JPS5997506A - Manufacture of silicon nitride - Google Patents

Manufacture of silicon nitride

Info

Publication number
JPS5997506A
JPS5997506A JP20514982A JP20514982A JPS5997506A JP S5997506 A JPS5997506 A JP S5997506A JP 20514982 A JP20514982 A JP 20514982A JP 20514982 A JP20514982 A JP 20514982A JP S5997506 A JPS5997506 A JP S5997506A
Authority
JP
Japan
Prior art keywords
silicon nitride
carbon
diatomaceous earth
powder
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20514982A
Other languages
Japanese (ja)
Inventor
Toshio Kamitori
神取 利男
Haruo Doi
土井 晴夫
Masaharu Sugiura
杉浦 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP20514982A priority Critical patent/JPS5997506A/en
Publication of JPS5997506A publication Critical patent/JPS5997506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To manufacture efficiently silicon nitride of high purity and quality at a low cost by heating a mixture of carbon with diatomaceous earth at a specified temp. in a nitrogen atmosphere. CONSTITUTION:Carbon powder is mixed with powder of diatomaceous earth in (0.4-4):1 ratio to prepare a powdered mixture. Carbon black, pitch, graphite or the like is used as the carbon. The powdered mixture is heated in a nitrogen atmosphere to convert SiO2 in the powder into silicon nitride by reduction and nitriding. The reduction and nitriding temp. is 1,350-1,500 deg.C, and the heating time is 5-10hr.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、窒化珪素の製造方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing silicon nitride.

窒化珪素(SiaN4)は、その焼結体が高温において
優れた機械的強度、##熱熱衝撃性化化学的安定性有す
るので、各種の用途開発が盛んに行なわれ、また窒化珪
素自体の製造方法(こりいても高純度で良質の窒化珪素
な得べく鋭意検討がなされている。
Silicon nitride (SiaN4) has been actively developed for various uses because its sintered body has excellent mechanical strength, thermal shock resistance and chemical stability at high temperatures, and the manufacturing of silicon nitride itself has been actively conducted. Methods (intensive studies are being conducted to obtain silicon nitride of high purity and good quality even if it is hard).

そして、従来より、窒化珪素の製造方法としては1種々
のものが提案され、また、検討されている。
Conventionally, various methods for manufacturing silicon nitride have been proposed and studied.

これらの製造方法は1例えは。One example of these manufacturing methods is:

(1)  金属珪素粉末を窒化する方法。(1) Method of nitriding metal silicon powder.

(2)四塩化珪素または有機シランを窒素を含む気体中
で熱分解する方法。
(2) A method of thermally decomposing silicon tetrachloride or organic silane in a nitrogen-containing gas.

(3)二酸化珪素と炭素との混合粉末、または珪素と二
酸化珪素との混合粉末を窒化する方法。
(3) A method of nitriding a mixed powder of silicon dioxide and carbon or a mixed powder of silicon and silicon dioxide.

などがある。and so on.

上記の従来技術のうち、(1)の方法では、金属珪素粉
末の価格が頗る高いので、最終生成物たる窒化珪素の製
造価格も非常に高く、また、この方法では良質の窒化珪
素を得ることが困かIFである。(2)の方法は、比較
的tこ高収率で窒化珪素を得ることができるが、量産性
に乏しく、原料も高価格で生産コストが高い難点がある
。それに対し、(8)の方法は、資源的に豊富な二酸化
珪素を用いるため原料が容易に入手でき、量産も可能で
工業的に大変有利な窒化珪素の製造方法である。
Among the above conventional techniques, in method (1), the price of the metal silicon powder is extremely high, so the manufacturing cost of the final product, silicon nitride, is also very high. This is a difficult IF. Method (2) can obtain silicon nitride at a relatively high yield, but has the drawbacks of poor mass productivity, high raw material costs, and high production costs. On the other hand, method (8) uses silicon dioxide, which is abundant in resources, so the raw material is easily available, mass production is possible, and it is an industrially very advantageous method for producing silicon nitride.

この(8)の方法の1つとして、二酸化珪素(Si(h
)を出発原料とする方法がある。
As one of the methods (8), silicon dioxide (Si(h
) as a starting material.

