JPH0454608B2 - - Google Patents

Info

Publication number
JPH0454608B2
JPH0454608B2 JP59040427A JP4042784A JPH0454608B2 JP H0454608 B2 JPH0454608 B2 JP H0454608B2 JP 59040427 A JP59040427 A JP 59040427A JP 4042784 A JP4042784 A JP 4042784A JP H0454608 B2 JPH0454608 B2 JP H0454608B2
Authority
JP
Japan
Prior art keywords
powder
silicon nitride
particle size
zro
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59040427A
Other languages
Japanese (ja)
Other versions
JPS60186405A (en
Inventor
Keiichi Minegishi
Tokuji Akiba
Zenjiro Nakai
Fumio Nemoto
Hideo Tsunatori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd filed Critical Chichibu Cement Co Ltd
Priority to JP4042784A priority Critical patent/JPS60186405A/en
Publication of JPS60186405A publication Critical patent/JPS60186405A/en
Publication of JPH0454608B2 publication Critical patent/JPH0454608B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0685Preparation by carboreductive nitridation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0682Preparation by direct nitridation of silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はα型窒化ケイ素微粉末の製造方法に関
するもので、特に2次粒子の極めて少ない微粉末
のα型窒化ケイ素を工業的に有利に製造する方法
を提供することを目的とするものである。 通産省の次世代産業基盤技術の研究開発でも高
温構造材料用のセラミツクスが大きくとりあげら
れ、特にガスタービン、エンジン部品等高温シス
テムへの応用に期待がもたれている。 高温構造材料用セラミツクスとしては、強度、
靱性の優れている窒化ケイ素、炭化ケイ素、ジル
コニアの研究が活発に行われている。 窒化ケイ素にはα型(α−Si3N4)とβ型(β
−Si3N4)の2つの結晶形が存在し、高強度で緻
密な焼結体を得るには焼結性の面からα型が好ま
しく、2次粒子のない粒径のそろつた微粉末が望
まれており従来より種々検討されている。 理解を容易にするため、従来より検討されてい
る代表的な3つの窒化ケイ素の製造方法について
説明すれば次のとおりである。 (1) 金属ケイ素(Si)を窒素を含む雰囲気中で直
接窒化する方法 (2) 四塩化ケイ素(SiCl4)などシラン化合物と
アンモニア(NH3)を用いて合成する方法 (3) シリカ原料(SiO2)を窒素を含む雰囲気中
で炭素還元および窒化する方法 の3つがあり、(1)の方法は、従来より多くの検討
が重ねられ、すでに量産法として採用されてい
る。しかし反応速度が遅くα型、β型の制御が困
難な点、また生成物が塊状となるため、長時間の
粉砕工程が必要となり、汚染および粒径の制御の
点で問題がある。 (2)の方法は高純度で微細な窒化ケイ素粉末を製
造できるが、製造装置の規模に対する生産性の低
さおよび工程数が多いなどの点で高温構造材料用
の窒化ケイ素の量産の方法としては不適当であ
る。 (3)の方法はシリカ原料を窒素を含む非酸化性雰
囲気中で炭素により還元および窒化し、窒化ケイ
素を製造する方法で、原料が安価で反応操作も比
較的容易で量産する方法としても適している。し
かしながら従来の方法では炭化ケイ素(SiC)お
よび酸窒化ケイ素(Si2ON2)など副生物とβ−
Si3N4が生成しやすいなどの問題点がある。極め
て高純度なシリカ原料を用いた製造方法が検討さ
れているが、原料コストが高くなるばかりでなく
反応速度が小さくなり長い反応時間が必要とな
り、エネルギー効率も低くコスト高となる。しか
も生成した窒化ケイ素は4ないし10μm近い粗粉
末となる傾向がある。高純度のシリカ原料を用い
反応速度を大きくし生成粒子の微細化をはかる方
法として微細なSi3N4などを核として添加する方
法が提案されているが、コストの面で割高になり
本質的な解決とはならないだけでなく、生成した
微細粒子が2次粒子を形成しやすいなどの大きな
問題点を残している。特に2次粒子の形成は良好
な焼結体をつくる過程の成形および焼結プロセス
で重大な欠点となる。 斯る点を鑑み、本発明者らは量産に適し、微細
粒子を合成できる可能性のある上記(3)の製造方法
に関して種々の検討を行つた結果、微量成分を含
む安価なシリカ原料を用い、かつ短い反応時間で
2次粒子形成の極めて少ない粒度のそろつた微細
なα−Si3N4の製造方法を見い出した本製造方法
によれば窒化ケイ素微粉末中に高靱性化に極めて
好ましいZrO2相が要求に応じ均一に分散させ生
成させることができる。 以下に本発明について詳細に述べる。 本発明は、微量成分を含むシリカ質原料を用い
ることができ、これに炭素質粉末およびジルコニ
ウムの酸化物粉末もしくは加熱によりZrO2とな
る化合物粉末とイツトリウム、カルシウム、マグ
ネシウムの酸化物粉末もしくは加熱によりY2O3
CaO,MgOとなる化合物粉末を1種以上添加し、
一酸化炭素濃度を30体積%以下に抑制した窒素を
含む非酸化性雰囲気中にて焼成することを特徴と
する窒化ケイ素を製造する方法である。 なおZrO2はジルコンサンド(ZrSiO4)として
も添加することができ、添加量は原料中のSiO2
量に対し0.1ないし40重量%となることが望まれ
る。 次にジルコニウムの酸化物粉末および加熱によ
りZrO2を生ずる化合物粉末の添加に関し、本発
明者らが明らかにした効果について説明する。 (1) 反応速度を大きくし反応時間を短縮する (2) 一酸化炭素濃度を30体積%以下の適切な濃度
以下とすることによりSiO,Si2ON2およびβ
−Si3N4の生成を抑制しα−Si3N4の生成を促
進する。 (3) 生成した窒化ケイ素粉末粒子における表面エ
ネルギーを小さくし微粒子化の促進と2次粒子
の形成を抑制する さらに、上記の効果をより効果的とするために
ジルコニウムの酸化物粉末または加熱により
ZrO2となる化合物粉末を10μm以下好ましくは
5μm以下の粒径として分散させることおよび焼成
雰囲気窒素ガスの流速は0.1m/分から10m/分
の範囲とすることが望まれる。 以上述べた本発明によれば安価な原料と短い反
応時間でα−Si3N4の含有率が高く従来の窒化ケ
イ素粉末に比較し極めて2次粒子が少なく、粒径
のそろつた粉末を得ることができる。またジルコ
ニウム元素の加え方および加える量などにより任
意の量のZrO2相を均一に分散させることができ、
さらに生成するZrO2相は添加するY2O3,CaO,
MgOなどにより容易に正方晶に安定化すること
ができ、窒化ケイ素焼結体の靱性強化に役立つ。 次に本発明に従つた実施例を示す。 〈実施例 1〉 粉砕・分級により0.5〜7μmの粒径に調製した
第1表に示す化学成分のシリカ質原料に、10μm
以下のZrO2粉末Aおよび5μm以下のZrO2粉末B
をSiO2に対し1〜30重量%添加し、さらに純度
99%の炭素粉末を添加しC/SiO2モル比を10と
なるよう混合したものをN2ガス0.4〜1.5/分の
