JPS59203714A - Manufacture of silicon nitride - Google Patents

Manufacture of silicon nitride

Info

Publication number
JPS59203714A
JPS59203714A JP7795383A JP7795383A JPS59203714A JP S59203714 A JPS59203714 A JP S59203714A JP 7795383 A JP7795383 A JP 7795383A JP 7795383 A JP7795383 A JP 7795383A JP S59203714 A JPS59203714 A JP S59203714A
Authority
JP
Japan
Prior art keywords
silicon nitride
oxide
powder
atmosphere
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7795383A
Other languages
Japanese (ja)
Inventor
Toshio Kamitori
神取 利男
Haruo Doi
土井 晴夫
Masahiro Sugiura
杉浦 正洽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP7795383A priority Critical patent/JPS59203714A/en
Publication of JPS59203714A publication Critical patent/JPS59203714A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0685Preparation by carboreductive nitridation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To manufacture inexpensively high quality silicon nitride consisting of fine particles and having superior characteristics at high temp. by bringing a mixture consisting of SiO2, C powder and specified additives into a reaction by heating to a high temp. in an atmosphere contg. nitrogen. CONSTITUTION:To 1pt.wt. of SiO2 are added 0.4-2pts. C powder such as carbon black and 0.0001-0.03pt. of one or more kinds of compounds selected among oxides such as LiOH, GeO2, Y2O3, ZrO2, Nb2O5, La2O3, CeO2 and Ta2O5, nitri des such as AlN and ZrN, and composite oxides such as Y3Al5O12 as additives. They are mixed, and the mixture is heated to 1,350-1,500 deg.C in a gaseous nitrogen atmosphere or an atmosphere of a mixture of gaseous nitrogen with <=30vol% gaseous hydrogen. High quality Si3N4 consisting of fine particles and having superior mechanical properties, thermal shock resistance and chemical stability at high temp. can be inexpensively manufactured in a high yield.

Description

【発明の詳細な説明】 本発明は窒化珪素の製造方法に関するものである。[Detailed description of the invention] The present invention relates to a method for manufacturing silicon nitride.

窒化珪素(Six N4 )は、その焼結体が高温にお
いて優れた機械的強度、耐熱衝撃性、化学的安定性を有
するので、各種の用途開発が盛んに行なわれ、また窒化
珪素自体の製造方法についても高純度で良質の窒化珪素
を得べく鋭意検討がなされている。
Silicon nitride (Six N4) is a sintered body that has excellent mechanical strength, thermal shock resistance, and chemical stability at high temperatures, so it is being actively developed for various uses, and the manufacturing method of silicon nitride itself is being developed. Efforts are also being made to obtain high-purity, high-quality silicon nitride.

そして、従来より、窒化珪素の製造方法としては1種々
のものが提案され、また検討されている。
Conventionally, various methods for manufacturing silicon nitride have been proposed and studied.

これらの製造方法は9例えば。For example, 9 manufacturing methods include:

(1)金属珪素粉末を窒化する方法。(1) Method of nitriding metal silicon powder.

(2)四塩化珪素または有機シラン全窒素を含む気体中
で熱分解する方法。
(2) A method of thermally decomposing silicon tetrachloride or organic silane in a gas containing total nitrogen.

(3)二酸化珪素と炭素との混合粉末、または珪素と二
酸化珪素との混合粉末を窒化する方法。
(3) A method of nitriding a mixed powder of silicon dioxide and carbon or a mixed powder of silicon and silicon dioxide.

などがある。and so on.

上記の従来技術のうち、(1)の方法は、原料粉末の価
格が頗る高いので、最終生成物たる窒化珪素の製造価格
も非常に高<、また本方法では良質の窒化珪素を得るこ
とが困難である。(2)の方法は。
Among the above-mentioned conventional techniques, method (1) requires a very high price for the raw material powder, so the manufacturing cost of the final product, silicon nitride, is also very high.Also, with this method, it is difficult to obtain high-quality silicon nitride. Have difficulty. What is the method for (2)?

比較的に高収率で窒化珪素を得ることができるが。Although silicon nitride can be obtained in relatively high yield.

量産性に乏しく、原料も高価格で生産コストが高い難点
がある。それに対し、(3)の方法は、資源的に豊富な
二酸化珪素を用いるため原料が容易に入手でき、量産も
可能で工業的に大変有利な窒化珪素の製造方法である。
It is difficult to mass produce, and the raw materials are expensive and production costs are high. On the other hand, method (3) uses silicon dioxide, which is an abundant resource, so the raw material is easily available, mass production is possible, and it is an industrially very advantageous method for producing silicon nitride.

