JPS60105277A - Manufacture of mos transistor - Google Patents

Manufacture of mos transistor

Info

Publication number
JPS60105277A
JPS60105277A JP21205083A JP21205083A JPS60105277A JP S60105277 A JPS60105277 A JP S60105277A JP 21205083 A JP21205083 A JP 21205083A JP 21205083 A JP21205083 A JP 21205083A JP S60105277 A JPS60105277 A JP S60105277A
Authority
JP
Japan
Prior art keywords
region
type
oxide film
doped
conductive type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21205083A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Shinada
品田 一義
Masaki Sato
正毅 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21205083A priority Critical patent/JPS60105277A/en
Priority to US06/670,010 priority patent/US4597824A/en
Publication of JPS60105277A publication Critical patent/JPS60105277A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To manufacture a P pocket LDD transistor through impurity diffusion at a time by forming a doped oxide film, to which a first impurity giving a first conduction type and a second impurity giving a second conduction type are doped, on a first conduction type semiconductor substrate. CONSTITUTION:A gate electrode 17 and a gate oxide film 16 are formed, a doped oxide film 19 to which arsenic and boron are doped is deposited, and the doped oxide films 19 on side walls are removed. A nitride film 20 is deposited through a LPCVD method, the nitride film 20 in a flat section is removed through etching by a reactive ion gas, and the nitride films 20 are left only on the side wall sections having double layer structure. An N<+> type drain region 211 and an N<+> type source region 212, P type pocket regions 221, 222, an N type drain region 231 and an N type source region 232 are formed simultaneously through heat treatment in an oxygen atmosphere. Accordingly, a manufacturing process can be simplified.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明Hpポケットを有するL D D (Light
yDopecl Drain ) トランジスタの製造
方法に関する。
[Detailed description of the invention] [Technical field of the invention] LDD (Light) having a Hp pocket of the present invention
yDopecl Drain) relates to a method of manufacturing a transistor.

〔発明の技術的背景およびその問題点〕通常のMOS)
ランジスタは第1図に示すようにP型シリコン基板l上
にゲート酸化膜2を形成し、イオン注入によりチャンネ
ル領域8を設けた後グー1[4i1ii、4に対してセ
ルファラインでヒ素(八〇)をイオン注入しN十型ドレ
イン領域51、N++ソース領域52を形成して製造さ
れている。しかしこのような構造のMOSトランジスタ
では、1型ドレイン領域51近傍に電界が集中し、正孔
−電子対が発生するため基板電流が増大し電子がゲート
電極4に注入される等の現象を生じ、動作安定性に問題
があった。これに対して第2図に示すようにゲート酸化
膜2の近傍にN型ドレイン領域61とN型ソーヌ領域6
2を印加し、ドレイン領域61近傍での電界集中を緩和
するL D D (LightyDoded Drai
n ) lIt造のトランジスタが注目されている。し
かしながら、とのLDD トランジスタにおいても高濃
度、チャンネル領域が存在するため、バックゲートバイ
アス効果により、しきい値vthの増大をもたらす欠点
がある。この欠点を克服するものとして、第8図に示す
ようなN型ドVイン領域伍とN型ソーヌ領域62の下に
P型領域n。
[Technical background of the invention and its problems] Ordinary MOS)
As shown in FIG. 1, the transistor is manufactured by forming a gate oxide film 2 on a P-type silicon substrate l, and forming a channel region 8 by ion implantation. ) is ion-implanted to form an N0-type drain region 51 and an N++ source region 52. However, in a MOS transistor having such a structure, an electric field concentrates near the type 1 drain region 51 and hole-electron pairs are generated, resulting in phenomena such as an increase in substrate current and injection of electrons into the gate electrode 4. , there were problems with operational stability. On the other hand, as shown in FIG.
2 is applied to relieve the electric field concentration near the drain region 61.
n) It-based transistors are attracting attention. However, since a highly doped channel region exists in the LDD transistor as well, there is a drawback that the threshold value vth increases due to the back gate bias effect. To overcome this drawback, a P-type region n is provided below the N-type doV-in region 5 and the N-type Saone region 62 as shown in FIG.

