JPS63118029A - Manufacture of permanent magnet alloy - Google Patents

Manufacture of permanent magnet alloy

Info

Publication number
JPS63118029A
JPS63118029A JP61263547A JP26354786A JPS63118029A JP S63118029 A JPS63118029 A JP S63118029A JP 61263547 A JP61263547 A JP 61263547A JP 26354786 A JP26354786 A JP 26354786A JP S63118029 A JPS63118029 A JP S63118029A
Authority
JP
Japan
Prior art keywords
powder
elements
permanent magnet
mixing
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61263547A
Other languages
Japanese (ja)
Inventor
Shuichi Shiina
椎名 修一
Makoto Takano
誠 高野
Harutaka Shibusawa
渋沢 治孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP61263547A priority Critical patent/JPS63118029A/en
Publication of JPS63118029A publication Critical patent/JPS63118029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain stable magnet characteristics, by uniformizing mixing by means of wet blending in a process for manufacturing a permanent magnet consisting of a rare earth-Co intermetallic compound by means of a reduction- diffusion process. CONSTITUTION:A permanent magnet consisting of an intermetallic compound represented by RM5 or R2M17 is manufactured, where R means one or more elements among rare earth metals composed principally of Ce, Sm, and Pr and M means a combination of one or more elements among Co, Fe, and Cu (elements A) and one or more elements among Zr, Hf, Nb, and Ti (elements B). In order to manufacture the above permanent magnet, a powder of the oxides of R, a powder of pure metals or alloys of the elements A, and a powder of pure metals or alloys of the elements B are subjected to wet blending in the presence of mixing auxiliaries, followed by drying. Subsequently, one or more reducing agents among Ca, CaH2, and Mg are mixed with the above powder mixture, and the resulting mixture is heated at 1,000-1,300 deg.C in a vacuum, inert, or reducing atmosphere to undergo reduction-diffusion reaction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は還元拡散法に依る希土類コバルト系金属間化合
物からなる永久磁石合金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a permanent magnet alloy made of a rare earth cobalt-based intermetallic compound using a reduction diffusion method.

〔従来の技術〕[Conventional technology]

希土類コバルト系永久磁石の製造方法としては希土類金
属、遷移金属の純金属もしくは合金を原料として高周波
溶解し1次いで金型鋳造し。
Rare earth cobalt permanent magnets are manufactured by high-frequency melting using pure metals or alloys of rare earth metals and transition metals as raw materials, and then mold casting.

得られた合金インゴットを粉砕して粒度調“整後磁場中
成形、焼結後に熱処理(115系)するかあるいは溶体
化処理に続いて時効処理(2/17系)を行なうのが一
般的である。
The obtained alloy ingot is generally pulverized to adjust the particle size, then formed in a magnetic field, sintered and then heat treated (115 series), or solution treatment followed by aging treatment (2/17 series). be.

しかして希土類金属は、一般的に高価であることから上
述した溶解法では原料コストが高く。
However, since rare earth metals are generally expensive, the above-mentioned melting method requires high raw material costs.

このことが製造コストを上げる大きな要因となっている
。そこで溶解法の上記欠点を改害するために、安価な(
純金属の約1/4以下)希土類酸化物を原料として還元
剤(Ca+ Ca H2+Mgが一般的)を用いて、C
o、Feその他の金属成分と拡散反応により合金化させ
る還元拡散法が提案されている。(例えば特公昭48−
7296号、同53−16798号、同55−3057
5号および同55−27602号の各公報参照)。
This is a major factor that increases manufacturing costs. Therefore, in order to improve the above-mentioned drawbacks of the dissolution method, an inexpensive (
C
A reduction-diffusion method has been proposed in which alloying is performed with O, Fe, and other metal components through a diffusion reaction. (For example, Tokuko Sho 48-
No. 7296, No. 53-16798, No. 55-3057
5 and No. 55-27602).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の還元拡散法においては配合原料の
粒度分布の相異、比重差、形状差等に依り均一混合が実
現されないために、安定した磁石特性を得ることが難し
い等の問題があった。すなわち、配合原料の希土類酸化
物粉末は平均粒径数μmの凝集性微粉である。一方。
However, in the conventional reduction-diffusion method, uniform mixing cannot be achieved due to differences in particle size distribution, specific gravity, shape, etc. of the raw materials to be mixed, so there have been problems such as difficulty in obtaining stable magnetic properties. That is, the rare earth oxide powder used as the raw material is a cohesive fine powder with an average particle size of several μm. on the other hand.