この(3)の方法の1つとして、二酸化珪素(SXO,
)を出発原料とする方法がある。この方法は、二酸化珪
素(Sins)と炭素(0)とを混合して原料粉末とし
、これを窒素雰囲気中で1300〜1500°Cの温度
に加熱して窒化珪素(SimN4)’e得るものである
。ところが、この従来方法に於いては。
As one of the methods (3), silicon dioxide (SXO,
) as a starting material. In this method, silicon dioxide (Sins) and carbon (0) are mixed to form a raw material powder, and this is heated to a temperature of 1300 to 1500°C in a nitrogen atmosphere to obtain silicon nitride (SimN4)'e. be. However, in this conventional method.

窒化珪素の合成の際に、化学量論比(K=[(!]/(
5j−02) (nol) = 2 )程度の炭素量を
加える場合には、原料は充分精製された二酸化珪素粉末
及び炭素粉末を用いる必要がありしかも生成物は窒化珪
素、炭化珪素、二酸化珪素、シリコンオキシナイトライ
ド等の混合物であり、良質な窒化珪素を得ることができ
ない。また、窒化珪素の合成の際に、化学量論比(K)
より遥かに多い過剰の炭素(例えばK)20)’i加え
た場合、成程二酸化珪素から炭化珪素へ交換できる割合
は増加し。
During the synthesis of silicon nitride, the stoichiometric ratio (K=[(!]/(
5j-02) (nol) = 2), it is necessary to use sufficiently purified silicon dioxide powder and carbon powder as the raw materials, and the product is silicon nitride, silicon carbide, silicon dioxide, It is a mixture of silicon oxynitride, etc., and high quality silicon nitride cannot be obtained. In addition, when synthesizing silicon nitride, the stoichiometric ratio (K)
If a much larger excess of carbon (eg K) is added, the rate at which silicon dioxide can be exchanged into silicon carbide increases.

成る程度満足し得る窒化珪素が得られる。しかし。To this extent, a satisfactory silicon nitride can be obtained. but.

過剰の炭素を加えることは、この過剰の炭素は最終的に
は大気中で燃焼・消費されるので、過剰の炭素の存在下
での窒化珪素(sbN<)の合成は。
Adding excess carbon makes it difficult to synthesize silicon nitride (sbN<) in the presence of excess carbon because this excess carbon will eventually be burned and consumed in the atmosphere.

その製造価格が高くなり工業的に不利になってしまい、
また高純度の良質の窒化珪素を得ることは難しい、。
The manufacturing price becomes high and it becomes industrially disadvantageous,
It is also difficult to obtain high quality silicon nitride with high purity.

そこで1本発明者等は、上述の如き従来の問題点に鑑み
、これを解決すべく各種の研究並びに系統的実験を重ね
たところ1本発明を成すに至ったのである。
Therefore, in view of the above-mentioned conventional problems, the inventors of the present invention conducted various studies and systematic experiments to solve the problems, and as a result, they came up with the present invention.

本発明の目的は、微粒子状の良質の窒化珪素を−−3−
− 収率よく、かつ安価に製造する方法を提供することにあ
る。
The purpose of the present invention is to produce high-quality silicon nitride in the form of fine particles--3-
- To provide a method for manufacturing with high yield and at low cost.

即ち1本発明は、二酸化珪素1虫量部に対して炭素粉末
0.4ないし2重量部と、水酸化リチウム。
That is, 1 the present invention contains 0.4 to 2 parts by weight of carbon powder and lithium hydroxide per 1 part by weight of silicon dioxide.

酸化ゲルマニウム、酸化イツトリウム、酸化ジルコニウ
ム、酸化ニオブ、酸化ランタン、酸化セリウム、酸化タ
ンタル、酸化アルミニウムマダイ・シウム、酸化アルミ
ニウムイツトリウム、窒化アルミニウム、窒化ジルコニ
ウムの1種または2種以上からなる添加剤0.0001
ないし0.03 i量部と全混合して原料粉末となし、
該原料粉末を屋素全冨む雰囲気中で1650℃ないし1
500°Cに加熱することを特徴とするものである。
Additive containing one or more of germanium oxide, yttrium oxide, zirconium oxide, niobium oxide, lanthanum oxide, cerium oxide, tantalum oxide, aluminum oxide, yttrium aluminum oxide, aluminum nitride, and zirconium nitride. 0001
to 0.03 i parts to make a raw material powder,
The raw material powder is heated at 1650°C to 1°C in an atmosphere completely enriched with nitrogen.
It is characterized by heating to 500°C.