この方法は、二酸化珪素(Sins)と炭素(C)と範
囲で混合せしめた後、窒素雰囲気中で1800〜150
0℃の温度に加熱して窒化珪素(Si3Na)を得るも
のである。ここで用いられる原料物質としての二酸化珪
素及び炭素は1反応性Vこ富むことか好ましく、二酸化
珪素の代表的な例としては。
This method involves mixing silicon dioxide (Sins) and carbon (C) in a range of 1800 to 150% in a nitrogen atmosphere.
Silicon nitride (Si3Na) is obtained by heating to a temperature of 0°C. Silicon dioxide and carbon as raw materials used here are preferably rich in 1-reactive V, and a typical example of silicon dioxide is:

比表面積の大きな非晶質シリカ(ホワイトカーボン等)
等が用いられる。
Amorphous silica with a large specific surface area (white carbon, etc.)
etc. are used.

kころが、こ旧らの非晶質原料を用いる場合。When the amorphous raw material of Kori et al. is used.

窒化珪素の合成の際1こ、化学量論比(K−(C)/(
S 1O2) (mo l)−〇よりもはるかに多い過
剰の炭素(Kン20)を加えなければ二酸化珪素から窒
化珪素へ変換できる割合が頗る低いものとなる。
When synthesizing silicon nitride, the stoichiometric ratio (K-(C)/(
Unless an excess of carbon (Kn 20) is added which is much larger than S 1O2) (mol)-〇, the rate of conversion of silicon dioxide to silicon nitride will be extremely low.

また、過剰の炭素を加えた場合、この過剰炭素は最終的
には大気中で燃焼・消費されるので、過剰炭素の存在下
での窒化珪素(Si3N4)の合成はその製造コストが
高(なり工業的に不利である。
In addition, if excess carbon is added, this excess carbon will eventually be burned and consumed in the atmosphere, so synthesis of silicon nitride (Si3N4) in the presence of excess carbon will result in high production costs. Industrially disadvantageous.

そこで1本発明者等は、上述の如き従来の問題点1こ鑑
み、これを解決すべく各種の研究を重ねたところ5本発
明を成すに至ったのである〇(発明の目的) 本発明の目的は、高純度で良質の窒化珪素を効率よ(か
つ安価1こ製造する方法を提供することにある。
Therefore, in view of the conventional problems 1 as mentioned above, the inventors of the present invention have conducted various studies to solve the problems and have completed the present invention. (Objective of the Invention) The purpose is to provide a method for efficiently (and inexpensively) manufacturing high-purity, high-quality silicon nitride.

(発明の構成および効果) 本発明は、炭素(C)と珪藻土(SiO□)との混合粉
末を、窒素雰囲気中で1350ないし1500℃の温度
で加熱することを特徴とする窒化珪素の製造方法である
(Structure and Effects of the Invention) The present invention provides a method for producing silicon nitride, which is characterized by heating a mixed powder of carbon (C) and diatomaceous earth (SiO□) at a temperature of 1350 to 1500°C in a nitrogen atmosphere. It is.

本発明の製造方法により、高純度で良質の窒化珪素を容
易にかつ安価に製造することができる。
By the manufacturing method of the present invention, high purity and high quality silicon nitride can be manufactured easily and at low cost.

以下2本発明をより詳細に説明する。The following two inventions will be explained in more detail.

本発明において用いる混合粉末は・炭素(C)と珪藻土
とを混合して得たものである。原料としての炭素(C)
は、結晶質のものでも非晶質のものでもどちらでもよく
、その代表的なものとして。
The mixed powder used in the present invention is obtained by mixing carbon (C) and diatomaceous earth. Carbon (C) as a raw material
can be either crystalline or amorphous, and is a typical example.

カーボンブラック、ピッチ、グラファイト等がある。該
炭素は1本質的[こ炭素(C)tこより構成さ才]る物
質であれは総て適用することができる。
Carbon black, pitch, graphite, etc. The carbon may be any substance that is essentially composed of carbon (C)t.

また、珪藻土は、隠花植物の珪藻類の化石が集合体とな
ったもので二酸化珪素(Si(h)が主成分である。該
珪藻土は、微細孔を有し、液体の吸着。
Furthermore, diatomaceous earth is an aggregate of fossilized diatoms of cryptoflowering plants, and its main component is silicon dioxide (Si(h)).The diatomaceous earth has micropores and is capable of adsorbing liquids.

吸収性能等の活性を有する特徴がある。不発明において
、該珪藻土は、産出状態のままでもよいし。
It has the characteristics of having activities such as absorption performance. In the invention, the diatomaceous earth may be left in its produced state.

それらに化学処理等を施して精製した珪藻土でもよい。Diatomaceous earth purified by chemical treatment or the like may also be used.