Co、Fe、Cu等の遷移金属の純金属もしくは合金粉
末の平均粒径は数10μmから数100μmである。従
って、これら粒度分布が著しく異なる原料粉の均一混合
は困難であった。
The average particle size of pure metal or alloy powder of transition metals such as Co, Fe, and Cu is from several tens of micrometers to several hundred micrometers. Therefore, it has been difficult to uniformly mix these raw material powders having significantly different particle size distributions.

本発明の目的は前記従来技術の問題点を解消し、湿式混
合に依り混合の均一化を図り安定した磁石特性が得られ
る新規な還元拡散法を提供することである。
An object of the present invention is to solve the problems of the prior art described above, and to provide a novel reduction-diffusion method that achieves uniform mixing through wet mixing and provides stable magnetic properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の永久磁石合金の製造方法はR(Ce’。 The method for manufacturing the permanent magnet alloy of the present invention is R(Ce').

Sm、Pr等の希土類金属の一種または二種以上)の酸
化物粉末と、A元素(Co、Fc、Cu等の遷移金属の
一種または二種以上)の純金属若し。
An oxide powder of one or more rare earth metals such as Sm and Pr) and a pure metal of element A (one or more transition metals such as Co, Fc, and Cu).

くは合金粉末と、B元素(Zr、HL Nb、TJ等の
一種または二種以上)の純金属若しくは合金若しくは酸
化物粉末とを所定の組成(RM、。
or alloy powder, and pure metal or alloy or oxide powder of element B (one or more of Zr, HL, Nb, TJ, etc.) at a predetermined composition (RM).

R2M□7)に配合したのち、混合助剤の存在下で湿式
混合することを特徴としている。すなわち。
It is characterized in that after blending with R2M□7), wet mixing is carried out in the presence of a mixing aid. Namely.

式RM sまたはR2Mエフ ここで、RはCe、 5LIl、 Prを中心とする希
土類金属の一種または二種以上、 MはCo、 Fe、 Cu、すなわちへ元素の一種以上
とZr、 Hf、 Nb、 Ti、すなわちB元素の一
種以上の組み合わせ で表わされる金属間化合物よりなる永久磁石合金の製造
方法において。
Formula RM s or R2M F Here, R is one or more rare earth metals mainly consisting of Ce, 5LIl, and Pr, M is Co, Fe, Cu, that is, one or more of the elements Zr, Hf, Nb, In a method for producing a permanent magnet alloy made of an intermetallic compound represented by a combination of one or more elements of Ti, that is, B elements.

(イ) Rの酸化物粉末と、A元素の純金属または合金
粉末と、B元素の純金属または合金若しくは酸化物粉末
とを、混合助剤の存在下で湿式混合後、乾燥し、 (ロ) 次いで前記混合粉にCa、CaH2,Mgの中
から選ばれた1種以上の還元剤を追加混合し。
(b) Wet-mix the oxide powder of R, the pure metal or alloy powder of element A, and the pure metal or alloy or oxide powder of element B in the presence of a mixing aid, and then dry it. ) Next, one or more reducing agents selected from Ca, CaH2, and Mg are added to the mixed powder.

(ハ) 得られた混合物を真空または雰囲気(不活性も
しくは還元性)中で1000〜1300℃のfi度範囲
で加熱して 還元拡散反応されることを特徴とするものである。
(c) The resulting mixture is heated in vacuum or in an atmosphere (inert or reducing) at a degree of fi of 1000 to 1300°C to undergo a reduction-diffusion reaction.