本発明によれば、微粒子状の良質であり、高温において
優れた機械強度、耐熱衝撃性、化学的安定性を要求する
構造用制料用の窒化珪素を収率よくかつ安価に製造する
ことができる。
According to the present invention, silicon nitride for structural materials, which is fine-grained and of high quality and requires excellent mechanical strength, thermal shock resistance, and chemical stability at high temperatures, can be produced with high yield and at low cost. can.

以下9本発明をより詳細に説明する。Below, nine aspects of the present invention will be explained in more detail.

本発明において、二酸化珪素と炭素との混合割合は、二
酸化珪素1電量部に対して0.4ないし2−4−− 重量部であることが好ましい。これは、0.4重量重量
部を越える場合は、確かに過剰量の炭素により反応性が
成程よくなるが、必要量以上の過剰の炭素は最終的には
大気中で燃焼・消費されるので。
In the present invention, the mixing ratio of silicon dioxide and carbon is preferably 0.4 to 2-4 parts by weight per 1 part of silicon dioxide. This is because when the amount exceeds 0.4 parts by weight, the reactivity is certainly improved by the excess amount of carbon, but excess carbon beyond the required amount will eventually be burned and consumed in the atmosphere. .

過剰量の炭素の存在下での窒化珪素(81mN4)の合
成は製造コストが高くなるからである。
This is because synthesis of silicon nitride (81 mN4) in the presence of an excessive amount of carbon increases manufacturing costs.

また、fA加剤としては、水酸化リチウム(LioH)
In addition, as an fA additive, lithium hydroxide (LioH)
.

酸化ゲルマニウム(oeo2)、酸化イツトリウム(Y
2O、)、酸化ジルコニウム(Zr02)、n化ニオブ
(NA20s)、酸化ランタン(Laa os )、酸
化セリウム(CeO2)+酸化タンタル(TIZ2 o
s ) 、酸化アルミニウムマグネシウム(MgAl2
O4)、 酸化アルミニウムイツトリウム(Ys Al
s 012 ) + N化アルミニウム(AIN )、
 窒化ジルコニウム(ZrN)の1種又は2種以上を用
いる。
Germanium oxide (oeo2), yttrium oxide (Y
2O, ), zirconium oxide (Zr02), niobium nide (NA20s), lanthanum oxide (Laa os ), cerium oxide (CeO2) + tantalum oxide (TIZ2 o
s), magnesium aluminum oxide (MgAl2
O4), yttrium aluminum oxide (Ys Al
s 012 ) + aluminum nitride (AIN),
One or more types of zirconium nitride (ZrN) are used.

これらの添加剤が、前記のごとき優れた窒化珪素の製造
に有効であるのは、二酸化珪素(sho、)と炭素(C
)とから窒化珪素全合成する際に、戻化珪素や繊維状等
の副生物の生成を抑制し、窒化珪素粉末の焼結に有効に
作用するからと考えられる。ここで、この添加剤の添加
割合は、二酸化珪素1市量部に対して0.0001ない
し0.03車量部であることが好ましい。これは、該添
加剤の添加割合が、0.0001車量部米満の場合には
、窒化珪素の生成率が低く、良質の窒化珪素を得ること
ができないからである。また、0.03重量部を越える
場合には、それ線上添加剤全添加しても副生物の抑制効
果の向上全期待できず、また過多量の添加は、窒化珪素
の粒径を増大するからである。
The reason why these additives are effective in producing the excellent silicon nitride described above is that they are effective for producing silicon dioxide (sho) and carbon (C).
This is thought to be because it suppresses the production of by-products such as reverted silicon and fibers during total synthesis of silicon nitride from ) and acts effectively on sintering of silicon nitride powder. Here, the addition ratio of this additive is preferably 0.0001 to 0.03 parts by weight per part by weight of silicon dioxide. This is because if the additive is added in a proportion of 0.0001 mv/m, the production rate of silicon nitride is low and high quality silicon nitride cannot be obtained. In addition, if the amount exceeds 0.03 parts by weight, no improvement in by-product suppression effect can be expected even if all the additives are added, and addition of an excessive amount increases the particle size of silicon nitride. It is.