気流中1480℃にて焼成した。 実施例1の結果を第2表に比較例を第3表に示
した。
The present invention relates to a method for producing α-type silicon nitride fine powder, and in particular, it is an object of the present invention to provide an industrially advantageous method for producing fine powder α-type silicon nitride with extremely few secondary particles. . The Ministry of International Trade and Industry's research and development of next-generation industrial infrastructure technology is also focusing on ceramics for high-temperature structural materials, with high expectations for their application to high-temperature systems such as gas turbines and engine parts. As ceramics for high-temperature structural materials, strength,
Active research is being conducted on silicon nitride, silicon carbide, and zirconia, which have excellent toughness. Silicon nitride has α-type (α−Si 3 N 4 ) and β-type (β
There are two crystal forms of -Si 3 N 4 ), and in order to obtain a high-strength, dense sintered body, the α type is preferable from the viewpoint of sinterability, and it is a fine powder with a uniform particle size without secondary particles. is desired, and various studies have been made in the past. In order to facilitate understanding, three typical silicon nitride manufacturing methods that have been studied in the past will be explained as follows. (1) Direct nitriding of metallic silicon (Si) in a nitrogen-containing atmosphere (2) Synthesis using a silane compound such as silicon tetrachloride (SiCl 4 ) and ammonia (NH 3 ) (3) Silica raw material ( There are three methods of carbon reduction and nitriding of SiO 2 ) in an atmosphere containing nitrogen, and method (1) has been studied extensively and has already been adopted as a mass production method. However, the reaction rate is slow, making it difficult to control the α-type and β-type, and since the product becomes lumpy, a long pulverization process is required, which poses problems in terms of contamination and particle size control. Method (2) can produce high-purity, fine silicon nitride powder, but it is not suitable for mass production of silicon nitride for high-temperature structural materials due to its low productivity and large number of steps relative to the scale of the manufacturing equipment. is inappropriate. Method (3) is a method for producing silicon nitride by reducing and nitriding the silica raw material with carbon in a non-oxidizing atmosphere containing nitrogen.The raw material is inexpensive and the reaction operation is relatively easy, making it suitable for mass production. ing. However, in conventional methods, by-products such as silicon carbide (SiC) and silicon oxynitride (Si 2 ON 2 ) and β-
There are problems such as easy generation of Si 3 N 4 . Production methods using extremely high-purity silica raw materials are being considered, but this not only increases the cost of the raw materials, but also slows down the reaction rate and requires a long reaction time, resulting in low energy efficiency and high costs. Moreover, the silicon nitride produced tends to be a coarse powder of approximately 4 to 10 μm. A method of adding fine particles such as Si 3 N 4 as a nucleus has been proposed as a method of increasing the reaction rate and making the produced particles finer using high-purity silica raw materials, but it is expensive in terms of cost and is not essential. Not only is this not a complete solution, it also leaves major problems such as the tendency for the generated fine particles to form secondary particles. In particular, the formation of secondary particles is a serious