前記構成によって原料の粒度分布、比重、形状等の粉体
特性の相異に依る混合の不均一性が大幅に改首される。
With the above configuration, the non-uniformity of mixing due to differences in powder properties such as particle size distribution, specific gravity, shape, etc. of raw materials can be greatly reduced.

使用可能な混合助剤の一例としては水、アルコール(エ
タノール、イソプロビルアルコールラ、エーテル(エチ
ルエーテル、エチレンオキシド)、アルデヒド(n−ブ
チルアルデヒド、グリオキサール)、ケトン(アセトン
、メチルエチルケトン)、鎖式カルボンM(Lゆう酸、
酒石酸)、エステル(酢酸メチル、酢酸イソアミル)、
鎖式窒素化合物(イソブチルアミン、トリエチルアミン
)、芳香族化合物(ベンゼン、トルエン、フェノール八
ハロゲン化炭化水素(トリクロルエチレン、CGトリエ
タン)等が挙げられる。混合作業は、V型混合機等の公
知の装置を用いれば良い。湿式混合後は混合スラリーを
遠心分離器等で脱助剤ろ過したのち真空中で加熱乾燥す
る。そののち1本乾燥粉に還元拡散が十分になされる量
の還元剤(Ca 、 Ca H2,M gの一種または
二種以上)を加えて追加混合する。次いで本混合粉を反
応容器中にセットし、A r 、 N e 、 He 
、 K r +Xe等の不活性雰囲気もしくはH2等の
還元性雰囲気もしくは真空中(l O−2〜l O−’
 Torr)で1000〜1300℃の温度範囲で加熱
して還元拡散反応を行なう。本工程において希土類金属
酸化物および金属酸化物は還元剤により還元され、相互
拡散により合金化されてケーキ状の反応組成物が形成さ
れる。次にこれを水中に投じてハイドレーション処理を
行なったのち酸洗。
Examples of usable mixing aids include water, alcohols (ethanol, isopropyl alcohol, ethers (ethyl ether, ethylene oxide), aldehydes (n-butyraldehyde, glyoxal), ketones (acetone, methyl ethyl ketone), chain carbon M (L yuic acid,
tartaric acid), esters (methyl acetate, isoamyl acetate),
Examples include chain nitrogen compounds (isobutylamine, triethylamine), aromatic compounds (benzene, toluene, phenol, octahalogenated hydrocarbons (trichlorethylene, CG triethane), etc. The mixing operation can be carried out using known equipment such as a V-type mixer. After wet mixing, the mixed slurry is filtered using a centrifugal separator, etc. to remove the aid, and then heated and dried in a vacuum.After that, the amount of reducing agent (Ca , CaH2, Mg) and further mixed.Then, this mixed powder is set in a reaction container, and A r , Ne , He
, in an inert atmosphere such as K r +Xe, or a reducing atmosphere such as H2, or in vacuum (l O-2 to l O-'
Torr) in a temperature range of 1,000 to 1,300°C to perform a reduction-diffusion reaction. In this step, the rare earth metal oxide and the metal oxide are reduced by a reducing agent and alloyed by interdiffusion to form a cake-like reaction composition. Next, this is thrown into water for hydration treatment, and then pickled.