−!だ、還元・窒化雰囲気として用いる気体は。-! What is the gas used as the reducing/nitriding atmosphere?

窒素(N2)ガスのみでもよいが、該ガスに対して水素
(N2)ガスを加えても艮い。後者の場合は窒化反応を
促進し、更には窒化珪素(st、N4)の粒径全減少さ
せることができる。ここで、還元・窒化雰囲気として水
素を含む場合の混合気体の混合割合は、30体積形以下
の水素と残部が本質的に窒素であることがより好ましい
。水素の混合割合が50体積形を越えると、副生物の炭
化珪素(SXO)が生成し、良質の窒化珪素を得ること
ができなくなるからである。
Only nitrogen (N2) gas may be used, but hydrogen (N2) gas may also be added to the gas. In the latter case, it is possible to promote the nitriding reaction and further reduce the total particle size of silicon nitride (st, N4). Here, when hydrogen is included as the reducing/nitriding atmosphere, the mixing ratio of the gas mixture is preferably 30 volumes or less of hydrogen and the remainder essentially nitrogen. This is because if the mixing ratio of hydrogen exceeds 50 volumes, by-product silicon carbide (SXO) is produced, making it impossible to obtain high-quality silicon nitride.

また、還元・窒化の際の加熱温度は、1’350°Cな
いし1500°Cである。これは、該加熱温度が165
0°C未満である場合には、未反応の二酸化珪素(5i
Offi )が残存してしまう恐れがあるからであり、
また、1500°Cを越える場合には、炭化珪素(S1
C)が副生ずるため目的とする良質の窒化珪素を収率よ
く製造することができないからである。
Further, the heating temperature during reduction and nitriding is 1'350°C to 1500°C. This means that the heating temperature is 165
If the temperature is less than 0°C, unreacted silicon dioxide (5i
Offi) may remain.
In addition, if the temperature exceeds 1500°C, silicon carbide (S1
This is because C) is produced as a by-product, making it impossible to produce the desired high-quality silicon nitride with a good yield.

なお9本発明の方法により製造した窒化珪素粉末は、こ
れを焼結したとき、高い高温強度、高い熱衛撃性及び化
学的安定性等を有する焼結体となる。
Note that when the silicon nitride powder produced by the method of the present invention is sintered, it becomes a sintered body having high high-temperature strength, high thermal sanitizing properties, high chemical stability, etc.

実施例 本実施例においては、二酸化珪素としての無水珪酸と炭
素粉末としてのカーボンブランク及び添加剤を表に示す
如き割合にて混合して原料粉末を作製し、該原料粉末を
用い本発明の製造方法にて窒化珪素を製造し、得られた
窒化珪素の物質同定試験、走査電子顕微鏡観察および粒
径測定を行なった。
Example In this example, a raw material powder was prepared by mixing silicic anhydride as silicon dioxide, a carbon blank as carbon powder, and additives in the proportions shown in the table, and the raw material powder was used to manufacture the present invention. Silicon nitride was produced by this method, and the obtained silicon nitride was subjected to substance identification tests, scanning electron microscopy observations, and particle size measurements.

即ち、先ず、無水珪酸(5iC1a )とカーボンブラ
ック((3)とを表に示す如き割合にて混合し、更た後
、ポリエチレン容器中で10時時間式混合した。次いで
、乾燥容器中で乾燥させ溶1i[f揮散せしめた後、固
化(7た団塊を乳鉢で粉砕し原料粉木全得た。
That is, first, silicic anhydride (5iC1a) and carbon black ((3) were mixed in the proportions shown in the table, and then mixed for 10 hours in a polyethylene container. Then, they were dried in a drying container. After volatilization, the solidified nodules were crushed in a mortar to obtain raw material powder.

次に、得られた原料粉末を黒鉛ボート(内寸法10X1
5X70朋)に2二op充填した後、管状シリコニット
炉中に装填した。そして、該管状シリコニット炉中へ窒
素ガス及び水素ガスを表の雰囲気の欄に示す混合割合(
標準状態換算)にて流しながら、上記黒鉛ボー)f下記
の加熱温度にて10時間保持することにより、原料粉末
全還元・窒化し、窒化珪素と炭素との混合物を得た。
Next, the obtained raw material powder was poured into a graphite boat (inner dimensions 10×1
After filling 22 ops into a 5×70 mm tube, it was loaded into a tubular siliconite furnace. Then, nitrogen gas and hydrogen gas are introduced into the tubular siliconite furnace at the mixing ratio shown in the atmosphere column of the table (
The graphite powder was maintained at the following heating temperature for 10 hours while flowing under standard conditions (converted to standard conditions), thereby completely reducing and nitriding the raw material powder to obtain a mixture of silicon nitride and carbon.

