JPS5996422A - Exhaust gas purifying device of internal-combustion engine - Google Patents

Exhaust gas purifying device of internal-combustion engine

Info

Publication number
JPS5996422A
JPS5996422A JP20449382A JP20449382A JPS5996422A JP S5996422 A JPS5996422 A JP S5996422A JP 20449382 A JP20449382 A JP 20449382A JP 20449382 A JP20449382 A JP 20449382A JP S5996422 A JPS5996422 A JP S5996422A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
secondary air
valve
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20449382A
Other languages
Japanese (ja)
Inventor
Takashi Kato
孝 加藤
Takaaki Ito
隆晟 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP20449382A priority Critical patent/JPS5996422A/en
Publication of JPS5996422A publication Critical patent/JPS5996422A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/222Control of additional air supply only, e.g. using by-passes or variable air pump drives using electric valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/227Control of additional air supply only, e.g. using by-passes or variable air pump drives using pneumatically operated valves, e.g. membrane valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To prevent after-burning by opening and closing a solenoid valve for supplying secondary air to the upper stream of a ternary catalyst at the frequency of 1-2Hz, periodically varying an air-fuel ratio within the range of + or -0.2- + or -1.0, and fully opening the solenoid valve after temporarily fully closing said valve at engine deceleration. CONSTITUTION:A secondary air supplying hole 60 is provided on an exhaust manifold 3, and secondary air is supplied to the upper stream of a ternary catalyst 5 via a control valve 50 and a check valve 59. Negative pressure is introduced into the negative pressure chamber 53 of the control valve 50 via a solenoid valve 51, and this solenoid valve 51 is opened and closed at the frequency of 1-2Hz by means of a solenoid driving circuit 70, and an air-fuel ratio is periodically varied within the range of + or -0.2-+ or -0.1 via the control valve 50 taking a theoretical air-fuel ratio as a center. An idle switch 71 and a number-of- revolutions switch 72 are connected to the driving circuit 70, and the solenoid valve 51 is fully opened after temporarily fully closing said valve at deceleration, so as to allow after-buring to be prevented as well as an exhaust gas purifying characteristic to be improved.

Description

【発明の詳細な説明】 本発明は内燃機関の排気ガス浄化装置に関するOIF気
ガス中のM害三成分HC,COj?よびNOx全同時に
低減することのできる触媒として、三元触媒が知られて
いる0この三元触媒の浄化効率Rに第1(a)図に示さ
れるように空燃比A/Fがほぼ理論空燃比であるときに
最も高くなり、例えば80パ一セント以上の浄化効率R
′t−得ることのできる空燃比領域は空燃比が0.06
程度の狭い巾である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust gas purification device for an internal combustion engine, and relates to an exhaust gas purification system for an internal combustion engine. A three-way catalyst is known as a catalyst that can simultaneously reduce NOx and NOx.The purification efficiency R of this three-way catalyst shows that the air-fuel ratio A/F is almost stoichiometric as shown in Figure 1(a). The purification efficiency R is highest when the fuel ratio is, for example, 80% or more.
't-The air-fuel ratio range that can be obtained is when the air-fuel ratio is 0.06.
It is a fairly narrow width.

通常、このように80パ一セント以上の浄化効率を得る
ことのできる空燃比領域をウィンドウWと称する。従っ
て、三元触媒を用いて排気ガス中の有害三成分を同時に
低減するためには空燃比をこの狭いウィンドウW内に常
時に維持しなければならない。このために従来の排気ガ
ス浄化装置では、空燃比が理論空燃比よジも大きいか小
ざいか全判別可能な酸系濃度検出器全機関排気通路に取
付け、この酸系濃度検出器の出力信号に基いて空燃比が
ウィンドウW円の空燃比となるように制御している。し
かしながらこのような酸素濃度検出器を用いた排気ガス
浄化装置では高価な酸素濃度検出器および空燃比制御の
ための高価な電子制御ユニットを必要とするために排気
ガス浄化装置の製造コストが高騰するという問題がある
Usually, the air-fuel ratio region in which a purification efficiency of 80 percent or more can be obtained is called a window W. Therefore, in order to simultaneously reduce the three harmful components in exhaust gas using a three-way catalyst, the air-fuel ratio must be maintained within this narrow window W at all times. For this reason, in conventional exhaust gas purification systems, acid concentration detectors are installed in all engine exhaust passages that can determine whether the air-fuel ratio is greater or less than the stoichiometric air-fuel ratio, and the output signal of this acid concentration detector is Based on this, the air-fuel ratio is controlled to be the air-fuel ratio of the window W circle. However, an exhaust gas purification device using such an oxygen concentration detector requires an expensive oxygen concentration detector and an expensive electronic control unit for air-fuel ratio control, which increases the manufacturing cost of the exhaust gas purification device. There is a problem.

ところが最近になって、5AEpaper No。However, recently, 5AEpaper No.