72を形成するPポケットつきのLDD構造のトランジ
スタが提案されている。このPポケットLDDトランジ
スタは、ショート羊ヤンネル効果抑ff+lJのだめの
高エネルギイオン注入が不要となるため、バックゲート
バイアス効果によるしきい値vthの増大を考慮する必
要がなくなる。
A transistor having an LDD structure with a P pocket forming a transistor 72 has been proposed. This P-pocket LDD transistor does not require high-energy ion implantation to suppress the short Jannell effect ff+lJ, so there is no need to consider an increase in the threshold voltage vth due to the back gate bias effect.

しかしながらこのような構造のMOS)ランジスタを製
造するためには、N型領域、P型領域、N+型領領域形
成するため、8回のイオン注入が必要であり、プロセス
が複雑となる問題があった。
However, in order to manufacture a MOS transistor with this structure, eight ion implantations are required to form an N-type region, a P-type region, and an N+-type region, which poses the problem of complicating the process. Ta.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情を考慮してなされたもので、1回の不
純物拡散でPポケットLDDトランジスタを製造するこ
とができる、半導体装置の製造方法を提供することを目
的とする。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a method for manufacturing a semiconductor device that can manufacture a P-pocket LDD transistor by one-time impurity diffusion.

〔発明の概要〕[Summary of the invention]

この目的を達成するために本発明によるMOSトランジ
スタの製造方法は、第1導電型半導体基板上に酸化膜を
介してゲート電極を形成する工程と、前記第1導電型半
導体基板上に第1導屯型を提供する第1の不純物と嬉2
導厩型を提供する第2の不純物とをドープしたドープト
酸化膜を形成する工程と、このドープト酸化膜上であっ
てポケット部となるべき領域上にのみ窒化膜を形成する
工程と、酸素雰囲気中にて熱処理する工程とを有するこ
と′ff:%歌とする。
In order to achieve this object, the method for manufacturing a MOS transistor according to the present invention includes the steps of forming a gate electrode on a first conductive type semiconductor substrate via an oxide film, and forming a first conductive type semiconductor substrate on the first conductive type semiconductor substrate. The first impurity and happiness 2 that provide the shape
A step of forming a doped oxide film doped with a second impurity that provides a conductive type, a step of forming a nitride film only on the region that is to become a pocket portion on this doped oxide film, and a step of forming an oxygen atmosphere. and a step of heat treatment inside.

〔発明の実施例〕[Embodiments of the invention]

実施例の説明の前に本発明の原理を第4図、第5図を用
いて説明する。本発明は拡散するとN型となる不純物の
ヒ素(Aθ)が酸素雰囲気中で拡散が促進され、P型と
なる不純物のホウ素(J3)が窒素雰囲気中で拡散が促
進されることを利用したものである。第4図に示すよう
に比抵抗ρ=lO〜2oΩ口のP−型シリコン基板8の
土建、ヒ素をLO21Cm −”ホウ素をto m の
濃度でドープした厚さ0.8μmの酸化膜9を堆積する
。次に左半分に窒化膜1oを形成した後、酸素雰囲気中
で1000tl’、3o分11」の拡散をおこなう。窒
化itoがない右手分の領域では酸素雰囲気中で拡散が
おこなわれるが、左半分の領域では窒化膜1oがあるた
めに酸素雰囲気中でなく窒素雰囲気中で拡散がおこなわ
れることと等価となる。
Before explaining the embodiments, the principle of the present invention will be explained using FIGS. 4 and 5. The present invention utilizes the fact that arsenic (Aθ), an impurity that becomes N-type when diffused, is promoted to diffuse in an oxygen atmosphere, and boron (J3), an impurity that becomes P-type, is promoted to diffuse in a nitrogen atmosphere. It is. As shown in FIG. 4, a P-type silicon substrate 8 with a specific resistance ρ = 10 to 20Ω is constructed, and an oxide film 9 doped with arsenic at a concentration of LO21Cm-" and boron tom with a thickness of 0.8 μm is deposited. Next, after forming a nitride film 1o on the left half, diffusion of 1000 tl', 3o/11'' is performed in an oxygen atmosphere. In the right-hand region where there is no ito nitride, diffusion takes place in an oxygen atmosphere, but in the left-hand half region, since there is a nitride film 1o, this is equivalent to diffusion taking place in a nitrogen atmosphere instead of an oxygen atmosphere.