次に、上記の炭素と珪藻土ンを混合する。該混合は、混
合容器内で湿式混合など?こより行ない。
Next, the above carbon and diatomaceous earth are mixed. Is the mixing done by wet mixing in a mixing container? Go ahead.

混合粉末を得る。この場合、炭素と珪藻土との混合割合
は、原料組成比で珪藻±(Si(h)1)こ対して炭素
04ないし4であることが好ましい。これは、原料組成
比で珪藻±(SiOz)に対して炭素α4未満とした場
合には9次の還元・窒化工程で二酸化珪素が未反応物質
として残存してしまうためで。
Obtain a mixed powder. In this case, the mixing ratio of carbon and diatomaceous earth is preferably 04 to 4 carbon to diatom ±(Si(h)1) in raw material composition ratio. This is because if the raw material composition ratio is less than α4 carbon to diatom ± (SiOz), silicon dioxide will remain as an unreacted substance in the ninth reduction/nitridation step.

また炭素が4を越える場合には、それ以上次素番賓を加
えても顕著な効果が見られず、逆に過剰に炭素を用いる
ことによる製造コスト増を招き、工業的に大変不利だか
らである。
In addition, if the carbon content exceeds 4, no significant effect will be seen even if additional base guests are added, and on the contrary, using too much carbon will increase manufacturing costs, which is very disadvantageous industrially. be.

を還元・窒化すること1こよって窒化珪素を得る。By reducing and nitriding 1, silicon nitride is obtained.

ここで、還元・窒化の温度+!、1350℃以上150
0℃以下で、加熱時間は5ないし10時間である。これ
は、加熱温度が1850℃未満の場合Pこは、未反応の
二酸化珪素が移存してしまう恐れがあるからである。ま
た、1500℃を越えると炭化珪素(SiC)が生成し
易いからである。
Here, the reduction/nitriding temperature is +! , 1350℃ or higher 150
The heating time is 5 to 10 hours at a temperature below 0°C. This is because if the heating temperature is lower than 1850° C., there is a risk that unreacted silicon dioxide may remain. Further, if the temperature exceeds 1500°C, silicon carbide (SiC) is likely to be generated.

ここで9本発明の窒化珪素の製造方法により得ろわ、た
窒化珪素は、純度が高く良質の窒化珪素であるが、更に
加熱処理を施して残留炭素を除去することによって更に
高純度の良質の窒化珪素とすることができる。この加熱
処理は、大気中にて500ないし700℃の範囲の温度
で5ないし10時間行なうことが好ましい。
Here, the silicon nitride obtained by the method for producing silicon nitride of the present invention is a high-purity and high-quality silicon nitride, but it can be made even more pure and high-quality by further heat treatment to remove residual carbon. It can be silicon nitride. This heat treatment is preferably carried out in the atmosphere at a temperature in the range of 500 to 700°C for 5 to 10 hours.

また1本発明に於いて二酸化珪素(Sin2)物質とし
て珪藻土を用いるのは、資源的に豊富であるためその原
料が安価1こ入手できるほか、他の二酸化珪素(S i
oz )KtU K比較用窒化珪素(Si3Nt)の製
造の際にその生成反応の促進に極めて有効であり、また
、窒化珪素(Si3N4)合成の際、炭素(C)は化学
量論比(K=2)と同程度の炭素量でも足りるからであ
る。これは、珪藻土が窒化珪素の製造の際にその生成反
応を促進するのは、充分に明らかではないが、珪藻土の
持つ微細孔の活性が二酸化珪素(Sin2)から窒化珪
素(sj3N4)l〜の反応に於いて有効tこ作用する
ものと考えられる。
Furthermore, diatomaceous earth is used as the silicon dioxide (Sin2) material in the present invention because it is an abundant resource, and the raw material can be obtained at low cost.
oz ) KtU K It is extremely effective in promoting the production reaction during the production of silicon nitride (Si3Nt) for comparison, and in the synthesis of silicon nitride (Si3N4), carbon (C) has a stoichiometric ratio (K= This is because the same amount of carbon as in 2) is sufficient. Although it is not fully clear that diatomaceous earth promotes the production reaction during the production of silicon nitride, the activity of the micropores of diatomaceous earth increases the conversion from silicon dioxide (Sin2) to silicon nitride (sj3N4). It is thought that this has an effective effect on the reaction.