760201号、或すに特公昭56−4741号公報に
記載さnているように三元触媒の機能が次第に解明され
、三元触媒が酸素保持機能を有することが判明したので
ある0即ち、空燃比が理論空燃比に対してリーン側にあ
るときには三元触媒がNOxから酸素金奪い増ってNO
x k還元させると共にこの奪い取った酸素を保持し、
空燃比が理論空燃比よりもリッチ側になると保持した酸
素全放出してCo、HCの酸化を行なうのであるO従っ
て孕燃比全成る基準空燃比に対してリーン側とリッチ側
に交互に変動させると基準空燃比が理論空燃比からずれ
たとしても上述の酸素保持機能によりNOxの還元作用
訃よびCo、HCの酸化作用が促進(3) されて高い浄化効率を得ることができる。第1図(b)
は空燃比を周波数I Hzで基準空燃比に対して±1.
0だけ変動はぜた場合の基準空燃比A/F’のウィンド
ウWo k示している。第1(a)図および第1(′b
)図がら空燃比全一定周波数で変動させた場合にはウィ
ンドウWoが広くなることがわかる。このことば、孕燃
比全−足周期で変動させれば基準空燃比が理論空燃比か
ら多少ずれていたとしても高い浄化効率が得られること
全意味している。−万、空燃比の変動周波数を低くする
と、即ち空燃比の変動周期を長くすると三元触媒の酸素
保持機能が飽和するために酸素保持機能に基づく酸化還
元能力が低下し、三元触媒の浄化効率が低下する。第1
(C)図はこのことを明瞭に示している。第1 (e)
図において縦軸Rに浄化効率を示し、横@Fは空燃比の
変動周波数?示す0ぼた、空燃比の変動巾全小さくする
と空燃比をリッチ側とリーン側に交互に変動できなくな
るのでウィンドウの巾は狭くなる。従ってウィンドウの
巾を広くするには最適な空燃比の変動周期と変動中が存
在することがわが(4) る。
As described in No. 760201 and Japanese Patent Publication No. 56-4741, the function of the three-way catalyst was gradually elucidated, and it was found that the three-way catalyst had an oxygen retention function. When the fuel ratio is on the lean side compared to the stoichiometric air-fuel ratio, the three-way catalyst takes away oxygen and gold from NOx, increasing NOx.
x k while reducing and retaining this stolen oxygen,
When the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio, all of the retained oxygen is released to oxidize Co and HC.O Therefore, the air-fuel ratio is alternately varied to the lean side and rich side with respect to the standard air-fuel ratio, which is the full stoichiometric air-fuel ratio. Even if the reference air-fuel ratio deviates from the stoichiometric air-fuel ratio, the above-mentioned oxygen retention function promotes the reduction of NOx and the oxidation of Co and HC (3), resulting in high purification efficiency. Figure 1(b)
is the air-fuel ratio at a frequency of I Hz with respect to the reference air-fuel ratio by ±1.
The window Wok of the reference air-fuel ratio A/F' when the fluctuation is increased by 0 is shown. Figures 1(a) and 1('b)
) It can be seen from the figure that when the air-fuel ratio is varied at a constant frequency, the window Wo becomes wider. This term means that if the predetermined air-fuel ratio is varied in full cycles, high purification efficiency can be obtained even if the reference air-fuel ratio deviates somewhat from the stoichiometric air-fuel ratio. -If the air-fuel ratio fluctuation frequency is lowered, that is, if the air-fuel ratio fluctuation period is lengthened, the oxygen retention function of the three-way catalyst will become saturated, and the oxidation-reduction ability based on the oxygen retention function will decrease, resulting in purification of the three-way catalyst. Efficiency decreases. 1st
Figure (C) clearly shows this. 1st (e)
In the figure, the vertical axis R shows the purification efficiency, and the horizontal @F shows the fluctuation frequency of the air-fuel ratio? When the air-fuel ratio fluctuation range is reduced to 0, the air-fuel ratio cannot be varied alternately between the rich side and the lean side, so the width of the window becomes narrower. Therefore, it can be seen that there is an optimal air-fuel ratio fluctuation cycle and fluctuation period in order to widen the window width (4).

上述のように基準空燃比に対する空燃比の変動中および
変動周波数を適切に選定すればウィンドウが広くなり、
従って基準空燃比が理論空燃比に対して多少変動しても
高い浄化効率を得ることができる。このことに、基準空
燃比の変動中の狭い燃料供給系を用いれば酸素濃lf、
検出器の出力信号によるフィードバック制御を用いなく
ても高い浄化効率を得ることができること全意味してい
るO熱論、燃料供給系として燃料噴射弁を用いれば基準
空燃比の変動中を狭くすることができるが燃料噴射i置
は高価であるために機関の製造コストが高くなってしま
うという問題があり、更にこのように機関シリンダ内に
供給される空燃比を変動せしめるとたとえ変動中が/J
%さくても燃焼が周期的に変動し、斯くして車両運転性
が悪化するという問題を生ずる。
As mentioned above, if the air-fuel ratio is fluctuating relative to the standard air-fuel ratio and the fluctuation frequency is appropriately selected, the window will become wider.
Therefore, high purification efficiency can be obtained even if the reference air-fuel ratio varies somewhat with respect to the stoichiometric air-fuel ratio. In addition, if a narrow fuel supply system is used during fluctuations in the reference air-fuel ratio, the oxygen concentration lf,
O thermal theory means that high purification efficiency can be obtained without using feedback control based on the output signal of the detector, and if a fuel injection valve is used as the fuel supply system, it is possible to narrow the fluctuation period of the reference air-fuel ratio. However, since the fuel injection position is expensive, there is a problem in that the manufacturing cost of the engine increases.Furthermore, if the air-fuel ratio supplied to the engine cylinder is varied in this way, even if the air-fuel ratio is varied,
%, combustion fluctuates periodically, resulting in a problem that vehicle drivability deteriorates.

不発明に酸素濃度検出器を用いることなく、シかも機関
シリンダ内に供給される空燃比を変動させることなく高
い排気ガス浄化効率を確保することのできる排気ガス浄
化装置全提供することにある0 以下、添附図面全参照して本発明の詳細な説明するO 第2図を参照すると、1は吸気マニホルド、2は吸気マ
ニホルド1上に取付けられた可変ベンチエリ型気化器、
3に排気マニホルド、4は触媒コンバータを夫々示し、
触媒コンバータ4の内部には三元モノリス触媒5が配置
される。可変ベンチュリ型気化器2ば気化器ハウジング
6と、ハウジング6内を垂直方向に延びる吸気通路7と
、吸気通路7内會横万同に移動するサクションピストン
8と、サクションピストン8の先端面に取付けられたニ
ードル9と、サクションピストン3の先端面に対向して
吸気通路7の内壁面上に固定さnたスペーサ10と、サ
クションピストン8下流の吸気通路7円に設けられたス
ロットル弁11と、フロート室12と全具備し、サクシ
ョンピストン8の先端面とスペーサ10間にはベンチュ
リ部13が形成される。気化器ハウジング6には中空円
筒状ノケーシング14が固足され、このケーシング14
にはケーシング14の内部でケーシング14の軸線方向
に延びる案内スリーブ15が取付けられる。案内スリー
ブ15内には多数のポール16全備えた軸受17が押入
され、lた案内スリーブ15の外端部は盲蓋18によっ
て閉鎖される。−万、サクションピストン8には案内ロ
ッド19が固足され、この案内ロッド19ぼ軸受17円
に案内口yド19の句線方向に移動可能に挿入される。
An object of the present invention is to provide a complete exhaust gas purification device that can ensure high exhaust gas purification efficiency without using an oxygen concentration detector or without changing the air-fuel ratio supplied to an engine cylinder. Hereinafter, the present invention will be described in detail with reference to all the attached drawings. Referring to FIG. 2, 1 is an intake manifold, 2 is a variable venteri type carburetor installed on the intake manifold 1,
3 shows the exhaust manifold, 4 shows the catalytic converter,
A three-way monolith catalyst 5 is arranged inside the catalytic converter 4 . The variable venturi carburetor 2 includes a carburetor housing 6, an intake passage 7 extending vertically within the housing 6, a suction piston 8 that moves horizontally within the intake passage 7, and is attached to the tip surface of the suction piston 8. a spacer 10 fixed on the inner wall surface of the intake passage 7 facing the tip surface of the suction piston 3; a throttle valve 11 provided in the intake passage 7 downstream of the suction piston 8; A venturi portion 13 is formed between the tip end surface of the suction piston 8 and the spacer 10. A hollow cylindrical casing 14 is fixed to the carburetor housing 6, and this casing 14
A guide sleeve 15 is mounted inside the casing 14 and extends in the axial direction of the casing 14 . A bearing 17 with a plurality of poles 16 is pushed into the guide sleeve 15, and the outer end of the guide sleeve 15 is closed by a blind cover 18. - A guide rod 19 is fixedly attached to the suction piston 8, and the guide rod 19 is inserted into a bearing 17 so as to be movable in the direction of the line of the guide port 19.