drawback in the forming and sintering processes involved in producing a good sintered body. In view of this, the present inventors conducted various studies regarding the manufacturing method described in (3) above, which is suitable for mass production and has the possibility of synthesizing fine particles. According to this manufacturing method, a method for manufacturing fine α-Si 3 N 4 with a uniform particle size and very little secondary particle formation in a short reaction time, ZrO, which is extremely suitable for high toughness, is added to the silicon nitride fine powder. Two phases can be uniformly dispersed and generated as required. The present invention will be described in detail below. In the present invention, a siliceous raw material containing trace components can be used, and carbonaceous powder and zirconium oxide powder or compound powder that becomes ZrO 2 by heating and yttrium, calcium, magnesium oxide powder or by heating Y 2 O 3 ,
Adding one or more compound powders that become CaO and MgO,
This method of producing silicon nitride is characterized by firing in a non-oxidizing atmosphere containing nitrogen with a carbon monoxide concentration suppressed to 30% by volume or less. ZrO 2 can also be added as zircon sand (ZrSiO 4 ), and the amount added depends on the SiO 2 in the raw material.
It is desired that the amount is 0.1 to 40% by weight. Next, the effects revealed by the present inventors regarding the addition of zirconium oxide powder and compound powder that generates ZrO 2 upon heating will be explained. (1) Increasing the reaction rate and shortening the reaction time (2) By reducing the carbon monoxide concentration to an appropriate concentration of 30% by volume or less, SiO, Si 2 ON 2 and β
-Suppresses the production of Si 3 N 4 and promotes the production of α-Si 3 N 4 . (3) Reduce the surface energy of the generated silicon nitride powder particles to promote micronization and suppress the formation of secondary particles.Furthermore, in order to make the above effects even more effective, zirconium oxide powder or heating is used.
The compound powder that becomes ZrO 2 is preferably 10 μm or less.
It is desirable to disperse the particles with a particle size of 5 μm or less and to set the flow rate of the nitrogen gas in the firing atmosphere in the range of 0.1 m/min to 10 m/min. According to the present invention described above, it is possible to obtain a powder with a high content of α-Si 3 N 4 , extremely few secondary particles, and uniform particle size compared to conventional silicon nitride powder using inexpensive raw materials and a short reaction time. be able to. In addition, any amount of ZrO2 phase can be uniformly dispersed by changing the way and amount of zirconium element added.
Further, the generated ZrO 2 phase is formed by adding Y 2 O 3 , CaO,
It can be easily stabilized into a tetragonal crystal by MgO, etc., and is useful for strengthening the toughness of silicon nitride sintered bodies. Next, examples according to the present invention will be shown. <Example 1> A siliceous raw material with the chemical components shown in Table 1 prepared by crushing and classification to a particle size of 0.5 to 7 μm was
ZrO2 powder A below and ZrO2 powder B below 5μm
is added in an amount of 1 to 30% by weight based on SiO 2 to further improve the purity.
A mixture of 99% carbon powder added and a C/SiO 2 molar ratio of 10 was fired at 1480° C. in an N 2 gas flow of 0.4 to 1.5/min. The results of Example 1 are shown in Table 2, and the comparative examples are shown in Table 3.