以上の構成の本発明の製造方法Pこより、高純度で良質
の窒化珪素を容易にかつ安価に製造することができる。
By the manufacturing method P of the present invention having the above configuration, high purity and high quality silicon nitride can be manufactured easily and at low cost.

また2本発明により得られた窒化珪素は、高純度で良質
であるので、これを焼結晶とした場合には、優れた高温
強度及び高い熱衝撃抵抗を保有する。
Furthermore, the silicon nitride obtained according to the present invention has high purity and good quality, so when it is made into a sintered crystal, it has excellent high temperature strength and high thermal shock resistance.

また1本発明に用いる二酸化珪素原料としての珪藻土は
、資源的に豊富であり原料を安価ンこ入手できるので、
高純度の窒化珪素を低コストで製造ができ、しかも量産
が可能であるので2本発明は工業的Pこ優わた窒化珪素
の製造方法である、(実施例) 以下9本発明の実施例を示す。
In addition, diatomaceous earth as a raw material for silicon dioxide used in the present invention is an abundant resource and can be obtained at low cost.
Since high-purity silicon nitride can be manufactured at low cost and can be mass-produced, the present invention is an industrial method for manufacturing P-superior silicon nitride. show.

本実施例は、原料としてBgとしてのカーポンプフック
と珪藻土を用いて混合粉末を作製し、然る後に該混合粉
末を還元・窒化して窒化珪素を製造し、得られた窒化珪
素の物質同定試験を行なった。
In this example, a mixed powder was prepared using a car pump hook as Bg and diatomaceous earth as raw materials, and then the mixed powder was reduced and nitrided to produce silicon nitride, and the substance identification of the obtained silicon nitride was performed. I conducted a test.

本実施例tこおける製造法は1次の様である。The manufacturing method in this embodiment is as follows.

即ち、先ず、純度95%、比表面積6m 2 / gの
粉末とした。次いで、該原料粉末を分散媒としてのエタ
ノールと共Fこポリエチレン容器に入れ、ボールミル架
台上で15時間混合した。次tこ、上記混合物を乾燥容
器中にて60℃の温度で20時間乾燥させ、溶媒を揮散
せしめた後、固化した混合物を乳鉢で粉砕し混合粉末を
得た。
That is, first, a powder having a purity of 95% and a specific surface area of 6 m 2 /g was prepared. Next, the raw material powder and ethanol as a dispersion medium were placed in a polyethylene container and mixed for 15 hours on a ball mill stand. Next, the above mixture was dried in a drying container at a temperature of 60° C. for 20 hours to volatilize the solvent, and then the solidified mixture was ground in a mortar to obtain a mixed powder.

その後、各混合粉末を20gずつ内寸法10×15X7
0mの黒鉛ポートに充填した後、管状シリ−7)炉中に
装填した。そして、該管状シリコニア)炉中へ窒素ガヌ
を毎分2. Ol (標準状態換算)の割合で流しなが
ら上記黒鉛ポートを約1.5時間かけて表に示す如きそ
1それの温度(1350〜1500℃)に昇温し、該温
度にそねぞれ5または10時間保持の加熱工稈を施すこ
とにより窒化珪素と炭素との混合物を得た。
After that, add 20g of each mixed powder to the inner size of 10 x 15 x 7.
After filling the 0 m graphite port, it was loaded into the tubular series-7) furnace. Then, the nitrogen gas was pumped into the tubular silicone furnace at 2.5 m/min. The graphite port was heated to the temperature shown in the table (1350 to 1500°C) for about 1.5 hours while flowing at a rate of OI (converted to standard conditions), and then Alternatively, a mixture of silicon nitride and carbon was obtained by heating the mixture for 10 hours.

更に、該混合物を磁製坩堝に移し、大気中で温度650
℃、5時間の加熱処理をし残存炭素を燃焼・除去するこ
とにより、灰褐色の窒化珪素(試料番号1〜7)を得た
。ここで、比較のために。
Further, the mixture was transferred to a porcelain crucible and heated to a temperature of 650°C in the atmosphere.
A heat treatment was carried out at 50° C. for 5 hours to burn and remove residual carbon, thereby obtaining grayish brown silicon nitride (sample numbers 1 to 7). Here, for comparison.

還元・窒化の際の加熱温度を1300℃としたほかは上
記と同様の方法にて白褐色の比較用窒化珪素(試料番号
CI)を得た。
A white-brown comparative silicon nitride (sample number CI) was obtained in the same manner as above except that the heating temperature during reduction and nitridation was 1300°C.