このようにサクションピストン8に軸受17を介してケ
ーシング14により支持されるのでサクションピストン
8ぼその軸線方向に滑らかに移動することができる。ケ
ーシング14の内部にサクションピストン8によって負
圧室20と大気圧室21とに分割され、負圧室20内に
はサクションピストン8を常時ペンチエリ部13に向け
て押圧する圧縮はね22が挿入される。負圧室20はサ
クションピストン81C形成されたサクション孔23を
介してベンチュリ部13に連結され、大気圧室21は気
化器ハウジング6に形成された空気(7) 孔24を介してサクションピストン8上流の吸気通路7
内に連結される。
Since the suction piston 8 is thus supported by the casing 14 via the bearing 17, the suction piston 8 can move smoothly in its axial direction. The interior of the casing 14 is divided into a negative pressure chamber 20 and an atmospheric pressure chamber 21 by the suction piston 8, and a compression spring 22 is inserted into the negative pressure chamber 20 to constantly press the suction piston 8 toward the pentier section 13. Ru. The negative pressure chamber 20 is connected to the venturi section 13 through a suction hole 23 formed in the suction piston 81C, and the atmospheric pressure chamber 21 is connected to the suction piston 8 upstream through the air (7) hole 24 formed in the carburetor housing 6. intake passage 7
connected within.

一万、気化器ハウジング6FKJにはニードル9が後入
可能なようにニードル9の@線方向に延びる燃料通路2
5が形成され、この燃料通路25同には計量ジェット2
6が設けられる。計量ジェット26土流の燃料通路25
は下方に延びる燃料バイブ27を介してフロート室12
Ki!結され、フロート室12内の・燃料はこの燃料バ
イ127を介して燃料通路25内に送り込lれる。更に
、スペーサIOKは燃料通路25と共軸的に配置された
中漬円筒状のノズル28が1司足される。このノズル2
8ぼスペーサ10の内壁面からベンチュリ部13内に突
出し、しかもノズル28の先端部の下半分は下半分から
史にサクションピストン8に向けて突出している。ニー
ドル9ぽノズル28および計量ジェット26内全貫通し
て延び、燃料はニードル9と計量ジェット26間に形成
さnる環状間隙により計量された後にノズル28から吸
気通路7内に供給される。
10,000, the fuel passage 2 extends in the @ line direction of the needle 9 so that the needle 9 can be inserted later into the carburetor housing 6FKJ.
A metering jet 2 is formed in this fuel passage 25.
6 is provided. Metering jet 26 Earth flow fuel passage 25
is connected to the float chamber 12 via a fuel vibrator 27 extending downward.
Ki! The fuel in the float chamber 12 is sent into the fuel passage 25 via this fuel bypass 127. Further, the spacer IOK includes one nozzle 28 in the shape of a hollow cylinder arranged coaxially with the fuel passage 25. This nozzle 2
8 protrudes into the venturi portion 13 from the inner wall surface of the spacer 10, and the lower half of the tip of the nozzle 28 protrudes toward the suction piston 8 from the lower half. The needle extends completely through the nine-point nozzle 28 and the metering jet 26, and the fuel is metered by the annular gap formed between the needle 9 and the metering jet 26 before being supplied from the nozzle 28 into the intake passage 7.

(8) 第2図に示されるようにスペーサ10の上端部Vcrc
吸気通路7内に向けて水平方間に突出する隆起壁29が
形成され、この隆起壁29とサクションピストン8の先
端部間に2いて流量制御が行なわれる。機関運転が開始
されると空気に吸気通路7内を下方に向けて流れる。こ
のとき望見流はサクションピストン8と隆起壁29間に
おいて絞られるためにベンチュリ部131C[負圧が発
生し、この負圧がサクション孔23を介して負圧室20
内に導びかれる0サクシヨンピストン8 U負圧室20
と大気圧室21との圧力差が圧縮ばね22のばね力によ
り定まるほぼ一足圧となるように、即ちベンチエリ部1
3内の負圧がほぼ一定となるように移動する。
(8) As shown in FIG. 2, the upper end of the spacer 10 Vcrc
A raised wall 29 projecting horizontally into the intake passage 7 is formed between the raised wall 29 and the tip of the suction piston 8 to control the flow rate. When engine operation is started, air flows downward in the intake passage 7. At this time, since the viewing flow is constricted between the suction piston 8 and the raised wall 29, a negative pressure is generated in the venturi portion 131C, and this negative pressure is passed through the suction hole 23 to the negative pressure chamber 20.
0 suction piston 8 guided inside U negative pressure chamber 20
In other words, the bench area 1 is adjusted such that the pressure difference between the
Move so that the negative pressure inside 3 remains almost constant.

第3図および第4図を参照すると、ニードル9の上流側
に位置するサクションピストン先端面部分にその全体が
ニードル9の取付端面30からニードル9の先端部に向
けて隆起しており、このサクションピストン先端面部分
上には吸気通路7の軸線方向に延びる凹溝31が形成さ
れる。この凹溝31の上流$1!1端部31aにU字形
断面形状をなすと共にニードル取付端面30よりもニー
ドル9の先端部に近い側に位置しており、残りの凹溝部
分31bは上流側端部31aからニードル取付端面30
葦でほぼまっすぐに延びる。更に、ニードル9よジも上
流側に位置するサクションピストン先端面部分の断面形
状に凹$31からベンチエリ部13に向けて拡開するV
字形をなしており、従ってこのサクションピストン先端
面部分に凹溝31に向けて傾斜する一対の傾f7+壁面
部32a。
Referring to FIGS. 3 and 4, the entire tip surface of the suction piston located on the upstream side of the needle 9 is bulged from the mounting end surface 30 of the needle 9 toward the tip of the needle 9. A groove 31 extending in the axial direction of the intake passage 7 is formed on the tip end surface of the piston. The upstream $1!1 end 31a of this groove 31 has a U-shaped cross section and is located closer to the tip of the needle 9 than the needle mounting end face 30, and the remaining groove portion 31b is on the upstream side. From the end 31a to the needle mounting end face 30
The reeds grow almost straight. Furthermore, the needle 9 also has a V which expands from the concave $31 toward the bench area 13 in the cross-sectional shape of the suction piston tip surface located on the upstream side.
Therefore, a pair of inclinations f7 + wall surface portions 32a are formed in the shape of a letter and are inclined toward the concave groove 31 at the tip end surface portion of the suction piston.

32bを有する。32b.

第3図かられかるように吸入空気量が少ないときには隆
起壁29、傾斜壁部分32a、32b。
As can be seen from FIG. 3, when the amount of intake air is small, the raised wall 29 and the inclined wall portions 32a and 32b.