したがって右半分の領域では第5tgl(b)に示すよ
うにヒ素(八〇)の拡散が促進され、シート抵抗ρB−
30Ω/口、接合深さXj=0.4μmのN十型領域1
1が形成される。これに対し左半分の領域では第5図(
a)に示すように、ホウ素(B)の拡散がより促進され
深さ0.15μm 付近でヒ:4i (A s )の不
純物濃度と逆転するようになり、シート抵抗ρB−80
0Ω/口、接合深さxj=0.154mのN型領域13
と、シート抵抗ρs = 2 KΩ/口、接合深さxj
−〇、4μmのP型領域12とが同時に形成される。
Therefore, in the right half region, the diffusion of arsenic (80) is promoted as shown in 5th tgl (b), and the sheet resistance ρB-
N-shaped region 1 with 30Ω/port and junction depth Xj=0.4μm
1 is formed. On the other hand, in the left half area, Figure 5 (
As shown in a), the diffusion of boron (B) is further promoted, and the impurity concentration becomes reversed to H:4i (A s ) near the depth of 0.15 μm, and the sheet resistance ρB-80
N-type region 13 with 0Ω/port and junction depth xj=0.154m
and sheet resistance ρs = 2 KΩ/mouth, junction depth xj
-〇, P-type region 12 of 4 μm is formed at the same time.

次に本発明の一実施例によるMOS)ランジスタの製造
方法全第6図を用いて説明する。まず比抵抗IO〜20
Ω(7)のP−型シリコン基板14に厚さ1.2μmの
フィールド酸化膜15を形成し、厚さ800^のゲート
酸化膜16を形成する。次に製造されるMOS)ランジ
ヌタのしきい値vth制(イ)1のためホウ素(B)を
30Kevにて2 X to” cIn−”の公明でイ
オン注入する(第6図(a))。次にシート抵抗ρe=
300/口、厚さ0.4μmの多結晶シリコン層17を
堆積し、その上にVジヌ)g!X18を形成する。しシ
スト膜18をマヌクとして水素ガス(H2)と塩素カヌ
(C!1. )または水素ガス(H2)とフロンガス(
OF4)とからなる反応性イオンガスにて多結晶シリコ
ン層17、ゲート酸化+Jt6を順次エツチングし、長
さ1.5μmのグー)IEe17、ゲート1θ化膜16
を形成する(第6図(b))。次にレジヌト1lKts
を除去した後ヒ素(As)を1020m−3、ホウ素(
B)を8−8 一81Oドープした厚さ0.8μmのドープトル化膜1
9をスパッタ法により堆積する。次にフッ化アンモニウ
ム(NH,F )中に10秒間浸し、上記ゲート酸化膜
16、ゲート電極17から々る2層構造の側壁に堆積し
ているドープトa化嘆19をとりさる。
Next, a method for manufacturing a MOS transistor according to an embodiment of the present invention will be explained with reference to FIG. First, specific resistance IO ~ 20
A field oxide film 15 with a thickness of 1.2 μm is formed on a P-type silicon substrate 14 of Ω(7), and a gate oxide film 16 with a thickness of 800^ is formed. Next, in order to control the threshold voltage vth of the MOS (to be manufactured), the threshold voltage (a) of the MOS transistor is 1), boron (B) is ion-implanted at 30 Kev with a density of 2 x to "cIn-" (FIG. 6(a)). Next, sheet resistance ρe=
A polycrystalline silicon layer 17 with a thickness of 0.4 μm is deposited on top of the polycrystalline silicon layer 17. Form X18. The cyst film 18 is used as hydrogen gas (H2) and chlorine gas (C!1.) or hydrogen gas (H2) and chlorofluorocarbon gas (C!1.).
Polycrystalline silicon layer 17, gate oxidation + Jt6 are sequentially etched with reactive ion gas consisting of
(Fig. 6(b)). Next, Resinut 1lKts
After removing arsenic (As) and boron (
B) 8-8-81O doped film 1 with a thickness of 0.8 μm
9 is deposited by sputtering. Next, it is immersed in ammonium fluoride (NH,F 2 ) for 10 seconds to remove the doped a-oxide film 19 deposited on the sidewalls of the two-layer structure including the gate oxide film 16 and the gate electrode 17 .