以上の様にして得られた窒化珪素(試料番号1〜? 、
CI )の物質同定試験を、コバルトKa線を用いた粉
末X線回折法をこより実施した。該X線回折により得ら
れた二酸化珪素(SiO2)と炭素(C)の組成比とσ
−8i3Na(102面)のX線回折強度を図tこ曲線
lで、また物質同定の結果を生成物の色調と共に表にそ
れぞれ示す。尚、()内の数字は、生成物の生成割合(
重量%)を示し。
Silicon nitride obtained as above (sample number 1~?,
A substance identification test for CI) was carried out by powder X-ray diffraction using cobalt Ka rays. The composition ratio of silicon dioxide (SiO2) and carbon (C) obtained by the X-ray diffraction and σ
The X-ray diffraction intensity of -8i3Na (102 plane) is shown in Figure t and curve 1, and the substance identification results are shown in the table together with the color tone of the product. In addition, the numbers in parentheses indicate the production rate of the product (
weight%).

不等号rA))BJ の「)」は、への生成割合が80
重量%以上であることを示す。
The inequality symbol rA))BJ has a generation rate of 80.
Indicates that it is more than % by weight.

一方、実施例と比較のために市販の水ガラス(8号)に
79m酸(12N)で加水分解し遊離した硅酸を水洗・
乾燥して得た非晶質シリカ(ホワイトカーボン;比表面
積51077X’/ g )と炭素物質としての上記の
カーボンブラックを表の試料番号更に加熱して残存炭素
を除去し、灰色または白灰色の比較用窒化珪素を得た。
On the other hand, for comparison with Examples, the silicic acid released by hydrolysis with 79m acid (12N) was washed with water in a commercially available water glass (No. 8).
The amorphous silica (white carbon; specific surface area: 51077X'/g) obtained by drying and the above carbon black as a carbon material were further heated to remove residual carbon and compared with the gray or white-gray color. Silicon nitride for use was obtained.

得ら11だ比較用窒化珪素(比較用窒化珪素02〜C5
)について上記と同様に粉末X線回折を実施した。該X
線回折1こより得られた二酸化珪素(SiO2)と炭素
(C)の組成比とα−8isNi (102面)のX線
回折強度との関係を図に曲線2で、また物質同定の結果
を生成物の色調と共に表にそjぞれ示す。
Silicon nitride for comparison (silicon nitride for comparison 02 to C5
) was subjected to powder X-ray diffraction in the same manner as above. The X
The relationship between the composition ratio of silicon dioxide (SiO2) and carbon (C) obtained from line diffraction 1 and the X-ray diffraction intensity of α-8isNi (102 plane) is shown in curve 2, and the material identification results are also generated. Each is shown in the table along with the color tone of the object.

/ 表より明らかの如く、二酸化珪素原料として珪藻土を用
いて本発明の方法で還元・窒化を温度1350〜150
0℃で行なった場合(試料番号1〜7)、未反応の二酸
化珪素(Si02)は残存せず、窒化が十分に進行して
窒化珪素(S is N、a )のみが生成しているこ
とがわかる。ところが・同方法[こ於いて還元・窒化の
際の加熱温度を1800℃とした場合(試料番号CI)
、m化がやや不十分であり、窒化珪素(Si3Nt)に
加えて酸窒化珪素(Si2N20)が微かに生成してい
ることがわかる。
/ As is clear from the table, reduction and nitriding were carried out at a temperature of 1350 to 150 using the method of the present invention using diatomaceous earth as a raw material for silicon dioxide.
When carried out at 0°C (sample numbers 1 to 7), no unreacted silicon dioxide (Si02) remains, and nitridation has progressed sufficiently to produce only silicon nitride (S is N, a ). I understand. However, the same method [when the heating temperature during reduction and nitriding was 1800°C (sample number CI)
It can be seen that m-conversion is somewhat insufficient, and a slight amount of silicon oxynitride (Si2N20) is generated in addition to silicon nitride (Si3Nt).

それに対し、二酸化珪素原料として非晶質シリカを用い
た場合(比較例ic2〜C3)tこは、窒化があまり進
行せず、未反応の二酸化珪素が多量O存していることが
わかる。
On the other hand, when amorphous silica was used as the silicon dioxide raw material (Comparative Examples IC2 to C3), nitridation did not proceed much and it was found that a large amount of unreacted silicon dioxide was present.