および凹溝上流fliJl?i部31aによってほぼ二
等辺三角形状の吸入空気制御絞り都Kが形成される。
and concave groove upstream fliJl? The i portion 31a forms an intake air control throttle K having a substantially isosceles triangular shape.

このように吸入空気制御絞り部に’に形成することによ
ってサクションピストン8のリフト1]、が吸入空気制
御絞り!IIKの開口面積に比例するようになり、従っ
てサクションピストン8のリフト量に吸入空気量の増大
に応じて清らかに増大するようになる。更に、サクショ
ンピストン8ば軸9L7によって支持されているので吸
入空気量の変化に対して応答性よく移動し、斯くしてサ
クションピストン8に吸入空気量が増大したときに吸入
空気量の増大に応答性よくかつ滑らかに移動する。その
結果、加速運転時のように吸入9気量が急激に変化する
場合であってもサクションピストン8のリフトが吸入空
気前の増大に比例して増大するためにノズル28から供
給される燃料の童は吸入空気量に常時比例することにな
る。更に、第3図かられかるように吸入空気量が少ない
ときには吸入空気が吸気通路7の中央部全流通せしめら
nlその結果ノズル28から供給された燃料に吸入空気
流と共に即座に機関シリンダ内に供給されるので吸入空
気量が少ないときであってもノズル28から供給された
燃料は即座に機関シリンダ内に供給される。従って、加
速運転時のように吸入を気量が急激に増大しても上述し
たようにノズル28から供給される燃料の量が吸入空気
量に比例し、しかもノズル28から供給された燃料が即
座に機関シリンダ同に供給されるので機関シリンダ内に
供給される混合気の空燃比に吸入空気量が急激に変化し
てもほぼ一定に維持される。また、サクションピストン
8は軸受17によって支持されているので機関温度がサ
クションピストン8の移動に影響全与えることがなく、
斯くしてサクションピストン8は機関温度とは無関係に
吸入空気量の変化に応答性よく移動することができる0
斯くして、第2図に示す可変ベンチュリ型気化器2全用
いると、機関温度および機関運転状態にかかわらずに機
関シリンダ内に供給される混合気のを燃比?はぼ一足埴
、例えば14.0程度に維持することができる。
In this way, the suction piston 8 is lifted 1] by forming the intake air control throttle part to be the intake air control throttle! It becomes proportional to the opening area of IIK, and therefore, the lift amount of the suction piston 8 clearly increases as the amount of intake air increases. Furthermore, since the suction piston 8 is supported by the shaft 9L7, it moves with good response to changes in the amount of intake air, and thus, when the amount of intake air to the suction piston 8 increases, it responds to the increase in the amount of intake air. Moves smoothly and smoothly. As a result, even when the intake air volume changes rapidly, such as during acceleration, the lift of the suction piston 8 increases in proportion to the increase in the amount of intake air, so that the amount of fuel supplied from the nozzle 28 increases. The amount of air intake will always be proportional to the amount of air inhaled. Furthermore, as can be seen from FIG. 3, when the amount of intake air is small, the intake air is forced to flow through the entire center of the intake passage 7. As a result, the fuel supplied from the nozzle 28 immediately flows into the engine cylinder together with the intake air flow. Therefore, even when the amount of intake air is small, the fuel supplied from the nozzle 28 is immediately supplied into the engine cylinder. Therefore, even if the amount of intake air increases rapidly as during acceleration, the amount of fuel supplied from the nozzle 28 is proportional to the amount of intake air as described above, and moreover, the amount of fuel supplied from the nozzle 28 is immediately increased. Since the intake air is supplied to the engine cylinders at the same time, the air-fuel ratio of the air-fuel mixture supplied to the engine cylinders remains almost constant even if the intake air amount changes rapidly. Furthermore, since the suction piston 8 is supported by the bearing 17, the engine temperature does not affect the movement of the suction piston 8.
In this way, the suction piston 8 can move with good responsiveness to changes in the amount of intake air, regardless of the engine temperature.
In this way, when the variable venturi type carburetor 2 shown in FIG. 2 is fully used, the fuel ratio of the air-fuel mixture supplied into the engine cylinder can be adjusted regardless of the engine temperature and engine operating condition. It is possible to maintain it at about 14.0, for example.

従って機関シリンダ内には空燃比が14.0程度の過濃
混合気が常時供給されることになる。
Therefore, a rich air-fuel mixture with an air-fuel ratio of about 14.0 is constantly supplied into the engine cylinders.

第2図を参照すると、計量ジェット26の周囲にに墳状
望気室33が形成され、この環状苧気室33に通ずる複
数個のエアブリード孔34が計量ジェット26の内周壁
固止に形成される0壌状空気室33はエアブリード通路
35.36およびエアブリードジェット37を介して隆
起壁29上流の吸気通路7内に連結され、これらエアブ
リード通路35,36の連結部にはワックス9P38に
よって駆動される弁体39が配置される。ワックス弁3
8の感温@38aの周囲には冷却水循環室39が形成さ
れ、この冷却水循環室39内には冷却水流入口40から
冷却水が導入され、この冷却水に冷却水流出口41から
排出さnる。機関冷却水温が上昇すると弁体39が左方
に移動し、それによってエアブリード通路の流れ面積が
増大するためにエアブリード量が増大するOy機運転が
完了すると弁体39がエアブリード通路全全開し、この
とき機関シリンダ内に供給される混合気に空燃比が14
.0程度の濃混合気となる。
Referring to FIG. 2, a mound-shaped air chamber 33 is formed around the metering jet 26, and a plurality of air bleed holes 34 communicating with the annular air chamber 33 are formed in the inner peripheral wall of the metering jet 26. The air chamber 33 is connected to the intake passage 7 upstream of the raised wall 29 via air bleed passages 35, 36 and air bleed jets 37, and wax 9P38 is applied to the joint between these air bleed passages 35 and 36. A valve body 39 that is driven by is arranged. wax valve 3
A cooling water circulation chamber 39 is formed around the temperature sensor @ 38a of No. 8, and cooling water is introduced into this cooling water circulation chamber 39 from a cooling water inlet 40, and is discharged from a cooling water outlet 41 to this cooling water. . When the engine cooling water temperature rises, the valve body 39 moves to the left, which increases the flow area of the air bleed passage, thereby increasing the amount of air bleed. When the machine operation is completed, the valve body 39 fully opens the air bleed passage. At this time, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder is 14.
.. The mixture becomes a rich mixture of about 0.