上記において、上表中の原料粉末組成はS10゜1重量
部に対して加えた重量部で示した。また。
In the above, the raw material powder composition in the above table is shown in parts by weight added to 1 part by weight of S10. Also.

還元・窒化のための加熱温度は、試料番号1.4〜7.
9〜20は1450°C9試料番号2は1370°C1
試料番号6は1400°C9試料番号8.21は150
0°Cであった。
The heating temperatures for reduction and nitriding were sample numbers 1.4 to 7.
9 to 20 is 1450°C9 Sample number 2 is 1370°C1
Sample number 6 is 1400°C9 Sample number 8.21 is 150°C
It was 0°C.

更に、該混合物を磁製坩堝に移し、を気炉で温度650
°Cで5時間加熱して残存次素を燃焼・除去し、窒化珪
素(試料番号1〜21)を得た。
Further, the mixture was transferred to a porcelain crucible and heated to a temperature of 650 in an air furnace.
The mixture was heated at °C for 5 hours to burn and remove residual hydrogen, thereby obtaining silicon nitride (sample numbers 1 to 21).

以上の様にして得られた窒化珪素の形状について、その
表面をSEM(走査電子顕微鏡Hs&snning e
lectron m1croscopeの略)によシ観
察した。その結果、得られた窒化珪素は総て粒状であり
、繊維質等の不純物は見あたらなかった。
Regarding the shape of the silicon nitride obtained in the above manner, its surface was examined using a scanning electron microscope (SEM).
Observation was made using an electron m1 microscope (abbreviation for electron microscope). As a result, all of the silicon nitride obtained was granular, and no impurities such as fibers were found.

また代表例として試料番号4の窒化珪素の表面形状の顕
微鏡写真(倍率2800倍)を第1図に示す。
Further, as a representative example, a micrograph (magnification: 2800 times) of the surface shape of silicon nitride of sample number 4 is shown in FIG.

また、得られた窒化珪素の粒径全光透過式粒度測定器に
より測定した。該粒径測定により得られた結果を表に示
す。
In addition, the particle size of the obtained silicon nitride was measured using a total light transmission type particle size analyzer. The results obtained from the particle size measurement are shown in the table.

更に、コバル)K内線を用いたX線回折法により得られ
た窒化珪素の物質同定試験全実施した。
Furthermore, all substance identification tests for silicon nitride obtained by X-ray diffraction using a Kobal) K extension were carried out.

該試料番号1〜21の物質同定試験の結果を1表に示す
Table 1 shows the results of the substance identification tests for sample numbers 1 to 21.

一方1本実施例の比較例として、原料粉末として添加剤
を添加しない(試料番号CI、02)、加熱時間(i7
5時間とした(試料番号C1)、以外は上記の本発明の
製造方法と同様の製造方法にて行ない、比較用窒化珪素
(試料番号01,02)を得た。該比較方法により製造
した窒化珪素について上記と同様に8EM観察を行なっ
た。これにより得られた試料番号C1およびC2の比較
用窒化珪素の表面形状のw4倣鏡写頁(倍率2800倍
)をそれぞれ第2図、第3図に示す。この結果、試料番
号C1の場合は、繊維状のものが生成されていることが
分る。また、得られた試料番号C2の窒化珪素の粒径全
光透過式粒度測定器により測定した。該粒径測定によジ
得られた結果を表に示す。
On the other hand, as a comparative example of this example, no additives were added to the raw material powder (sample number CI, 02), the heating time was (i7
Silicon nitride for comparison (sample numbers 01 and 02) was obtained by the same manufacturing method as the manufacturing method of the present invention described above except that the heating time was 5 hours (sample number C1). 8EM observation was performed in the same manner as above for silicon nitride manufactured by the comparative method. W4 imitation mirror pages (magnification: 2800 times) of the surface shapes of comparative silicon nitride of sample numbers C1 and C2 obtained in this way are shown in FIGS. 2 and 3, respectively. As a result, it can be seen that in the case of sample number C1, fibrous material was produced. Further, the particle size of the silicon nitride of the obtained sample number C2 was measured using a total light transmission type particle size analyzer. The results obtained from the particle size measurements are shown in the table.

