a gate insulating layer (24) interposed therebetween. In this case as well, the silicon semiconductor layer (4
In 1), polycrystalline or amorphous silicon 1d is formed on the gate insulating layer (24) in the same way as described above, and this is recrystallized to form i
qru. Then, a P-type channel forming portion (4
2) and N-type regions (43) and (44) which will become the source and drain are formed on both sides of the MOS.
A transistor (T'r2) is configured. This MOS transistor (Tr2) uses the N-shaped region (22) itself, in which the signal type 6:1 is accumulated, as a gate. (45) is a channel stop area. As shown in the equivalent circuit, a write bit line (46) and a write word line (47) are connected to one MOS+- transistor (Trz), and a read bit line (47) is connected to the other MOS transistor (Tr2).
46'') and the read j11 word line (47') are connected, respectively.

かかる構成のダイナミックRAMでは電流又は電圧出力
として取り出すことができる。そして、浮遊容量C5t
−0であるために出力が大きくなり、また浮遊容量Cs
tを通じてのとび込みノイズもなくなるので誤動作が少
くなり高速化が可能となる。
In a dynamic RAM with such a configuration, the output can be taken out as a current or voltage output. And stray capacitance C5t
-0, the output increases and the stray capacitance Cs
Since there is no noise introduced through t, there are fewer malfunctions and higher speeds are possible.

さらに非破壊読み出しであるからリフレッシュしなくて
よく、高速化につながる。
Furthermore, since it is a non-destructive readout, there is no need to refresh, leading to faster speeds.

発明の効果 上述の本発明によれば、信号電荷を蓄積する領域上に絶
縁層を介してMOS)ランジスタを構成し、上記領域を
MO3I−ランジスタのゲートとして用いることにより
、高感度に微小の信号電荷を読み出すことができる。従
って、CCD電荷転送素子の出力部1M08−ダイナミ
ックRAM等に適用して好適ならしめるものである。
Effects of the Invention According to the present invention described above, a MOS transistor is formed on a region for accumulating signal charges via an insulating layer, and the above region is used as the gate of the MO3I transistor, so that minute signals can be collected with high sensitivity. Charge can be read out. Therefore, it is suitable for application to the output section 1M08 of a CCD charge transfer device - dynamic RAM, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の説明に供する従来のCCD電荷転送素
子の出力部の断面図、第2図及び第3図は従来のMOS
−ダイナミックRAMのユニット・セルの平面図及びそ
’!7)A −A線上の断面図、第4図はその等価回路
図、第5図及び第6図は本発明をCCD電荷転送素子の
出力部に適用した場合の実施例を示す平面図及びその+
3−B線上の断面図、第7図及び第8図は本発明をMC
)S−ダイナミックRAMに適用した場合の実施例を示
す平面図及びそのC−C線上の断面図、第9図はその等
0 価回路図である。 (1,1は半導体基体、(2)はCOD転送レジスタ部
、(5)はフローディング・ディフージジン領域、(F
ET−1)は出力MOSトランジスタ、<PP、T−2
)は負荷としてのMo5t−ランジスタ、(35)は半
導体層である。 1 第7図 第8図 第9図 5f54凶
FIG. 1 is a cross-sectional view of the output section of a conventional CCD charge transfer device used to explain the present invention, and FIGS. 2 and 3 are conventional MOS
- A plan view of the unit cell of dynamic RAM and its! 7) A sectional view taken along the line A-A, FIG. 4 is an equivalent circuit diagram thereof, and FIGS. 5 and 6 are plan views showing an embodiment in which the present invention is applied to the output section of a CCD charge transfer device. +
The cross-sectional view on the line 3-B, FIGS. 7 and 8 illustrate the present invention in MC
) A plan view showing an embodiment when applied to an S-dynamic RAM, a cross-sectional view taken along the line C--C, and FIG. 9 is an equivalent zero-equivalent circuit diagram thereof. (1, 1 is the semiconductor substrate, (2) is the COD transfer register section, (5) is the floating diffuser region, (F
ET-1) is the output MOS transistor, <PP, T-2
) is a Mo5t transistor as a load, and (35) is a semiconductor layer. 1 Figure 7 Figure 8 Figure 9 5f54

Claims (1)

【特許請求の範囲】[Claims] 信号電荷を蓄積する半導体領域上にゲート絶縁層を介し
てMOS)ランジスタが構成され、上記半導体領域が上
記MOSトランジスタのゲートとして用いられて成る半
導体装置。
A semiconductor device, wherein a MOS (MOS) transistor is constructed on a semiconductor region for accumulating signal charges via a gate insulating layer, and the semiconductor region is used as a gate of the MOS transistor.
JP58118905A 1983-06-30 1983-06-30 Semiconductor device Granted JPS6010663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58118905A JPS6010663A (en) 1983-06-30 1983-06-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58118905A JPS6010663A (en) 1983-06-30 1983-06-30 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6010663A true JPS6010663A (en) 1985-01-19
JPH0576770B2 JPH0576770B2 (en) 1993-10-25

Family

ID=14748065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58118905A Granted JPS6010663A (en) 1983-06-30 1983-06-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6010663A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184789A (en) * 1985-02-13 1986-08-18 Toshiba Corp Semiconductor memory cell
JPS61227296A (en) * 1985-03-30 1986-10-09 Toshiba Corp Semiconductor memory
JPS61227294A (en) * 1985-03-30 1986-10-09 Toshiba Corp Semiconductor memory

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683075A (en) * 1979-12-10 1981-07-07 Nippon Telegr & Teleph Corp <Ntt> Insulating gate type field-effect transistor circuit device
JPS56162875A (en) * 1980-05-19 1981-12-15 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683075A (en) * 1979-12-10 1981-07-07 Nippon Telegr & Teleph Corp <Ntt> Insulating gate type field-effect transistor circuit device
JPS56162875A (en) * 1980-05-19 1981-12-15 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184789A (en) * 1985-02-13 1986-08-18 Toshiba Corp Semiconductor memory cell
JPS61227296A (en) * 1985-03-30 1986-10-09 Toshiba Corp Semiconductor memory
JPS61227294A (en) * 1985-03-30 1986-10-09 Toshiba Corp Semiconductor memory

Also Published As

Publication number Publication date
JPH0576770B2 (en) 1993-10-25

Similar Documents

Publication Publication Date Title
US4115795A (en) Semiconductor memory device
JPH0499060A (en) Semiconductor storage element and manufacture thereof
JPH08250673A (en) Semiconductor device
JPS6041463B2 (en) dynamic storage device
JPS6010663A (en) Semiconductor device
JPH088342B2 (en) Semiconductor integrated circuit device
JP2524842B2 (en) Semiconductor memory device
JPH0415556B2 (en)
JPH06105770B2 (en) Dynamic semiconductor memory device
JPS6370558A (en) Semiconductor memory cell
JPH0158594B2 (en)
JPH0152835B2 (en)
JPS61134059A (en) Semiconductor memory device
JPH0691216B2 (en) Semiconductor memory device
JP2659536B2 (en) Semiconductor memory device
JP2508441B2 (en) Memory device
JPS61208253A (en) Semiconductor memory cell
JPS6113389B2 (en)
JPS60185296A (en) Non-volatile randum access memory device
JPH0640574B2 (en) Semiconductor memory device
JPS58199558A (en) Semiconductor device
JPH06216337A (en) Semiconductor storage device
JPS62298089A (en) Charge accumulating type semiconductor memory
JPH0379800B2 (en)
JPS6036107B2 (en) semiconductor storage device