−万、機関排気マニホルド3にに2次望見の供給制御を
する2次空気供給制御弁50が取付けられ、吸気マニホ
ルド1には2次空気供給制御弁50の作動を制御する電
磁弁51が取付けられる022次空気供給制御弁50ダ
イアフラム52によって隔離さtた負圧室53と大気圧
室54を有し、負王室53内にはダイアフラム押圧用圧
縮ばね55が挿入される。大気圧室54円にはダイアフ
ラム52に向けて突出する中窒管56が固足配置され、
この中を管56の先ya都ににダイアフラム52に固着
された弁体58によって開閉制御される弁ポート57が
形成される。この弁ボート57は弁ボート57から排気
マニホルド3内に向けてのみ流通可能な逆止弁59およ
び2次空気供給孔60を介して排気マニホルド3内に連
結される。
- A secondary air supply control valve 50 for controlling the supply of secondary air is attached to the engine exhaust manifold 3, and a solenoid valve 51 for controlling the operation of the secondary air supply control valve 50 is attached to the intake manifold 1. The attached secondary air supply control valve 50 has a negative pressure chamber 53 and an atmospheric pressure chamber 54 separated by a diaphragm 52, and a compression spring 55 for pressing the diaphragm is inserted into the negative chamber 53. A hollow nitrogen pipe 56 protruding toward the diaphragm 52 is firmly disposed in the atmospheric pressure chamber 54,
Inside this, a valve port 57 is formed at the end of the pipe 56, which is controlled to open and close by a valve body 58 fixed to the diaphragm 52. This valve boat 57 is connected to the inside of the exhaust manifold 3 via a check valve 59 and a secondary air supply hole 60 that allow flow only from the valve boat 57 into the exhaust manifold 3 .

従って弁ボート57および2次空気供給孔60が2次突
気供給通路を形成する0−刀、電磁弁51に弁室62と
、弁室62173に配置された弁体63と、弁室62円
に開口しかつ吸気マニホルド1円に連結された負圧ボー
ト64と、弁室62内に開口しかつ大気に連通する大気
ボート65と、弁体63に連結された可動プランジ−r
66と、可動プランジャ66を吸引するためのソレノイ
ド67とを具備し、負圧ボート642よび大気ボート6
5は弁体63によって開閉制御される0弁室62に導管
68全介して2次を気供給制御弁50の負圧室53に連
結され、ソレノイド67は電子制御ユニラ)70に接続
はれる。−万、スロットル弁11にはアイドルスイッチ
71が連結され、このアイドルスイッチ71の出力端子
に電子71i111Mlユニット70に接続される。こ
のアイドルスイッチ71はスロットル弁11がアイドリ
ンク位置にあるときにオンとなる。更に、電子制御ユニ
ット70Kに機関11転数に応動する回転数スイッチ7
2が接続され、この回転数スイッチ72は機関回転数が
予め定められた一足回転数、例えば1600 r、p、
m以上になるとオンになる0こnらのアイドルスイッチ
71および回転数スイッチ72は機関の減速運転状態を
検出する減速運転検出器全構成する。
Therefore, the valve boat 57 and the secondary air supply hole 60 form a secondary air supply passage. a negative pressure boat 64 that opens into the intake manifold 1, an atmospheric boat 65 that opens into the valve chamber 62 and communicates with the atmosphere, and a movable plunger connected to the valve body 63.
66 and a solenoid 67 for suctioning the movable plunger 66, and a negative pressure boat 642 and an atmospheric boat 6.
5 is connected to a negative pressure chamber 53 of an air supply control valve 50 through a conduit 68 to a valve chamber 62 whose opening and closing are controlled by a valve body 63, and a solenoid 67 is connected to an electronic control unit 70. - 10,000, an idle switch 71 is connected to the throttle valve 11, and an output terminal of the idle switch 71 is connected to an electronic 71i111Ml unit 70. This idle switch 71 is turned on when the throttle valve 11 is in the idle link position. Furthermore, the electronic control unit 70K includes a rotation speed switch 7 that responds to the engine 11 rotation speed.
2 is connected, and this rotation speed switch 72 sets the engine rotation speed to a predetermined rotation speed, for example, 1600 r, p,
The idle switch 71 and the rotation speed switch 72, which are turned on when the engine speed exceeds m, constitute the entire deceleration operation detector that detects the deceleration operation state of the engine.

第6図に重子制御ユニッ)70の回路図を示す。FIG. 6 shows a circuit diagram of the multiplex control unit 70.

第6図全参照すると、電子制御ユニット70にアイドル
スイッチ71の出力音−万の入力とし回転数スイッチ7
2の出力音他方の入力とするアンドゲート73と、アン
ドゲート73の出力端子に接続されたインバータ74と
、インバータ74の出力端子に接続された単安定マルチ
バイブレータ75と、第5図(a)に示すようなI H
zから2Hzの周波数の矩形パルスを発生するパルス発
生器76と、インバータ74の出力を一万の入力としパ
ルス発生器76の出力を他方の入力とするアンドゲート
77と、単安犀マルチバイブレータ75の出力音−万の
入力としアンドゲート77の出力會他方の入力とするナ
ントゲート78と、ナントゲート78の出力端子に接続
された電力増巾器79とによ!ll慣成され、電力増巾
器79の出力端子にソレノイド67に接続される。
Referring to FIG. 6, the output sound of the idle switch 71 is inputted to the electronic control unit 70.
5(a) IH as shown in
A pulse generator 76 that generates a rectangular pulse with a frequency of 2 Hz to 2 Hz, an AND gate 77 that takes the output of the inverter 74 as an input of 10,000, and the output of the pulse generator 76 as the other input, and a monoanzi multivibrator 75 The output sound of -10,000 is the output of the AND gate 77.The other input is the Nants gate 78, and the power amplifier 79 is connected to the output terminal of the Nands gate 78. The output terminal of the power amplifier 79 is connected to the solenoid 67.