平担部には厚さ0.25μmのドープト酸化膜19が残
存している(第6図(C))。次にLPOVD(Low
 Pressure Chemical Vapor 
DepoSition )法にて厚さ0.25μmの窒
化膜20を堆積する(第6図(d))。次に水素ガス(
H2)とフロンガス(OF4) からなる反応性イオン
ガスにて平担部の窒化膜20をエツチング除去し、2層
構造の側壁部にのみ窒化膜20を残存させる・。本実施
例によればパターニングすることなく、Pポケット部を
形成する場所にのみ窒化rig 20が残るように形成
できる利点がある。次に酸素雰囲気中にてtoo。
A doped oxide film 19 with a thickness of 0.25 μm remains on the flat portion (FIG. 6(C)). Next, LPOVD (Low
Pressure Chemical Vapor
A nitride film 20 having a thickness of 0.25 μm is deposited by the DepoSition method (FIG. 6(d)). Next, hydrogen gas (
The nitride film 20 on the flat part is etched away using a reactive ion gas consisting of H2) and chlorofluorocarbon gas (OF4), leaving the nitride film 20 only on the sidewalls of the two-layer structure. According to this embodiment, there is an advantage that the nitrided rig 20 can be formed so as to remain only at the location where the P pocket portion is to be formed, without patterning. Next, in an oxygen atmosphere.

Cで30分間熱処理し、シート抵抗ρ5=300/口、
接合深さxj = 0.4μmのN十型ドレイン領域2
11とN生型ンーヌ領域212、シート抵抗ρS−2に
Ω/口、接合深さXj=0゜4μmのP型ポケット領域
221. 222、シート抵抗ρs =800Ω/口、
接合深さxj=−0,15μmのN型ドレイン領域28
1. N型ソーヌ領域232、全同時に形成する(第6
図(e))。次に残存している窒化膜20、ドープト酸
化@19を、水素ガス(H2)とフロンガス(OF4)
からなる反応性イオンガス にてエツチング除去する。
Heat treated at C for 30 minutes, sheet resistance ρ5 = 300/mouth,
N-type drain region 2 with junction depth xj = 0.4 μm
11 and an N-type pocket region 212, a P-type pocket region 221 with a sheet resistance ρS-2 of Ω/mouth and a junction depth Xj=0°4 μm. 222, sheet resistance ρs = 800Ω/mouth,
N-type drain region 28 with junction depth xj = -0, 15 μm
1. N-type Saone regions 232 are formed all at the same time (sixth
Figure (e)). Next, the remaining nitride film 20 and doped oxide @19 are treated with hydrogen gas (H2) and fluorocarbon gas (OF4).
Remove by etching with reactive ion gas consisting of.

その後厚さ1.0μmのcvD、;2化膜24を堆積し
開口部を設ける。最後に4軍材料にてドVイン電極25
1、ソーヌ社極252を形成してMOS)ランジヌタが
完全する(第6図(f))。
Thereafter, a CVD film 24 having a thickness of 1.0 μm is deposited to form an opening. Finally, do V-in electrode 25 using the fourth material.
1. Form the Saunesha pole 252 to complete the MOS) lunge (FIG. 6(f)).

本実施例によれば、窒化1閘をパターニングすることな
くセルファラインで形成でき、かつ1回の拡散でP明領
域、N型領域、N+製領領域形成が可能であり、大巾な
製造工程の簡略化が達成できる。
According to this embodiment, one nitride layer can be formed by self-line without patterning, and a P-light region, an N-type region, and an N+ region can be formed by one diffusion, and the manufacturing process is wide-ranging. simplification can be achieved.

なお、先の実施例では窒化膜の形成をセルファラインで
形成したが、パターニングにより形成してもよい。この
ときは任意の形状でポケット部が形成できる。またエツ
チングするのに反応性イオンエツチング法を、堆積する
のにスパッタ法やCVD法を用いているが他の方法によ
りエツチングしたり、堆積したりしてもよい。
Although the nitride film was formed by self-line in the previous embodiment, it may also be formed by patterning. At this time, the pocket portion can be formed in any shape. Although reactive ion etching is used for etching and sputtering or CVD is used for deposition, other methods may be used for etching or deposition.

