JPS60100647A - Manufacture of alnico type sintered magnet alloy - Google Patents

Manufacture of alnico type sintered magnet alloy

Info

Publication number
JPS60100647A
JPS60100647A JP58208783A JP20878383A JPS60100647A JP S60100647 A JPS60100647 A JP S60100647A JP 58208783 A JP58208783 A JP 58208783A JP 20878383 A JP20878383 A JP 20878383A JP S60100647 A JPS60100647 A JP S60100647A
Authority
JP
Japan
Prior art keywords
alnico
binder
sintered magnet
alloy
magnet alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58208783A
Other languages
Japanese (ja)
Inventor
Koichi Oda
光一 小田
Kazunori Tawara
田原 一憲
Masao Ogata
正男 緒方
Mikio Yamamoto
幹夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP58208783A priority Critical patent/JPS60100647A/en
Publication of JPS60100647A publication Critical patent/JPS60100647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a sintered magnet alloy having desired magnetic characteristics when a sintered magnet alloy is manufactured from alnico alloy powder and a binder, by using a specified amount of camphor as the binder. CONSTITUTION:To 100pts.wt. alnico alloy powder consisting of prescribed percentages of Al, Co, Cu, Ti, Zr, Si, Mn and Fe is added 0.1-5pts.wt. camphor as a binder. They are mixed, filled into a metallic mold, and compression-molded under about 3-10ton/cm<2> pressure. The molded body is heated at about 100- 800 deg.C in vacuum or H2 to remove the binder, and it is sintered at about 1,200- 1,300 deg.C. The sintered body is subjected to soln. heat treatment, isothermal treatment in a magnetic field and aging to obtain a sintered magnet alloy.

Description

【発明の詳細な説明】 本発明はアルニコ糸合金粉末を出発原料として用いるア
ルニコ系焼結磁石合金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an alnico-based sintered magnet alloy using alnico yarn alloy powder as a starting material.

At、 R1、OoもしくはAt、 Niを生成分とし
、残部実質的にFeからなる磁石合金(以下アルニコ系
磁石合金という)は、代表的な規格としてアルニコ1〜
8などがあり、一般に溶解鋳造法により製造されている
が、複雑な形状の製品や小物製品などを対象として粉末
冶金の手法を用いて製造することも行なわOている。
Magnet alloys containing At, R1, Oo or At, Ni with the remainder being substantially Fe (hereinafter referred to as Alnico magnet alloys) are typically of Alnico 1 to Alnico type.
8, etc., and are generally manufactured by melting and casting, but products with complex shapes and small items are also manufactured using powder metallurgy techniques.

この粉末冶金法すなわち焼結法によりアルニフ糸磁石合
金を製造Tることにより、浴かから溶体化処理までの複
雑な工程か、原料粉末の混合、成形および焼結の極めて
簡単な工程となりかつの道も不要となるため、従来の溶
解鋳造法に比べて特に総合歩留か向上するという利点か
得られる。
By manufacturing Alnif thread magnet alloy using this powder metallurgy method, that is, the sintering method, it is possible to eliminate the complicated process from bath heating to solution treatment, or the extremely simple process of mixing raw material powder, molding, and sintering. Since there is no need for a pipe, the advantage is that the overall yield is particularly improved compared to the conventional melting and casting method.

アルニコ系焼結磁石合金の製造方法としでは、AL、 
lii、Co、Ou、 Ti又はTin2、FeTi、
Fe等の各成分元素もしくはその合金の粉末を所鼠の化
学組成となるように混合し、ついで成形、焼結および墨
処堆を行なう方法が一般的である。この場合、酸化によ
る磁気特性の低下を防止するために、Atの代りにFe
−Atの母合金粉末を使用するのか一般的である。
As a method for producing alnico-based sintered magnet alloy, AL,
lii, Co, Ou, Ti or Tin2, FeTi,
A common method is to mix powders of each component element such as Fe or an alloy thereof so as to have a certain chemical composition, and then to perform molding, sintering, and inking. In this case, in order to prevent deterioration of magnetic properties due to oxidation, Fe is used instead of At.
-It is common to use At master alloy powder.

これに対して原料として所定の化学成分の合金−粉末を
用いて成形、焼結および熱処理する方法が。
On the other hand, there is a method of forming, sintering, and heat-treating an alloy powder of a predetermined chemical composition as a raw material.

考えられる。この方法によれは合金粉末をアルニ。Conceivable. This method produces aluminum alloy powder.

コ系合金の鋳造時に生ずる湯道等から容易に製造。Easily manufactured from runners etc. generated during casting of Co-based alloys.