第7図は宜子匍j御ユニット70の各部における信号?
示している。第7図1cj11−いて(a)ぼパルス発
生器76の出力パルス信号を示し、(e)はソレノイド
67に印加されるソレノイド制御信号を示している。l
た、第7図に2いて区間’r+iアイドルスイッチ71
がオフのとき、又に回転数スイッチ72がオフのとき、
即ち減速運転時でないときを示している。このときには
第7図(b)に示されるようにインバータ74の出力電
圧は高レベルとなって29、従って第7m<c>に示さ
れるようにアンドゲート77の出力端子にぼパルス発生
器76の出力パルスに対応したパルスが発生する。lた
、このときには第5図(d)に示されるように単安定マ
ルチバイブレータ75の出力電圧が低レベルとなってお
り、従ってこのときアンドゲート77の出力電圧がナン
トゲート78において反転されて第7図(e)に示すよ
うな制御パルスがソレノイド67に印加される。−万、
第7図に2いて時刻taにアイドルスイッチ712よび
回転数スイッチ72が共にオンになったとき、即ち減速
運転開始時を示しており、葦た第7図において区間(T
!+TI)に減速運転継続期間を示している0減速運転
が開始されると上述したようにアイドルスイッチ71を
よび回転数スイッチ72が共にオンになり、その結果第
7図(b)に示されるようにインバータ74の出力電圧
が低レベルとなると共に第7図(C)に示されるように
アンドゲート77の出力電圧が低レベルとなる。−万、
このとき単安定マルチバイブレータ75にインバータ7
4の出力電圧の立下ジによってトリガーされ、そのM来
第7図(d)に示きれるように単安定マルチバイブレー
タ75の出力電圧に一足時間T2の間だけ高レベルとな
る。第7図(e)に示されるように単安定マルチバイブ
レータ75の出力電圧が高レベルとなっている間、ナン
トゲート78の出力電圧は低レベルとなり、従って減速
運転開始俊一定時間T2の間、ソレノイド67が消勢さ
れる。減速運転開始後一定時間Tz全経過すると単安定
マルチバイブレータ75の出力電圧が低レベルとなるた
めにナントゲート78の出力電圧が高レベルとなり、ナ
ントゲート78の出力電圧は減速運転が継続している期
間T3中、高レベルに維付される。従って減速運転開始
後一定時間T。
FIG. 7 shows the signals in each part of the control unit 70?
It shows. FIG. 7 (a) shows the output pulse signal of the pulse generator 76, and (e) shows the solenoid control signal applied to the solenoid 67. l
In addition, in Fig. 7, there is a section 'r+i idle switch 71.
is off, and when the rotation speed switch 72 is off,
In other words, this indicates a time when the vehicle is not in deceleration operation. At this time, as shown in FIG. 7(b), the output voltage of the inverter 74 becomes a high level 29, and therefore, as shown in FIG. A pulse corresponding to the output pulse is generated. Furthermore, at this time, the output voltage of the monostable multivibrator 75 is at a low level as shown in FIG. A control pulse as shown in FIG. 7(e) is applied to the solenoid 67. Ten thousand,
FIG. 7 shows when both the idle switch 712 and the rotation speed switch 72 are turned on at time ta, that is, when deceleration operation starts, and in FIG.
! When zero deceleration operation is started, which indicates the continuation period of deceleration operation at At the same time, the output voltage of the inverter 74 becomes low level, and the output voltage of the AND gate 77 becomes low level as shown in FIG. 7(C). Ten thousand,
At this time, the inverter 7 is connected to the monostable multivibrator 75.
The output voltage of the monostable multivibrator 75 is triggered by the fall of the output voltage of the monostable multivibrator 75, and as shown in FIG. As shown in FIG. 7(e), while the output voltage of the monostable multivibrator 75 is at a high level, the output voltage of the Nandt gate 78 is at a low level. Solenoid 67 is deenergized. When a certain period of time Tz has elapsed after the start of deceleration operation, the output voltage of the monostable multivibrator 75 becomes a low level, so the output voltage of the Nant gate 78 becomes a high level, and the output voltage of the Nant gate 78 continues deceleration operation. It is maintained at a high level during period T3. Therefore, a certain period of time T after the start of deceleration operation.

を経過すると減速運転が完了するまでソレノイド67が
継続的に付勢される。次いで時刻tbにおいてアイドル
スイッチ71がオフ、或いに回転数スイッチ72がオフ
になると、即ち減速運転が完了するとインバータ74の
出力電圧が低レベルとなp1斯くしてこのとき第7図(
e)の区間T4で示されるようにナントゲート78の出
力端子には区間T。
After , the solenoid 67 is continuously energized until the deceleration operation is completed. Next, at time tb, when the idle switch 71 is turned off and the rotation speed switch 72 is turned off, that is, when the deceleration operation is completed, the output voltage of the inverter 74 becomes low level p1.
As shown in section T4 in e), the output terminal of the Nantes gate 78 has a section T.

と同様な連続パルスが発生する。A continuous pulse similar to that occurs.

第7図かられかるように減速運転時でないときにrl:
IHzから2Hzの周波数の矩形パルスがソレノイド6
7に開力I]される。弁体63ぼ通常負圧ボー トロ 
4’!に閉鎖すると共に大気ボート65を開口しており
、パルス発生器71がパルスケ発生するとソレノイド6
7が付勢されて弁体64が右方に#勤し、それによって
弁体63が負圧ボート64を開口すると共に大気ボート
65を閉鎖する。従って負圧ボート64および大気ボー
ト65はIH7から2 H2の周波数でもって開閉動作
が繰返され、斯くして2次空気供給制御弁50の負圧室
53にII I Hzから2Hzの周波数でもって負圧
、又は大気圧が交互に導びかれる0負圧室53内に負圧
が加わると弁体58が弁ボート57を開口し、このとき
排気脈動によ!ll排気マニホルド3円に発生する負圧
によって空気が2次空気供給孔60から排気マニホルド
3円に吸入される。従って上述のように負圧室53円が
I Hzから2Hzの周波数でもって交互に大気圧、又
に負圧になると弁体58が弁ボート57をIHzから2
 Hzの周波数でもって開口し、斯くして2次空気が排
気マニホルド3内にI Hzから2Hzの周波数でもっ
て間欠的に供給さnることKなる02次空気が排気マニ
ホルド3円に間欠的に供給されると邦ト気マニホルド3
円の排気ガス中の酸素#度が周期的に変動し、斯くして
空燃比が変動することになる。なお、ここで空燃比とい
う用語は通常用いられる意味とに多少違った意味で使用
されて2ジ、この空燃比ぼ三元触媒コンバータ4上流の
作動ガス通路内に供給された全空気量(吸入空気と2次
空気の和)と全燃料音との比を言う。三元触媒5に排気
ガス中に存在する過剰な識累に対して前述したような酸
素保持機能を有して$−9、この過剰酸素が吸気系に供
給された吸入空気によるものか、又は断気系に供給され
た2次空気によるものかは関係ない。従ってを1気マニ
ホルド3内に供給される2次9気の童?変動させること
によって空燃比を周期的に変動させた場合にこの空燃比
の平均値が第1(b)図のウィンドウWo内に維持され
れば高い浄化効率を得ることができる。第2図に示す英
箔例において弁ボート57および2次空気供給孔60の
寸法にダイア7ヲム52の弁体58が弁ボート57の開
閉を繰返し行なったときに空燃比A/Fの平均値が第5
0)図に示されるようKはぼ理論空燃比とをり、全燃比
の変動中が理論空燃比に対してほぼ±0.2から±1.
0となるように定められる0このように弁体58の単純
な開閉動作の繰返しによって空燃比A/Fの平均値kl
デぼ理論9燃比に維持できるのに気化器2において形成
さnる混合気の空燃比が一定に維持されているからであ
る。従って機関の運転状M4Kかかわらすに空燃比ぼI
 l(Zから2Hzの周波数でもってはぼ理論空燃比に
対して±0.2から±1.0の範囲で変動せしめられ、
しかもこの空燃比の平均値に第1(b)図のウィンドウ
Wo内に維持されるので三元モノリス触媒5の酸素保持
機能を利用して高い浄化効率を得ることができる。
As shown in Figure 7, when not in deceleration operation, rl:
A rectangular pulse with a frequency of IHz to 2Hz is generated by solenoid 6.
7, the opening force I] is applied. Valve body 63 is normal negative pressure valve
4'! When the pulse generator 71 generates a pulse, the solenoid 6 is closed.
7 is energized and the valve body 64 moves to the right, thereby causing the valve body 63 to open the negative pressure boat 64 and close the atmospheric boat 65. Therefore, the negative pressure boat 64 and the atmospheric boat 65 are repeatedly opened and closed at a frequency of IH7 to 2H2, and thus a negative pressure is supplied to the negative pressure chamber 53 of the secondary air supply control valve 50 at a frequency of III Hz to 2Hz. When negative pressure is applied to the zero negative pressure chamber 53 to which pressure or atmospheric pressure is alternately introduced, the valve body 58 opens the valve boat 57, and at this time, due to exhaust pulsation! Air is sucked into the exhaust manifold 3 from the secondary air supply hole 60 by the negative pressure generated in the exhaust manifold 3. Therefore, as mentioned above, when the negative pressure chamber 53 becomes atmospheric pressure and negative pressure alternately at a frequency of IHz to 2Hz, the valve body 58 changes the valve boat 57 from IHz to 2Hz.
Hz, and thus secondary air is intermittently supplied into the exhaust manifold 3 with a frequency of I Hz to 2 Hz. When supplied, the air pressure manifold 3
The degree of oxygen in the exhaust gas changes periodically, and thus the air-fuel ratio changes. Note that the term air-fuel ratio is used here in a slightly different meaning from the usual meaning, and this air-fuel ratio is equivalent to the total amount of air (intake It is the ratio between the sum of air and secondary air) and the total fuel sound. If the three-way catalyst 5 has an oxygen retention function as described above against the excess oxygen present in the exhaust gas, this excess oxygen may be due to intake air supplied to the intake system, or It does not matter whether it is caused by secondary air supplied to the insulation system. Therefore, is the 2nd 9 qi supplied in the 1st qi manifold 3? When the air-fuel ratio is periodically varied by varying the air-fuel ratio, high purification efficiency can be obtained if the average value of the air-fuel ratio is maintained within the window Wo in FIG. 1(b). In the English foil example shown in FIG. 2, when the valve body 58 of the diaphragm 52 has the dimensions of the valve boat 57 and the secondary air supply hole 60, the average value of the air-fuel ratio A/F when the valve boat 57 is repeatedly opened and closed. is the fifth
0) As shown in the figure, K is approximately equal to the stoichiometric air-fuel ratio, and during fluctuations in the total fuel ratio, it is approximately ±0.2 to ±1.
In this way, by repeating the simple opening and closing operation of the valve body 58, the average value kl of the air-fuel ratio A/F is determined to be 0.
This is because the air-fuel ratio of the air-fuel mixture formed in the carburetor 2 is maintained constant even though the fuel ratio can be maintained at the theoretical 9 fuel ratio. Therefore, regardless of the engine operating condition M4K, the air-fuel ratio is approximately I.
l (with a frequency of 2 Hz from Z, it is made to vary within the range of ±0.2 to ±1.0 with respect to the stoichiometric air-fuel ratio,
Moreover, since the average value of this air-fuel ratio is maintained within the window Wo in FIG. 1(b), high purification efficiency can be obtained by utilizing the oxygen retention function of the three-way monolith catalyst 5.