水洗を行ない、次いで乾燥、粉砕を行なって所望の合金
粉末が得られる。本合金粉末を用いることによりばらつ
きの少ない安定した磁石特性を有する希土類コバルト系
永久磁石合金が得られる。例えばR2M□7系において
は前記合金粉末を金型に充填後5・〜20KOeの磁場
中で2〜LOton/a#の圧力を加えて圧縮成形し、
得られた成形体をAr、Ne、He、Kr、Xe等の不
活性ガスまたは水素ガス雰囲気中、もしくは真空中(1
0−2〜10−’Torr)で1150〜1250 ’
Cの温度で焼結する6 次に焼結体を1100〜125
0’C(71温度で0.5〜4h保持して溶体化処理を
行ない、そののち油または水等の冷却媒体中に投じて急
冷し1次いで800〜950℃の温度で0.5〜3h保
持後、0゜3〜b そこで0.5〜3h保持して時効処理する。
The desired alloy powder is obtained by washing with water, followed by drying and pulverization. By using the present alloy powder, a rare earth cobalt-based permanent magnet alloy having stable magnetic properties with little variation can be obtained. For example, in the R2M□7 series, after filling the alloy powder into a mold, compression molding is performed by applying a pressure of 2 to LOton/a# in a magnetic field of 5 to 20 KOe.
The obtained molded body is heated in an inert gas atmosphere such as Ar, Ne, He, Kr, or Xe, or in a hydrogen gas atmosphere, or in a vacuum (1
0-2~10-'Torr) 1150-1250'
The sintered body is then sintered at a temperature of 1100 to 125 C.
Solution treatment is carried out by holding at a temperature of 0'C (71°C) for 0.5 to 4 hours, then quenching by pouring into a cooling medium such as oil or water, and then at a temperature of 800 to 950 degrees Celsius for 0.5 to 3 hours. After holding, it is held at 0°3-b for 0.5-3 hours for aging treatment.

以下本発明を実施例および比較例で説明するが、これに
より本発明の範囲が限定されるものではない。
The present invention will be explained below using Examples and Comparative Examples, but the scope of the present invention is not limited thereby.

〔実施例〕〔Example〕

実施例1 平均粒径(空気透過法)1.01 μmのSm、O。 Example 1 Sm, O with an average particle size (air permeation method) of 1.01 μm.

粉末1058.3g  と150メツシユアンダーのC
o粉末1587.5 gとをV型混合機に投入後、さら
にSm20.、Co粉末が十分に浸漬する量(V型混合
機内の5I1120.、Co粉末がトルエンで十分にス
ラリー化される量)のトルエンを加えて30分間混合し
たのち、遠心分離器で脱トルエンを行なった。次に80
℃、lXl0−”T orrの真空雰囲気にて乾燥して
トルエン処理したS m 、 O、、G o混合粉体を
得た。これに6メツシユアンダーのCa474.5gを
加えて再びV型混合機にて30分間混合して原料混合物
を得た。次に本混合物を反応容器にセラ1−シ。
1058.3g of powder and 150 mesh under C
After putting 1587.5 g of Sm powder into a V-type mixer, 20. After adding toluene in an amount sufficient to immerse the Co powder (5I1120 in the V-type mixer, the amount sufficient to slurry the Co powder in toluene) and mixing for 30 minutes, remove toluene using a centrifuge. Ta. Next 80
℃, dried in a vacuum atmosphere of 1X10-'' Torr to obtain a toluene-treated S m , O , Go mixed powder. 474.5 g of Ca under 6 meshes was added to this and mixed again in a V-shape. A raw material mixture was obtained by mixing for 30 minutes in a machine.Then, this mixture was poured into a reaction vessel.

Ar雰囲気中で1165℃X2hの還元拡散反応を行な
った。そののち反応ケーキを水中に2h投じ、繰返し洗
浄を行なってからP H= 2〜5の範囲内でlh、H
clにより酸洗を行ない、そののちPH=6.5〜7 
になるまで中和し、以後80℃、 l X 10−”T
orrでの真空乾燥。
A reduction-diffusion reaction was carried out at 1165° C. for 2 hours in an Ar atmosphere. After that, the reaction cake was poured into water for 2 hours, and after repeated washing, the reaction cake was washed for lh and H within the range of P H = 2 to 5.
Pickling with Cl, then pH=6.5-7
Neutralize until
Vacuum drying in orr.