〔発明の効果〕〔Effect of the invention〕

以上の通り本発明によればP明領域とN型領域とN+領
領域1妾の拡散で同時に形成することができ、大巾な工
程の簡略化が可能である。このような製造方法でつくら
れたMOS)ランジヌタはそのLDD構造のため、信頼
性が著しく向上し、バンクゲートバイアス10Vでしき
い値vthの増大(△vth )をIV以下に抑制する
ことが可能である。
As described above, according to the present invention, the P-type region, the N-type region, and the N+ region 1 can be formed simultaneously by diffusion, and the process can be greatly simplified. Because of its LDD structure, the MOS (MOS) range nut manufactured using this manufacturing method has significantly improved reliability, and can suppress the increase in threshold value vth (△vth) to below IV with a bank gate bias of 10V. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1[ン1は通常のMOS)ランジヌタの断面図、第2
図はLDD構造のMOSトランジスタの断面図、第8図
はPボケツ)LpDi造のMOS)ランジヌタの断面図
、第4図、第5図(a)、 (b)は本発明の詳細な説
明するための図、第6図(a)、 (b)、 ((!L
(d)、 (e)、 (f)は本発明の一実施例による
PポケットLDDm造のMOS)ランジヌタの製造方法
を示す工穆図である。 1・・・P−型シリコン基板、2・・・ゲート酸化膜、
3・・・チャンネル領域、4・・・ゲート電極、51・
・・N++ 型ドレイン領域、62・・・N 型ソーヌ領域、61・
・・N型ドレイン領域、62・・・N型ソーヌ領域、7
1 、72・・・P型ポケット領域、8・・・P−型シ
リコン基板、9・・・ドープト酸化膜、IO・・・窒化
膜、11・・・N++拡散領域、12・・・P型拡散領
域、13・・・N型拡散領域、14・・・P”%’2シ
リコン基板、15・・・フィールド酸化膜、16・・・
ゲート酸化膜、17・・・多結晶シリコン層、18・・
・レジスト膜、19・・・ドープト酸化膜、20・・・
窒化膜、211・・・N十型ドレイン領域、212・・
・N十型ソーヌ領域、221 、222・・・P型ポケ
ット領域、231・・・N型ドレイン領域、282・・
・N型ソーヌ領域、U・・・CVD酸化膜、251・・
・ドレイン電極、252・・・ソース電極。 出願人代理人 猪 股 清 第4図 n δ 第5図
1st [N1 is a normal MOS] cross-sectional view of the lunge nut, 2nd
The figure is a cross-sectional view of a MOS transistor with an LDD structure, FIG. 8 is a cross-sectional view of a MOS transistor made of LpDi, and FIGS. 4, 5 (a), and (b) are detailed explanations of the present invention. Figure 6 (a), (b), ((!L
(d), (e), and (f) are schematic diagrams showing a method of manufacturing a P-pocket LDD (MOS) lunge according to an embodiment of the present invention. 1... P-type silicon substrate, 2... Gate oxide film,
3... Channel region, 4... Gate electrode, 51.
...N++ type drain region, 62...N type Saone region, 61.
...N-type drain region, 62...N-type Saone region, 7
1, 72...P type pocket region, 8...P- type silicon substrate, 9...doped oxide film, IO...nitride film, 11...N++ diffusion region, 12...P type Diffusion region, 13... N type diffusion region, 14... P''%'2 silicon substrate, 15... Field oxide film, 16...
Gate oxide film, 17... Polycrystalline silicon layer, 18...
・Resist film, 19... Doped oxide film, 20...
Nitride film, 211...N-type drain region, 212...
・N-type Saone region, 221, 222...P-type pocket region, 231...N-type drain region, 282...
・N-type Saone region, U...CVD oxide film, 251...
- Drain electrode, 252...source electrode. Applicant's agent Kiyoshi Inomata Figure 4 n δ Figure 5

Claims (1)