−万、機関回転数が高いときにスロットル弁11が閉弁
されて減速運転が開始されると吸気マニホルド1の負圧
が急激に止弁するために吸気マニホルド1の内壁面上に
耐層した燃料が一気に蒸発し、その結果機関シリンダ内
には一時的にかなり過濃な混合気が供給されるために排
気マニホルド3内には生ガスが排出さnる。このような
ときに排気マニホルド3173に2次空気全供給すると
アフターバーン金主ずることKなる。そこで本発明では
減速運転開始後一定時間T、の間、ソレノイド6フ全消
勢することにより2次空気供給制御弁50の弁ボート5
7t弁体58により閉鎖し、そnによって2次空気の供
給全完全に停止することによってアフターバーンの発生
を防止するようにしている。−万、減速運転開始後、一
定時間T、を経過すればわずかばか9遍濃な混合気が機
関シリンダ内に供給される。このときKはNOxの発生
量は少なく、むしろ未燃HC,COをm倹約に浄化する
必要がある。従って本発明でに減速運転開始後一定時間
T2を経過したときにはソレノイド67全付勢し続ける
ことにより2次全気供給制#升50の弁ボート57全開
放し続けて2次空気を排気マニホルド3内に供給し続け
、それによって未燃fIC。
-10,000, When the throttle valve 11 is closed and deceleration operation is started when the engine speed is high, the negative pressure in the intake manifold 1 suddenly stops, so there is a layer on the inner wall surface of the intake manifold 1. The fuel evaporates all at once, and as a result, a considerably rich air-fuel mixture is temporarily supplied into the engine cylinders, so that raw gas is discharged into the exhaust manifold 3. In such a case, if all the secondary air is supplied to the exhaust manifold 3173, the afterburn will take place. Therefore, in the present invention, the valve boat 5 of the secondary air supply control valve 50 is fully deenergized for a certain period of time T after the start of deceleration operation.
It is closed by a 7t valve body 58, thereby completely stopping the supply of secondary air, thereby preventing the occurrence of afterburn. After a certain period of time T has elapsed after the start of deceleration operation, a slightly richer air-fuel mixture is supplied into the engine cylinders. At this time, K generates a small amount of NOx, and it is necessary to purify unburned HC and CO sparingly. Therefore, in the present invention, when a certain period of time T2 has elapsed after the start of deceleration operation, the solenoid 67 is kept fully energized to control the secondary air supply, and the valve boat 57 of the #cell 50 is kept fully open to drain the secondary air into the exhaust manifold 3. and thereby continue to supply unburned fIC.

COの酸化反応を促進することにより未燃HC、COの
浄化作用全向上させるようにしている〇このように本発
明によれば高価なM素謎叩検出器2よび高価な9燃比制
御用の電子制御ユニットを用いることなく、価格の低い
気化器を用いてリド気カス全良好に浄化できるので排気
ガス浄化装置の製造コストを大巾に低減することができ
る0更に、機関シリンダ内に供給ざnる混合気の全燃比
は一足に維持さnるので燃焼変動が生ずることもなく、
斯くして滑らかな機関の運転を確保することができる。
By promoting the oxidation reaction of CO, the purification effect of unburned HC and CO is completely improved. In this way, according to the present invention, the expensive M element detection detector 2 and the expensive 9 fuel ratio control Since all of the lid gas can be effectively purified using a low-cost carburetor without using an electronic control unit, the manufacturing cost of the exhaust gas purification device can be greatly reduced. Since the total fuel ratio of the air-fuel mixture is maintained at a constant level, combustion fluctuations do not occur.
In this way, smooth engine operation can be ensured.