振動ミル粉砕を経て115系希土類コバルト粉末(平均
粒径4.9μm)を得た。 これを10KOeの磁場中
(横磁場)で4℃on/−の圧力でプレス成形し、次い
でH2雰囲気中で1110”CX 4 hの条1’トで
焼結した。得ら才した焼結体を950℃で1h保持後 
3℃/minの速度で800′Cまで徐冷し1水温度で
砂冷却した。得られた水入磁石100ケについての―石
特性の平均1直と標準偏差値とを第1表に示す。本発明
の製造方法によるとバラツキが小さく、高楓気特性が得
られることがわかる。
A 115-series rare earth cobalt powder (average particle size: 4.9 μm) was obtained through vibration mill pulverization. This was press-molded in a magnetic field of 10 KOe (transverse magnetic field) at a pressure of 4°C on/-, and then sintered in a H2 atmosphere with a 1110" CX 4 h strip. The obtained sintered body was After holding at 950℃ for 1 hour
The mixture was slowly cooled to 800'C at a rate of 3°C/min, and sand-cooled at a water temperature of 1°C. Table 1 shows the average one-turn and standard deviation values of the stone characteristics for the 100 water-immersed magnets obtained. It can be seen that according to the manufacturing method of the present invention, variations are small and high air flow characteristics can be obtained.

以下余白 実施例2 混合助剤を水とした以外は実施例1と同様の方法に依り
115系希土類コバルト磁石を作成して磁石特性を評価
した(第1表参照)。
Example 2 A 115-series rare earth cobalt magnet was prepared in the same manner as in Example 1, except that water was used as the mixing aid, and the magnetic properties were evaluated (see Table 1).

比較例I Sm、○、1058.3g、Co1.587.5g。Comparative example I Sm, ○, 1058.3g, Co1.587.5g.

Ca474.5gを混合助剤を使用せずに30分間V型
混合機にて混合して原料混合物を得た。
A raw material mixture was obtained by mixing 474.5 g of Ca in a V-type mixer for 30 minutes without using a mixing aid.

還元拡散反応以降は実施例1と同様の方法に依り115
系希土類コバルト磁石を作成して磁石特性を評価した(
第1表参照)。
After the reduction-diffusion reaction, 115
We created rare earth cobalt magnets and evaluated their magnetic properties (
(See Table 1).

実施例3 Sm、Off3020g、Co50’20g、150メ
ツシユアンダーのFe1400g、  100メツシユ
アンダーのCu1022g、  100メツシユアンダ
ーのZrl 80 g の各粉末を各々精秤したのちV
型混合機に投入し、混合助剤としてエタノールを加えて
30分間混合したのち。
Example 3 Each powder of Sm, Off 3020 g, Co50' 20 g, Fe 1400 g with 150 mesh under, Cu 1022 g with 100 mesh under, and Zrl 80 g with 100 mesh under were each accurately weighed.
After putting it into a mold mixer, adding ethanol as a mixing aid and mixing for 30 minutes.

遠心分離器で脱エタノール処理を行なった。Ethanol was removed using a centrifuge.

次いで真空乾燥を行ないエタノール処理した5I112
0.、 Co、 Fe、 Cu、 Zr混合粉体を得た
5I112 was then vacuum dried and treated with ethanol.
0. , Co, Fe, Cu, and Zr mixed powder was obtained.

これにCa1354gを加えて再びV型混合機にて30
分間混合して原料混合物を得た。これを反応容器にセッ
トし、 Ar雰囲気中で1150℃X2hの還元拡散反
応を行なった。次に反応ケーキを水中に2h投じ繰返し
洗浄を行なってからP H= 2〜5の範囲内でlh、
Hclにより酸洗を行ない、次いでPH=6.5〜7 
になるまで中和したのち乾燥および粉砕を行ない。
Add 1,354 g of Ca to this and use the V-type mixer again for 30 g.
A raw material mixture was obtained by mixing for a minute. This was set in a reaction container, and a reduction-diffusion reaction was carried out at 1150° C. for 2 hours in an Ar atmosphere. Next, the reaction cake was poured into water for 2 hours, washed repeatedly, and then washed for 1 hour within the range of P H = 2 to 5.
Pickling with HCl, then pH=6.5-7
Neutralize until dry, dry and crush.