できるので、製造コストの低減に極めて有効であ。Therefore, it is extremely effective in reducing manufacturing costs.

るO しかしてアルニコ系合金粉末は、上記の各成分元素もし
くはその合金の粉末を混合した粉末に比べて成形性が極
端に恋いため、単独では実質的に成形が不可能である。
However, alnico alloy powder has extremely poor formability compared to powders obtained by mixing powders of each of the above-mentioned component elements or their alloys, so it is virtually impossible to form them alone.

例えは高00でT1を含むアルニコ8合金は、ビッカー
ス硬度Hv700以上の硬さ奪有しほとんど延性をもた
ないので、粉砕により粉末にすることは比較的容易であ
るが、圧縮成形し。
For example, an Alnico 8 alloy with high 000 and T1 content has a Vickers hardness of Hv700 or higher and has almost no ductility, so it is relatively easy to grind it into powder, but it cannot be compression molded.

でも十分な成形体強度が得られず、焼結磁石化繊困難で
あった。そこでアルニコ系合金粉末に上起つ各成分元素
の粉末を配合して、これを原料粉末として用いる方法も
提案されているが、アルニコ系合金粉末の配合量は、成
形性の点から最大で約60重量%にせざるを得ず、アル
ニコ系合金粉末を用いることによる効果を十分に発揮す
ることができなかった。またフェライト磁石等の焼結磁
石の製造には、成形性を改善するために種々のバインダ
ーが使用されているが、アルニコ系焼結磁石合金の製造
に適したバインダーは見出されていないのが実情であっ
た。
However, sufficient strength of the compact could not be obtained, making it difficult to use sintered magnets as synthetic fibers. Therefore, a method has been proposed in which powders of various component elements occurring above are blended with alnico alloy powder and used as raw material powder, but from the viewpoint of formability, the amount of blended alnico alloy powder is limited to approximately It had to be 60% by weight, and the effect of using the alnico alloy powder could not be fully exhibited. In addition, various binders are used to improve formability in the production of sintered magnets such as ferrite magnets, but no binder suitable for production of alnico-based sintered magnet alloys has yet been found. That was the reality.

本発明の目的は、上述の従来技術の欠点を排除し、実質
的にアルニコ系合金粉末のみからなる原料粉末を用いて
も所望の磁気特性を有するアルニコ系焼結磁石合金を得
ることのできる製造方法を提供することである。
An object of the present invention is to eliminate the drawbacks of the prior art described above, and to produce an alnico-based sintered magnet alloy having desired magnetic properties even when using raw material powder consisting essentially only of alnico-based alloy powder. The purpose is to provide a method.

本発明のアルニコ系焼結磁石合金の製造方法は、少なく
ともアルニコ系合金粉末とバインダーをυ合し、ついで
加圧成形、焼結および熱処理を行なに対して01〜5恵
鳳部の範囲で用いたことを特徴としている。
The method for producing an alnico-based sintered magnet alloy of the present invention includes combining at least an alnico-based alloy powder and a binder, followed by pressure forming, sintering, and heat treatment. It is characterized by the fact that it was used.

以下本発明の詳細を工程順に説明する。The details of the present invention will be explained below in the order of steps.

まず本発明では前述した湯道等の鋳造時に得られるリタ
ーン材を粉砕機により粉砕してアルニコ系合金粉末を準
備する。
First, in the present invention, an alnico alloy powder is prepared by pulverizing the return material obtained during casting of the runner, etc. described above using a pulverizer.