葦た、減速運転時においては減速運転開始@後に2ける
アフターパーンの発生全防止できると共に減速運転中に
大気に放出される排気カス中のM害成分を大巾に低減す
ることができる。
During deceleration operation, it is possible to completely prevent the occurrence of afterburn after the start of deceleration operation, and it is also possible to greatly reduce the M harmful components in the exhaust gas released into the atmosphere during deceleration operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は断気ガス浄化効率金示す線図、第2図ぼ機関吸
排気系の側面断面図、第3図は第2図の矢印1[[に沿
ってみた平面図、第4図はサクションピストンの側面断
面図、第5図ぼ9燃此の変動を示す線図、第6図は電子
制御ユニットの回路図、第7図Ia、′it子制御ユニ
ットの各素子の出力信号全示すタイムチャートである。 2・・・気化器、      8・・・サクションピス
トン、9・・・ニードル、25・・・燃料通路、28・
・・ノズル、50・・・2次空気供給制御弁、51・・
・電磁弁、60・・・2次望見供給孔、7o・・・電子
制御ユニット、71・・・アイドルスイッチ、72・・
・回転数スイッチ。 特許出願人 トヨタ自動車株式会社 特許出願代理人 弁理士  青 木   明 弁理士 西舘和之 弁理士 中山恭介 弁理士  山 口 昭 之 汝 く 137− L                        
       ”\                
 F<−一
Fig. 1 is a diagram showing the efficiency of gas purification through gas purification, Fig. 2 is a side sectional view of the engine intake and exhaust system, Fig. 3 is a plan view taken along arrow 1 in Fig. 2, and Fig. 4 is a diagram showing the efficiency of gas purification. A side sectional view of the suction piston, Fig. 5 is a line diagram showing the fluctuations in the combustion rate, Fig. 6 is a circuit diagram of the electronic control unit, and Fig. 7 Ia shows all output signals of each element of the child control unit. This is a time chart. 2... Carburetor, 8... Suction piston, 9... Needle, 25... Fuel passage, 28...
...Nozzle, 50...Secondary air supply control valve, 51...
- Solenoid valve, 60... Secondary observation supply hole, 7o... Electronic control unit, 71... Idle switch, 72...
・Rotation speed switch. Patent applicant Toyota Motor Corporation Patent agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney Kyosuke Nakayama Akira Yamaguchi No. 137-L
”\
F<-1

Claims (1)

【特許請求の範囲】[Claims] 機関シリンダ内に過濃な混合気を供給するための燃料供
給装置1を全具備すると共に機関排気通路に三元触媒コ
ンバータ全取付けた内燃機関に2いて、三元触媒コンバ
ータ上流の排気通路内に2次空気供給通路を連結し、該
2次空気供給通路内にほぼI Hzから2Hzの一足周
波数で開閉する電磁弁上配置し、該2次空気供給通路を
開閉した際に空燃比が平均値に対してほぼ±0.2から
±1.0の間で周期的に変動すると共に該空燃比の平均
値がほぼ理Ml孕燃比となるように上記2次空気供給通
路の流路面積全定め、更に機関の減速運転状態を検出可
能な減速運転検出器の出力信号に応動して上記2次空気
供給通路を全閉又に全開する電磁弁制御信号を発する電
子制御ユニットを具備し、減速運転が開始さnたときに
該2次空気供給通路を1時的に全閉すると共にその後減
速運転が完了するlで2次空気供給通路を全開するよう
にした内燃機関の排気ガス浄化装置。
An internal combustion engine is equipped with a fuel supply device 1 for supplying a rich mixture into the engine cylinders, and a three-way catalytic converter is installed in the engine exhaust passage. Secondary air supply passages are connected, and a solenoid valve that opens and closes at a frequency of about I Hz to 2Hz is disposed in the secondary air supply passage, so that when the secondary air supply passage is opened and closed, the air-fuel ratio is the average value. The entire flow area of the secondary air supply passage is determined so that the air-fuel ratio periodically fluctuates between approximately ±0.2 and ±1.0, and the average value of the air-fuel ratio becomes approximately the ideal fuel-fuel ratio. The apparatus further includes an electronic control unit that generates a solenoid valve control signal for fully closing or fully opening the secondary air supply passage in response to an output signal from a deceleration detector capable of detecting the deceleration operation state of the engine. An exhaust gas purification device for an internal combustion engine, which temporarily fully closes the secondary air supply passage when the deceleration operation is started, and then fully opens the secondary air supply passage when the deceleration operation is completed.
JP20449382A 1982-11-24 1982-11-24 Exhaust gas purifying device of internal-combustion engine Pending JPS5996422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20449382A JPS5996422A (en) 1982-11-24 1982-11-24 Exhaust gas purifying device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20449382A JPS5996422A (en) 1982-11-24 1982-11-24 Exhaust gas purifying device of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS5996422A true JPS5996422A (en) 1984-06-02

Family

ID=16491436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20449382A Pending JPS5996422A (en) 1982-11-24 1982-11-24 Exhaust gas purifying device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5996422A (en)

Similar Documents

Publication Publication Date Title
JPS5996422A (en) Exhaust gas purifying device of internal-combustion engine
JPH0123649B2 (en)
JPS5934456A (en) Exhaust gas purifier for internal combustion engine
JPS597723A (en) Exhaust gas purifier of internal-combustion engine
JPS5996418A (en) Exhaust gas purifying device of internal-combustion engine
JPS5912114A (en) Exhaust gas purifying device of internal combustion engine
JPS5934452A (en) Exhaust gas purifier for internal combustion engine
JPS5934468A (en) Exhaust gas purifier for internal combustion engine
JPS597724A (en) Exhaust gas purifier of internal-combustion engine
JPS5912113A (en) Exhaust gas purifying device of internal combustion engine
JPS5928013A (en) Purifier for exhaust gas of internal combustion engine
JPS5910724A (en) Exhaust emission control device for internal-combustion engine
JPS5993950A (en) Exhaust-gas purifier for internal-combustion engine
JPS5915620A (en) Exhaust gas purifier of internal-combustion engine
JPS5996420A (en) Exhaust gas purifying device of internal-combustion engine
JPS5934461A (en) Exhaust gas purifier for internal combustion engine
JPS5910725A (en) Exhaust gas purifying device for internal-combustion engine
JPS5996421A (en) Exhaust gas purifying device of internal-combustion engine
JPS5934466A (en) Exhaust gas purifier for internal combustion engine
JPS5996425A (en) Exhaust gas purifying device of internal-combustion engine
JPS59101528A (en) Exhaust gas purging device of internal-combustion engine
JPS5996424A (en) Exhaust gas purifying device of internal-combustion engine
JPS5934464A (en) Exhaust gas purifier for internal combustion engine
JPS5934465A (en) Exhaust gas purifier for internal combustion engine
JPS5934460A (en) Exhaust gas purifier for internal combustion engine