2/17系希土類コバルト粉末(平均粒径3.7゜μm
)を得た。次に本合金粉末を10KOeの磁場中(横磁
場)で4ton/cjの圧力でプレス成形し、次いでH
2雰囲気中で1.200″Cx4hの条件で焼結した。
2/17 rare earth cobalt powder (average particle size 3.7゜μm
) was obtained. Next, this alloy powder was press-molded in a magnetic field of 10 KOe (horizontal magnetic field) at a pressure of 4 ton/cj, and then H
Sintering was carried out in a 2 atmosphere under conditions of 1.200″C x 4h.

得られた焼結体を1180’Cで4h保持してから油冷
し、次いで850℃まで昇温し、その温度で4h保持し
たのち 0.6’C/a+inの速度で400℃まで徐
冷し、そこで3h保持した。得られた永久磁石100ケ
につ  。
The obtained sintered body was held at 1180'C for 4 hours, then oil-cooled, then heated to 850°C, held at that temperature for 4 hours, and then slowly cooled to 400°C at a rate of 0.6'C/a+in. and held there for 3 hours. About 100 permanent magnets obtained.

いての磁石特性の平均値と標準偏差値とを第1表に示す
Table 1 shows the average values and standard deviation values of the magnet characteristics.

実施例4 混合助剤をアセトンとした以外は実施例3と同様の方法
に依り2/17系希土類コバルト磁石を作成して磁石特
性を評価した。第1表にその結果を示す。
Example 4 A 2/17 rare earth cobalt magnet was prepared in the same manner as in Example 3, except that acetone was used as the mixing aid, and the magnetic properties were evaluated. Table 1 shows the results.

比較例2 5m2033020g、Co5020g、Fe1400
g、Cu1022g、Zr180g。
Comparative example 2 5m2033020g, Co5020g, Fe1400
g, Cu1022g, Zr180g.

Ca1354gを混合助剤を使用せずに30分間V型混
合機にて混合して原料混合物とした以外は実施例3と同
様の方法に依り2/17系希土類コバルト磁石を作成し
て磁石特性を評価した(第1表参照)。
A 2/17 rare earth cobalt magnet was prepared in the same manner as in Example 3, except that 1354 g of Ca was mixed in a V-type mixer for 30 minutes without using a mixing aid to form a raw material mixture, and the magnetic properties were determined. evaluated (see Table 1).

実施例5 実施例3と同様の方法において、100メツシユアンダ
ーのZrの代わりに、各々Hf350g、Ti95 g
、Nbl 84 gを添加して得られた永久磁石の磁気
特性を第2表に示す。
Example 5 In the same method as in Example 3, 350 g of Hf and 95 g of Ti were used instead of 100 mesh under Zr.
Table 2 shows the magnetic properties of the permanent magnet obtained by adding 84 g of Nbl.

以下余白 第2表 〔発明の効果〕 以上、本発明に係る還元拡散法に依れば、従来の還元拡
散法に比較して巨石特性のばらつきが小さく品質の安定
した磁石の生産に多大の寄与がある。
Table 2 in the margin below [Effects of the invention] As described above, the reduction-diffusion method according to the present invention greatly contributes to the production of magnets with stable quality and less variation in megalith properties compared to the conventional reduction-diffusion method. There is.