更に、得られた試料番号C1および02の比較用窒化珪
素の物質同定試験を行なった。該物質同定試験の結果を
9表に示す。
Furthermore, a substance identification test was conducted on the comparative silicon nitrides obtained with sample numbers C1 and 02. The results of the substance identification test are shown in Table 9.

表において、上記原料粉末組成は5iO31重量部に対
して加えたM置部で示した。また、還元・窒化のための
加熱温度は、試料番号C1は1400°C9試料番号C
2は1450°Cであった。
In the table, the raw material powder composition is shown in parts of M added to 1 part by weight of 5iO3. In addition, the heating temperature for reduction and nitriding is 1400°C for sample number C9.
2 was 1450°C.

表より明らかの如く1本発明の方法により製造した窒化
珪素生成物(試料番号1〜21)は、何れの場合にも微
細な窒化珪素粒末であり、そのうちα型窒化珪素が90
%以上であることが確認され。
As is clear from the table, the silicon nitride products produced by the method of the present invention (sample numbers 1 to 21) are fine silicon nitride particles in all cases, of which 90% of the α-type silicon nitride is
% or more.

生成物の全んどがα型窒化珪素であることが分る。It can be seen that all of the products are α-type silicon nitride.

それに対し、試料番号C1の場合には、窒化珪素と炭化
珪素の混合物になっていた。
On the other hand, in the case of sample number C1, it was a mixture of silicon nitride and silicon carbide.

まtこ、第1図ないし第3図により明らかの如く。As is clear from Figures 1 to 3.

本発明の製造方法により製造された窒化珪素(試料番号
4.第1図)は、微粒子状の窒化珪素粉末のみであるが
、比較例c1(第2図)の場合には。
The silicon nitride manufactured by the manufacturing method of the present invention (sample number 4, FIG. 1) is only fine-particle silicon nitride powder, but in the case of comparative example c1 (FIG. 2).

繊維状物の生成が見られ、比較例a2(第6図)の場合
は粒径が大きく不均一であった。
The formation of fibrous substances was observed, and in the case of Comparative Example a2 (FIG. 6), the particle size was large and non-uniform.

このように9本発明の製造方法により、微粒の良質の窒
化珪素粉末が得られることが分る。
As described above, it can be seen that fine grained silicon nitride powder of good quality can be obtained by the manufacturing method of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例を示し、第1図は本発明の実施例に
より得た窒化珪素の表面の形状の顕微鏡写真(倍率28
00倍)、第2図および第3図は。 本実施例の比較方法により得た比較用窒化珪素C1およ
びC2の表面の形状の顕微鏡写真(それぞれ倍率280
0倍)である。 特許出願人 株式会社 豊田中央研究所
The figure shows an example of the present invention, and FIG. 1 is a micrograph (magnification: 28
00x), Figures 2 and 3. Micrographs of the surface shapes of comparative silicon nitrides C1 and C2 obtained by the comparative method of this example (each at a magnification of 280
0 times). Patent applicant Toyota Central Research Institute Co., Ltd.

Claims (1)

【特許請求の範囲】 (1)二酸化珪素1重量部に対して炭素粉末0.4ない
し2重量部と、水酸化リチウム、酸化ゲルマニウム、酸
化イツトリウム、酸化ジルコニウム。 酸化ニオブ、酸化ランタン、酸化セリウム、酸化タンタ
ル、酸化アルミニウムマダ不シウム、酸化ア、ルミニウ
ムイツトリウム、窒化アルミニウム。 窒化ジルコニウムの1植着たけ2種以上からなる添加剤
0.0001ないし0.03重量部とを、混合して原料
粉末となし、該原料粉末を窒素を含む雰囲気中で135
0’Cないし1500’Cに加熱すること全特徴とする
窒化珪素の製造方法。 。 (3)雰囲気は、30体積%以下の水素と残部が
[Claims] (1) 0.4 to 2 parts by weight of carbon powder per 1 part by weight of silicon dioxide, lithium hydroxide, germanium oxide, yttrium oxide, and zirconium oxide. Niobium oxide, lanthanum oxide, cerium oxide, tantalum oxide, aluminum oxide, aluminum oxide, aluminum yttrium, aluminum nitride. A raw material powder is prepared by mixing 0.0001 to 0.03 parts by weight of an additive consisting of two or more types of zirconium nitride per implantation, and the raw material powder is heated to 135% by weight in an atmosphere containing nitrogen.
A method for producing silicon nitride, which is characterized by heating to 0'C to 1500'C. . (3) The atmosphere consists of less than 30% hydrogen by volume and the remainder
JP7795383A 1983-05-02 1983-05-02 Manufacture of silicon nitride Pending JPS59203714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7795383A JPS59203714A (en) 1983-05-02 1983-05-02 Manufacture of silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7795383A JPS59203714A (en) 1983-05-02 1983-05-02 Manufacture of silicon nitride