次に上記のアルニコ系合金にバインダーを添加混合して
原料混合物を得る。本発明者等かノ(インダーについて
種々検討した結果、樟脳を用いることにより十分な成形
体強度が得られることを見出した〇 詳述すると、焼結磁石の成形用バインダーには無機バイ
ンダーあるいは有機/<インダー等種々あるが、金属粉
では磁石合金の成分を変化させてしまうので適当ではな
い。一方、有機)くインダーでも最終的に磁石合金に残
存するa′!tが大きくなるものは磁気特性上好ましく
ない。要するに成形用バインダーとしては、十分なバイ
ンダー効果がありかつ焼結後にその残渣か殆んどないも
のが望ましい。しかも成形体は脱バインダー(脱脂)を
してから焼結されるのが一般的であることから、炭化を
少なくするために構造式中にOの二重結合、特にベンゼ
ン環を含まない有機ノくインダーが好ましい。これらの
条件を満たす有機バインダーについて種々検討した結果
、樟脳か最も適していることが見出された。樟脳は十分
なバインダー効果を有しかつ時間の経過とともに昇華す
る性質を有している。更に、樟脳は下記の構造式から明
らかなように0の二重結合を含まないので脱バインダー
処理を行なっても残存O等の残渣を磁気特性に悪影響を
存はさない程度にも十分低減することができる。また樟
脳の使用量はアルニコ系合金粉末100本量 は、添加量が01重量部未満ではその効果がなく、一方
5本量部を越えると残液が多くなって磁気時。
Next, a binder is added to and mixed with the above alnico alloy to obtain a raw material mixture. The inventors of the present invention (as a result of various studies on inders) have found that sufficient strength of the molded product can be obtained by using camphor. To be more specific, the binder for molding sintered magnets may be inorganic or organic/ There are various kinds of inders, but metal powders are not suitable as they change the composition of the magnet alloy.On the other hand, even organic inders can ultimately remain in the magnet alloy. A material with a large t is unfavorable in terms of magnetic properties. In short, it is desirable that the molding binder has a sufficient binder effect and leaves almost no residue after sintering. Moreover, since the compact is generally sintered after removing the binder (degreasing), in order to reduce carbonization, an organic compound that does not contain an O double bond in the structural formula, especially a benzene ring, An inder is preferred. As a result of various studies on organic binders that meet these conditions, camphor was found to be the most suitable. Camphor has a sufficient binder effect and has the property of sublimating over time. Furthermore, as it is clear from the structural formula below, camphor does not contain zero double bonds, so even after binder removal treatment, residual O and other residues are sufficiently reduced to the extent that they do not have a negative effect on magnetic properties. be able to. In addition, if the amount of camphor used is 100 parts by weight of alnico alloy powder, if the added amount is less than 0.1 parts by weight, it will not have the effect, while if it exceeds 5 parts by weight, there will be a lot of residual liquid and it will be used when magnetic.

性が低下するからである。なお樟脳を使用する場合、ア
ルコール等の有機溶媒に溶かしてからアル。
This is because the quality decreases. When using camphor, dissolve it in an organic solvent such as alcohol first.

ニコ系合金粉末と混合すると、該合金粉末を樟脳。When mixed with Nico-based alloy powder, the alloy powder becomes camphor.

で確実にコーティングすることか可能となり、成。This makes it possible to reliably coat the product.

脂性の改善に極めて有効である。Extremely effective in improving oiliness.

°V“ このようにして得られた原料混合物を金型中に。°V“ The raw material mixture thus obtained is placed in a mold.

巴填し、圧縮成形する。成形圧力は3〜10 t’:’
4@の範囲か適当である。
Fill with tomoe and compression mold. Molding pressure is 3 to 10 t':'
The range of 4@ is appropriate.

祷られた成形体を、100間00℃の温度に加熱して(
好ましくは真空中もしくはH,中で〕脱バインダー処理
してから、焼結する。焼結は、真空中又はH2中で行な
うことが好ましく、又その温度は合金の粘1成によって
も異なるか1200〜1300℃の範囲か適当である。
The desired molded body is heated to a temperature of 00°C for 100 minutes (
The binder is removed, preferably in vacuum or in H, and then sintered. Sintering is preferably carried out in vacuum or in H2, and the temperature is suitably in the range of 1200 to 1300 DEG C., depending on the viscosity of the alloy.

そしてこの焼結体に熱処理、具体的には溶体化処理、等
温磁場処理および時効処理を施してアルニコ系焼結磁石
合金が得られる。ここで熱処理は溶体化処理を900−
1300℃の温度に05〜1h保持し、等温磁場処理を
2〜5KOeの磁場中で’750−850℃の温度に5
〜30分間保持後放冷して行ない、そして時効処理は5
00−700℃の温度に5〜]、Oh保持して(但し多
段時効でもよい)行なうことか適当である。
This sintered body is then subjected to heat treatment, specifically solution treatment, isothermal magnetic field treatment, and aging treatment to obtain an alnico-based sintered magnet alloy. Here, the heat treatment is solution treatment at 900-
Hold at a temperature of 1300 °C for 05-1 h, and perform isothermal magnetic field treatment at a temperature of 750-850 °C in a magnetic field of 2-5 KOe for 5 h.
After holding for ~30 minutes, cooling is performed, and aging treatment is performed for 5 minutes.
It is appropriate to carry out the aging at a temperature of 00 to 700[deg.] C. for 5 to 700 degrees Celsius (however, multi-stage aging may also be used).