【表】【table】

【表】【table】

【表】 ** 走査型電子顕微鏡による観察
*** サブミクロン粒度分析計“マイクロトラツク
SPA”による50%粒径
[Table] ** Observation using a scanning electron microscope *** Submicron particle size analyzer "Microtrack"
50% particle size by “SPA”

【表】【table】

【表】 ** 走査型電子顕微鏡による観察
*** サブミクロン粒度分析計“マイクロトラツク
SPA”による50%粒径
また、実施例、比較例および市販品の窒化ケイ
素粉末に関し、分散剤としてヘキサメタリン酸ソ
ーダ0.2%水溶液を用い強力超音波発生器により
5分間分散処理した試料をサブミクロン粒度分析
計“マイクロトラツクSPA”で粒度分布を測定
した結果を第1図に示した。 従来の窒化ケイ素粉末は1次粒子の粒径が0.5
〜1.5μmであるが第1図から明らかなように2次
粒子形成のため粒度分布も広く3μ以上のかたま
りが30%〜50%も認められるが、本発明の実施例
のNo.5では5%以下と極めて少なくなつているこ
とがわかる。 〈実施例 2〉 第4表に示す化学成分であるほぼ5μm以下のシ
リカ質原料に5μm以下のZrO2およびY2O3成分を
含む粉末を添加し炭素質粉末とC/SiO2モル比
が10となるよう混合したものとN2ガス1.5/分
の流量雰囲気中にて1480℃にて焼成した。
[Table] ** Observation using a scanning electron microscope *** Submicron particle size analyzer "Microtrack"
50% particle size by "SPA" Regarding the silicon nitride powders of Examples, Comparative Examples, and commercially available products, we used a 0.2% aqueous solution of sodium hexametaphosphate as a dispersant and dispersed them for 5 minutes using a powerful ultrasonic generator to obtain samples with submicron particle size. Figure 1 shows the results of measuring the particle size distribution using the analyzer “Microtrack SPA.” Conventional silicon nitride powder has a primary particle size of 0.5.
~1.5μm, but as is clear from Figure 1, due to the formation of secondary particles, the particle size distribution is wide and 30% to 50% of the particles are 3μm or more. %, which is extremely low. <Example 2> Powder containing ZrO 2 and Y 2 O 3 components of 5 μm or less was added to the siliceous raw material of approximately 5 μm or less, which has the chemical components shown in Table 4, and the carbonaceous powder and C/SiO 2 molar ratio were 10 and was fired at 1480°C in an atmosphere with a flow rate of N 2 gas of 1.5/min.

【表】 実施例2の結果を第5表に示した。【table】 The results of Example 2 are shown in Table 5.

【表】【table】

【表】 ** 走査型電子顕微鏡による観察
*** サブミクロン粒度分析計“マイクロトラツ
クSPA”による50%粒径
[Table] ** Observation by scanning electron microscope *** 50% particle size by submicron particle size analyzer "Microtrac SPA"

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法と本発明による製品の窒化ケイ
素粉末の粒度分布図である。
FIG. 1 is a particle size distribution diagram of silicon nitride powder produced by the conventional method and products produced by the present invention.