Publications (1)

Publication Number Publication Date
JPS59203714A true JPS59203714A (en) 1984-11-17

Family

ID=13648369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7795383A Pending JPS59203714A (en) 1983-05-02 1983-05-02 Manufacture of silicon nitride

Country Status (1)

Country Link
JP (1) JPS59203714A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186405A (en) * 1984-03-05 1985-09-21 Chichibu Cement Co Ltd Preparation of fine powder of alpha type silicon nitride
JPS60185537A (en) * 1984-03-05 1985-09-21 株式会社日立メデイコ Ultrasonic probe
US4724131A (en) * 1984-06-07 1988-02-09 Sumitomo Chemical Company, Limited Method for producing α-form silicon nitride

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527843A (en) * 1978-08-16 1980-02-28 Toshiba Corp Production of silicon nitride ceramic powder material
JPS5888173A (en) * 1981-11-19 1983-05-26 株式会社東芝 Silicon nitride powder composition and sintered body
JPS59107976A (en) * 1982-12-07 1984-06-22 東芝セラミツクス株式会社 Manufacture of readily sinterable silicon nitride powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527843A (en) * 1978-08-16 1980-02-28 Toshiba Corp Production of silicon nitride ceramic powder material
JPS5888173A (en) * 1981-11-19 1983-05-26 株式会社東芝 Silicon nitride powder composition and sintered body
JPS59107976A (en) * 1982-12-07 1984-06-22 東芝セラミツクス株式会社 Manufacture of readily sinterable silicon nitride powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186405A (en) * 1984-03-05 1985-09-21 Chichibu Cement Co Ltd Preparation of fine powder of alpha type silicon nitride
JPS60185537A (en) * 1984-03-05 1985-09-21 株式会社日立メデイコ Ultrasonic probe
JPH044893B2 (en) * 1984-03-05 1992-01-29
JPH0454608B2 (en) * 1984-03-05 1992-08-31 Chichibu Cement Kk
US4724131A (en) * 1984-06-07 1988-02-09 Sumitomo Chemical Company, Limited Method for producing α-form silicon nitride

Similar Documents

Publication Publication Date Title
US4428916A (en) Method of making α-silicon nitride powder
US4117095A (en) Method of making α type silicon nitride powder
JPH03504848A (en) Hard mullite - manufacturing method of whisker felt
JPS59184770A (en) Silicon nitride sintered body and manufacture
WO1991001952A1 (en) Mullite whisker preparation
US4619905A (en) Process for the synthesis of silicon nitride
JPS59107908A (en) Manufacture of silicon nitride powder with superior sinterability
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
JPS59203714A (en) Manufacture of silicon nitride
US4994419A (en) Low temperature synthesis of high purity monoclinic celsian using topaz
US5041400A (en) Low temperature synthesis of high purity monoclinic celsian
JPS63239104A (en) Production of fine silicon nitride powder containing beta-phase
JPH0151443B2 (en)
JPS60501855A (en) Production method of yttrium silicon oxynitride
JPS6111885B2 (en)
KR950007175B1 (en) Al2o3-tic powder process of self-propagating high temperature synthesis
JPH07330500A (en) Production of aluminum borate whisker
JPS5997508A (en) Manufacture of silicon nitride
JPS60145902A (en) Production of sialon powder
KR970001523B1 (en) Process for the preparation of titanium carbide
JP2660199B2 (en) Method for producing β-sialon powder
JPH03193617A (en) Production of silicon carbide powder
JPS59147000A (en) Production of beta-type silicon nitride whisker
JP2002316812A (en) Method for producing silicon carbide fine powder
JPH0218310A (en) Preparation of zirconium-containing ceramic powder