なお、本発明で使用するアルニコ系合金粉末の具体的な
組成としては、例えは重量比で13〜28イAt6〜1
5%、Oo O〜35%、OuO〜6%、Ti O〜9
%、Zr O〜3%、Si O〜3% 、Mn1%以下
、残部実質的にFeからなる組成か挙げられる。
The specific composition of the alnico alloy powder used in the present invention is, for example, 13 to 28 by weight and At6 to 1
5%, OoO~35%, OuO~6%, TiO~9
%, Zr O ~ 3%, Si O ~ 3%, Mn 1% or less, and the remainder substantially consists of Fe.

以下本発明の効果を実験例および実施例により説明する
が、これにj:り本発明の範囲が限定されるものではな
い。
The effects of the present invention will be explained below using experimental examples and examples, but the scope of the present invention is not limited thereto.

実験例 重量比でktB%、Ni15 % 、0o35 % 、
Ou&5%、T15%171)0.5%、残部実質的に
Feからなるアルニコ合金(アルニコ8相当の鋳造材)
をショークラッシャにより粗粉砕してから最終的にアト
ライターで250メツシユ以下の粒度に湿式粉砕した。
Experimental example weight ratio ktB%, Ni15%, 0o35%,
Alnico alloy (casting material equivalent to Alnico 8) consisting of Ou & 5%, T15% 171) 0.5%, and the remainder substantially Fe
was coarsely crushed using a show crusher and finally wet crushed using an attritor to a particle size of 250 mesh or less.

得られた粉砕粉をそのまま用いて、8t/α2の圧力で
成形して外径115■φ、高さlongの成形体(試料
& l )を得た。
The obtained pulverized powder was used as it was and molded under a pressure of 8t/α2 to obtain a molded body (sample &l) having an outer diameter of 115 mm and a long height.

またアルコール中に浴かした樟脳を取置比で05東量部
、1本量部、2本量部を各々上記粉砕粉100本量部に
添加し、十分混合して原料混合物とし、これらを用いて
上記と同様の条件で成形して38iI類の成形体(試料
点2〜4)を得た。
In addition, 05 parts of camphor soaked in alcohol, 1 part of camphor, and 2 parts of camphor were added to 100 parts of the above-mentioned pulverized powder, and mixed thoroughly to form a raw material mixture. Molding was carried out under the same conditions as above to obtain molded bodies of type 38iI (sample points 2 to 4).

上記の各試料をラトラー試験(200同)により評価し
た結果を第1表に示す。
Table 1 shows the results of evaluating each of the above samples using the Rattler test (200).

第 1 表 第1表から、樟脳をl取量部以上添加することにより十
分な成形体強度か得られることかわかる。
Table 1 From Table 1, it can be seen that sufficient strength of the molded product can be obtained by adding 1 part or more of camphor.

実施例 実験例で得られた成形体(試料1i 2〜4)と樟脳の
添加量を5本量部および6重量部とした以外は同様の条
件で製造した成形体(試料A5.6)を真空中において
200℃の温度まで1.5℃/hの速度で加熱して脱バ
インダーし、ついで真空中(10””torr)で13
00℃×3h加熱して焼結した。焼結体を1250℃に
1h加熱して溶体化処理し、ついで3KOeの磁場中で
830℃にh保持後放冷して等温磁場処理し、そし2て
多段時効処理した。
Examples The molded bodies obtained in the experimental examples (Samples 1i 2 to 4) and the molded bodies (Sample A5.6) produced under the same conditions except that the amount of camphor added was 5 parts by weight and 6 parts by weight were used. The binder was removed by heating at a rate of 1.5°C/h to a temperature of 200°C in a vacuum, and then the binder was heated in a vacuum (10” torr) for 13 hours.
It was sintered by heating at 00°C for 3 hours. The sintered body was heated to 1250° C. for 1 hour to undergo solution treatment, then maintained at 830° C. for 1 hour in a 3KOe magnetic field, cooled and subjected to isothermal magnetic field treatment, and then subjected to multi-stage aging treatment.

得られたアルニコ系焼結磁石合金及び鋳造材(アルニコ
8)の磁気特性と残存C量を第2表に示1゜第2表 第2表から明らかなように、樟脳の添加量か5瓜量酩以
下であれは残存C鼠も問題ないレベル刃1あり、鋳造材
と略同等の磁気特性が得られる。
The magnetic properties and residual C content of the obtained Alnico-based sintered magnet alloy and cast material (Alnico 8) are shown in Table 2. As is clear from Table 2, the amount of camphor added is 5. As long as the amount is less than 1, there is no problem with the residual C content, and the magnetic properties are almost the same as those of cast materials.