【特許請求の範囲】 第1導電型半導体基板上に酸化膜を介して形成されたゲ
ート成極と、このゲート電極の両側の前記第1導電型半
導体基板上にそれぞれ形成された第2導電型のソース領
域およびドレイン領域と、前記ゲート電極下のチャネル
領域と前記ソース領域およびドレイン領域との間にそれ
ぞれ形成された、前記ソース領域およびドレイン領域よ
り不純物濃変の低い第2導電型の低濃度ソース領域およ
び低濃度ソース領域と、これら低濃度ソース領域および
低濃度ドレイン領域下にそれぞれ形成された第1導′屯
型不紬物領域とを有するMOS)ランジヌタの製造方法
において、 前記第14電型半導体基板上に酸化膜を介してゲート電
極を形成する工程と、 前記第1導電型半導体基板上に第1導車型を提供する第
1の不純物と第24電型を提供する第2の不純物とをド
ープしたドープト酸化膜を形成する工程と、 このドープト酸化1漠上であって、前記低濃度ソース領
域および低濃度ドレイン領域となるべき領域上にのみ窒
化嘆を形成する工程と、 酸素雰囲気中にて熱処理する工程と を有することを%微とするMOS トランジスタの製造
方法。
[Claims] A gate electrode formed on a first conductive type semiconductor substrate via an oxide film, and a second conductive type formed on the first conductive type semiconductor substrate on both sides of the gate electrode. and a second conductivity type low concentration layer having a lower impurity concentration change than the source region and drain region, which are formed between a channel region under the gate electrode and the source region and the drain region, respectively. In the method for manufacturing a MOS transistor having a source region, a low concentration source region, and a first conductive type impregnated region formed under the low concentration source region and the low concentration drain region, the fourteenth electrode forming a gate electrode on the first conductive type semiconductor substrate via an oxide film; a first impurity providing a first conductive type and a second impurity providing a twenty-fourth conductive type on the first conductive type semiconductor substrate; a step of forming a doped oxide film doped with a doped oxide film; a step of forming a nitride film only on the doped oxide film and on regions to become the low concentration source region and the low concentration drain region; and an oxygen atmosphere. A method of manufacturing a MOS transistor, which includes a step of heat treatment inside.
JP21205083A 1983-11-11 1983-11-11 Manufacture of mos transistor Pending JPS60105277A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21205083A JPS60105277A (en) 1983-11-11 1983-11-11 Manufacture of mos transistor
US06/670,010 US4597824A (en) 1983-11-11 1984-11-09 Method of producing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21205083A JPS60105277A (en) 1983-11-11 1983-11-11 Manufacture of mos transistor

Publications (1)

Publication Number Publication Date
JPS60105277A true JPS60105277A (en) 1985-06-10

Family

ID=16616032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21205083A Pending JPS60105277A (en) 1983-11-11 1983-11-11 Manufacture of mos transistor

Country Status (1)

Country Link
JP (1) JPS60105277A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833594B2 (en) 2001-01-23 2004-12-21 Fuji Electric Co., Ltd. Semiconductor integrated circuit device and manufacture method therefore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833594B2 (en) 2001-01-23 2004-12-21 Fuji Electric Co., Ltd. Semiconductor integrated circuit device and manufacture method therefore
US7138311B2 (en) 2001-01-23 2006-11-21 Fuji Electric Co., Ltd. Semiconductor integrated circuit device and manufacture method therefore

Similar Documents

Publication Publication Date Title
KR920009745B1 (en) Manufacturing method of semiconductor
US4597824A (en) Method of producing semiconductor device
JPS61224459A (en) Semiconductor device and manufacture thereof
JPS60105277A (en) Manufacture of mos transistor
JP2985246B2 (en) Method for manufacturing semiconductor device
JPS61154172A (en) Manufacture of semiconductor device
KR100336572B1 (en) Method for forming semiconductor device with gate electrode using poly silicon-germanium
JP2581548B2 (en) Method for manufacturing semiconductor device
JP2808945B2 (en) Method of manufacturing vertical MOS field effect transistor
JPS6017965A (en) Manufacture of semiconductor device
JPS61295652A (en) Manufacture of cmos-type semiconductor device
JPH04283966A (en) Manufacture of mos semiconductor device
JPS6155965A (en) Manufacture of nonvolatile semiconductor memory device
JPH02103966A (en) Manufacture of semiconductor memory device
JPH0527975B2 (en)
JPH06140628A (en) Semiconductor device and manufacture thereof
JPS6276562A (en) Semiconductor device and manufacture thereof
JP3244066B2 (en) Method for manufacturing semiconductor device
JPH0226034A (en) Manufacture of semiconductor device
JPH0644604B2 (en) Manufacturing method of complementary semiconductor device
JPH11224945A (en) Semiconductor device
JPS6072271A (en) Manufacture of semiconductor device
JPH02174236A (en) Manufacture of semiconductor device
JPH05343703A (en) Manufacture of nonvolatile memory
JPH0456354A (en) Manufacture of semiconductor device