また2図より明らかの如<、K((C)と(Si02〕
ノ組成比)とα型窒化珪素(a −S 1iNa )の
回折強度(102面)との関係は、二酸化珪素)6(料
として本発明の方法の珪藻土を用いた場合には、同組成
に於いて二酸化珪素原料として非晶質シリカを用いた場
合に比して、2〜4倍α型窒化珪素の生成量が多いこと
がわかる。また、二酸化珪素原料として非晶質シリカを
用し・た場合1こFよ炭素量が減少すると窒化珪素の生
成量が減少する力;。
Also, as is clear from Figure 2, K((C) and (Si02)
The relationship between the diffraction intensity (102 plane) of α-type silicon nitride (a-S 1iNa ) is It can be seen that the amount of α-type silicon nitride produced is 2 to 4 times higher than when amorphous silica is used as the silicon dioxide raw material.In addition, when amorphous silica is used as the silicon dioxide raw material, In this case, if the amount of carbon decreases by 1 F, the amount of silicon nitride produced decreases.

珪藻土を用いた場合には、逆に窒化珪素の生成量が増加
する傾向のあるこkがわかる。
It can be seen that when diatomaceous earth is used, on the contrary, the amount of silicon nitride produced tends to increase.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例を示し、実施例により得られた窒化
珪素の原料組成とα型窒化珪素のX線回折強度との関係
を示す図である。 特許出願人 株式会社 豊田中央研究所
The figure shows an example of the present invention, and is a diagram showing the relationship between the raw material composition of silicon nitride obtained in the example and the X-ray diffraction intensity of α-type silicon nitride. Patent applicant Toyota Central Research Institute Co., Ltd.

Claims (1)

【特許請求の範囲】 (11炭素と珪藻土との混合粉末を、窒素雰囲気中で1
850ないし1500℃の温度で加熱することを特徴と
する窒化珪素の製造方法。 (2)炭素と珪藻土との混合割合は、原料組成比で珪藻
±1に対して炭素α4ないし4であることを特徴とする
特許請求の範囲第1項記載の窒化珪素の製造方法。
[Claims] (A mixed powder of 11 carbon and diatomaceous earth is
A method for producing silicon nitride, the method comprising heating at a temperature of 850 to 1500°C. (2) The method for producing silicon nitride according to claim 1, wherein the mixing ratio of carbon and diatomaceous earth is α4 to 4 carbon to ±1 diatom in raw material composition ratio.
JP20514982A 1982-11-22 1982-11-22 Manufacture of silicon nitride Pending JPS5997506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20514982A JPS5997506A (en) 1982-11-22 1982-11-22 Manufacture of silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20514982A JPS5997506A (en) 1982-11-22 1982-11-22 Manufacture of silicon nitride

Publications (1)

Publication Number Publication Date
JPS5997506A true JPS5997506A (en) 1984-06-05

Family

ID=16502228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20514982A Pending JPS5997506A (en) 1982-11-22 1982-11-22 Manufacture of silicon nitride

Country Status (1)

Country Link
JP (1) JPS5997506A (en)

Similar Documents

Publication Publication Date Title
US4117095A (en) Method of making α type silicon nitride powder
JPS5891005A (en) Production of silicon nitride powder
US4368180A (en) Method for producing powder of α-silicon nitride
JPS6112844B2 (en)
CA1318481C (en) Method of making high purity dense silica of large particle size
JPS5997506A (en) Manufacture of silicon nitride
JPS59203715A (en) Manufacture of composite ceramic powder
JPS62241812A (en) Manufacture of silicon nitride
JPS58120599A (en) Production of beta-silicon carbide whisker
JPS5839764B2 (en) Method for producing aluminum nitride powder
JPS61242905A (en) Production of alpha-silicon nitride powder
JPS62252311A (en) Production of silicon tetrachloride
JPS6047204B2 (en) Method for manufacturing silicon nitride powder
JPS5891027A (en) Manufacture of silicon carbide powder
JPS606884B2 (en) Method for producing α-type silicon nitride powder
JPS5950006A (en) Manufacture of alpha-type silicon nitride powder
JPH0313166B2 (en)
JPH0240606B2 (en)
JPS59203714A (en) Manufacture of silicon nitride
JPS6146403B2 (en)
JPS61127615A (en) Production of silicon carbide powder
JPH03208864A (en) Production of mixed powder of boron nitride and aluminum nitride
JPS61102416A (en) Production of fibrous silicon carbide
JPS6259049B2 (en)
JPH03193617A (en) Production of silicon carbide powder