以上に記述如く、本発明よれは、実質的にアルニコ系合
金粉末のみを原料粉末として用いても所望の磁気特性を
有するアルニコ系焼結磁石合金を。
As described above, the present invention provides an alnico-based sintered magnet alloy that has desired magnetic properties even when substantially only alnico-based alloy powder is used as the raw material powder.

得ることができる。Obtainable.

″(〜・″(〜・

Claims (1)

【特許請求の範囲】 L 少なくともアルニコ糸合金粉末とバインダーを混合
し、ついで加圧成形、焼結および熱処理を行なうアルニ
コ系焼結磁石合金の製造方法において、前記バインダー
として樟脳を前記アルニコ系合金粉末100点一部に対
してα1〜5本m部の範囲で用いたことを特徴とするア
ルニコ系焼結磁石合金の製造方法。 2 樟脳を有機溶媒中に浴かしてからアルニコ糸合金粉
末と混合したことを特徴とする特許島求の範囲第1項記
載のアルニコ系焼結磁石合金の製造方法。
[Claims]L A method for producing an alnico-based sintered magnet alloy, which comprises mixing at least an alnico thread alloy powder and a binder, and then performing pressure forming, sintering, and heat treatment, wherein camphor is used as the binder and the alnico-based alloy powder is mixed. A method for producing an alnico-based sintered magnet alloy, characterized in that α1 to 5 m parts are used for a part of 100 parts. 2. A method for producing an alnico-based sintered magnet alloy according to item 1 of the scope of the Patent Shima Momu, characterized in that camphor is bathed in an organic solvent and then mixed with the alnico thread alloy powder.
JP58208783A 1983-11-07 1983-11-07 Manufacture of alnico type sintered magnet alloy Pending JPS60100647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58208783A JPS60100647A (en) 1983-11-07 1983-11-07 Manufacture of alnico type sintered magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58208783A JPS60100647A (en) 1983-11-07 1983-11-07 Manufacture of alnico type sintered magnet alloy

Publications (1)

Publication Number Publication Date
JPS60100647A true JPS60100647A (en) 1985-06-04

Family

ID=16562027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58208783A Pending JPS60100647A (en) 1983-11-07 1983-11-07 Manufacture of alnico type sintered magnet alloy

Country Status (1)

Country Link
JP (1) JPS60100647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520748A (en) * 1993-07-27 1996-05-28 Pohang Iron & Steel Co., Ltd. Process for manufacturing Alnico system permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520748A (en) * 1993-07-27 1996-05-28 Pohang Iron & Steel Co., Ltd. Process for manufacturing Alnico system permanent magnet

Similar Documents

Publication Publication Date Title
CN105575577B (en) Sinter cerium-rich rare earth permanent-magnet material and preparation method thereof
US20090297699A1 (en) Process for producing magnet
JPS62238344A (en) Mechanical alloying method
US4343650A (en) Metal binder in compaction of metal powders
JPS60100647A (en) Manufacture of alnico type sintered magnet alloy
US2124020A (en) Metal alloy
JP2572053B2 (en) Manufacturing method of iron alloy moldings
US2205611A (en) Permanent magnet and process for producing the same
JP3459477B2 (en) Production method of raw material powder for rare earth magnet
CA1212562A (en) Iron or steel powder, a process for its manufacture and press-sintered products made therefrom
JPS60138056A (en) Material for sintered magnet
Barbosa et al. The effect of cobalt content on the microstructure of Pr–Fe–Co–B–Nb alloys and magnetic properties of HDDR magnets
JPH08120393A (en) Production of iron-silicon soft magnetic sintered alloy
JPH01219102A (en) Fe-ni-b alloy powder as additive for sintering and sintering method thereof
JPS61208808A (en) Manufacture of sintered magnet
JPH06290919A (en) Rare earth-iron-boron permanent magnet and manufacture thereof
JPH03162546A (en) Manufacture of permanent magnet alloy having excellent oxidation resistance
JPH06172810A (en) Production of tungsten alloy sintered compact
JPS5819722B2 (en) koumitsudoshiyouketsukou no seizouhouhou
JPS63118029A (en) Manufacture of permanent magnet alloy
JPS63118042A (en) Permanent magnet material and its production
JPS60184602A (en) Method for molding alloy powder for permanent magnet
JP4068857B2 (en) Manufacturing method of sintered rare earth magnet alloy
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JP2001089824A (en) Manufacture of sintered compact of chromium- molybdenum steel