Claims (1)

【特許請求の範囲】 式RM_5またはR_2M_1_7 ここで、RはCe、Sm、Prを中心とする希土類金属
の一種または二種以上、 MはCo、Fe、Cu(すなわちA元 素)の一種以上とZr、Hf、Nb、 Ti(すなわちB元素)の一種以上 の組み合わせ で表わされる金属間化合物よりなる永久磁石合金の製造
方法において、 (イ)Rの酸化物粉末と、A元素の純金属または合金粉
末と、B元素の純金属または合金 若しくは酸化物粉末とを、混合助剤の存在 下で湿式混合後、乾燥し、 (ロ)次いで前記混合粉にCa、CaH_2、Mgの中
から選ばれた1種以上の還元剤を追加混 合し、 (ハ)得られた混合物を真空または雰囲気(不活性もし
くは還元性)中で1000〜13 00℃の温度範囲で加熱して 還元拡散反応されることを特徴とする永久磁石合金の製
造方法。
[Claims] Formula RM_5 or R_2M_1_7 where R is one or more rare earth metals mainly consisting of Ce, Sm, and Pr, and M is one or more of Co, Fe, and Cu (i.e., element A) and Zr. , Hf, Nb, and Ti (i.e., element B) in a method for producing a permanent magnetic alloy consisting of an intermetallic compound represented by a combination of one or more of the following: (a) oxide powder of R and pure metal or alloy powder of element A; and a pure metal, alloy, or oxide powder of element B are wet-mixed in the presence of a mixing aid, and then dried; It is characterized by additionally mixing at least one reducing agent, and (c) heating the resulting mixture in a vacuum or atmosphere (inert or reducing) in a temperature range of 1000 to 1300°C to undergo a reduction-diffusion reaction. A method for producing a permanent magnet alloy.
JP61263547A 1986-11-05 1986-11-05 Manufacture of permanent magnet alloy Pending JPS63118029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61263547A JPS63118029A (en) 1986-11-05 1986-11-05 Manufacture of permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61263547A JPS63118029A (en) 1986-11-05 1986-11-05 Manufacture of permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPS63118029A true JPS63118029A (en) 1988-05-23

Family

ID=17391057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61263547A Pending JPS63118029A (en) 1986-11-05 1986-11-05 Manufacture of permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS63118029A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195025A (en) * 1992-01-16 1993-08-03 Sumitomo Metal Mining Co Ltd Production of rare earth metal-containing alloy powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195025A (en) * 1992-01-16 1993-08-03 Sumitomo Metal Mining Co Ltd Production of rare earth metal-containing alloy powder

Similar Documents

Publication Publication Date Title
JPH04329847A (en) Manufacture of fe-ni alloy soft magnetic material
JPH1064746A (en) Method of manufacturing r-fe-b sintered magnet having thin thickness
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
JPH10259459A (en) Raw material alloy for producing rare earth magnet powder and production of rare earth magnet powder using this raw material alloy
JP3841722B2 (en) Method for producing sintered body for rare earth magnet
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JPS63118029A (en) Manufacture of permanent magnet alloy
JPH1131610A (en) Manufacture of rare-earth magnet powder with superior magnetic anisotropy
JPS63114927A (en) Production of permanent magnet alloy
JP2001524604A (en) Manufacturing method of magnetic alloy powder
JPWO2003040421A1 (en) Alloy for Sm-Co magnet, its manufacturing method, sintered magnet and bonded magnet
JPS59179703A (en) Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism
JPH08120393A (en) Production of iron-silicon soft magnetic sintered alloy
JP3097387B2 (en) Manufacturing method of rare earth magnet material powder
JPS60125338A (en) Production of permanent magnet alloy
KR100262488B1 (en) Method of manufacturing sintered fe-si type soft magnets
JPS62188735A (en) Manufacture of tini alloy wire or plate
WO2022209466A1 (en) Method for producing r-t-b-based sintered magnet
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JPS61130436A (en) Manufacture of rare earth metal magnet
JP2002083705A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JPS6354703A (en) Manufacture of rare earth magnet
JP2002083728A (en) Method of manufacturing rare earth permanent magnet
JPS59154004A (en) Manufacture of permanent magnet
JPS60100647A (en) Manufacture of alnico type sintered magnet alloy