Claims (1)

【特許請求の範囲】 1 シリカ質粉末原料に炭素質粉末およびジルコ
ニウムの酸化物粉末もしくは加熱によりZrO2
なる化合物粉末とイツトリウム、カルシウム、マ
グネシウムの酸化物粉末もしくは加熱によりY2
O3,CaO,MgOとなる化合物粉末を1種以上添
加し、一酸化炭素濃度を30体積%以下に抑制した
窒素を含む非酸化性雰囲気中にて焼成することを
特徴とするα型窒化ケイ素微粉末の製造方法。 2 ジルコニウムの酸化物粉末もしくは加熱によ
りZrO2となる化合物粉末の添加量が原料中の
SiO2量に対しZrO2として0.1ないし40重量%であ
る特許請求の範囲第1項記載のα型窒化ケイ素微
粉末の製造方法。
[Claims] 1. Siliceous powder raw materials, carbonaceous powder, zirconium oxide powder or compound powder that becomes ZrO 2 when heated, and yttrium, calcium, magnesium oxide powder or Y 2 when heated.
α-type silicon nitride, which is characterized by adding one or more types of compound powders such as O 3 , CaO, and MgO, and firing in a non-oxidizing atmosphere containing nitrogen and suppressing the carbon monoxide concentration to 30% by volume or less. Method for producing fine powder. 2 The amount of zirconium oxide powder or compound powder that becomes ZrO 2 when heated is
The method for producing α-type silicon nitride fine powder according to claim 1, wherein the amount of ZrO 2 is 0.1 to 40% by weight based on the amount of SiO 2 .
JP4042784A 1984-03-05 1984-03-05 Preparation of fine powder of alpha type silicon nitride Granted JPS60186405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4042784A JPS60186405A (en) 1984-03-05 1984-03-05 Preparation of fine powder of alpha type silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4042784A JPS60186405A (en) 1984-03-05 1984-03-05 Preparation of fine powder of alpha type silicon nitride

Publications (2)

Publication Number Publication Date
JPS60186405A JPS60186405A (en) 1985-09-21
JPH0454608B2 true JPH0454608B2 (en) 1992-08-31

Family

ID=12580348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4042784A Granted JPS60186405A (en) 1984-03-05 1984-03-05 Preparation of fine powder of alpha type silicon nitride

Country Status (1)

Country Link
JP (1) JPS60186405A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203714A (en) * 1983-05-02 1984-11-17 Toyota Central Res & Dev Lab Inc Manufacture of silicon nitride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203714A (en) * 1983-05-02 1984-11-17 Toyota Central Res & Dev Lab Inc Manufacture of silicon nitride

Also Published As

Publication number Publication date
JPS60186405A (en) 1985-09-21

Similar Documents

Publication Publication Date Title
CN102180675A (en) Process for preparing gamma-AlON powder by chemical coprecipitation and carbothermal reduction method
JPS62167209A (en) Alpha-sialon powder and its production
JP3290686B2 (en) Method for producing aluminum nitride powder
JPS59107976A (en) Manufacture of readily sinterable silicon nitride powder
JPH06219840A (en) Silicon nitride sintered compact and its production
JPS6278103A (en) Production of aluminum nitride powder
JPH0454608B2 (en)
JPH0339967B2 (en)
JPS62256767A (en) Manufacture of composite sintered body comprising carbonitride and oxide
JPH03261611A (en) Production of silicon nitride composite powder
JP3827360B2 (en) Manufacturing method of silicon nitride
JPH075369B2 (en) Method for producing composite sintered body composed of carbide and two or more kinds of oxides
JPH05117030A (en) Complex ceramic and its production
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPH04130063A (en) Production of ceramic composite material
Barinova et al. Combustion of Si–C Mixtures in Nitrogen Gas: Impact of Iron-Containing Additives
JP2695070B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2788045B2 (en) Method for producing fine silicon nitride powder
JPS63147807A (en) Production of silicon nitride having high content of alpha form
JPS61227908A (en) Preparation of raw material powder for sintered silicon nitride
JPS62288166A (en) Manufacture of tungsten carbide-oxide composite sintered body
JPH06172036A (en) Production of silicon nitride powder
JPS58204813A (en) Preparation of powdery carbide and nitride of silicon
JPS6350320A (en) Production of powdery zirconia
JPS632900A (en) Production of beta type silicon nitride whisker