JPS59101528A - Exhaust gas purging device of internal-combustion engine - Google Patents
Exhaust gas purging device of internal-combustion engineInfo
- Publication number
- JPS59101528A JPS59101528A JP20925382A JP20925382A JPS59101528A JP S59101528 A JPS59101528 A JP S59101528A JP 20925382 A JP20925382 A JP 20925382A JP 20925382 A JP20925382 A JP 20925382A JP S59101528 A JPS59101528 A JP S59101528A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- fuel
- secondary air
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/22—Control of additional air supply only, e.g. using by-passes or variable air pump drives
- F01N3/222—Control of additional air supply only, e.g. using by-passes or variable air pump drives using electric valves only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/22—Control of additional air supply only, e.g. using by-passes or variable air pump drives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/22—Control of additional air supply only, e.g. using by-passes or variable air pump drives
- F01N3/227—Control of additional air supply only, e.g. using by-passes or variable air pump drives using pneumatically operated valves, e.g. membrane valves
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Toxicology (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
【発明の詳細な説明】 不発明はFF′3燃機関の排気ガス伊北装置に関する。[Detailed description of the invention] The invention relates to an exhaust gas exhaust system for a FF'3 combustion engine.
排気ガス中の有害三成分)1c 、 COおよびNOx
k同時に低減することのできる触媒として、三元触媒
が仰られている。この三元触媒の浄化効率I(は第1(
a)図に示されるように空燃比A/Fがほぼ理論空燃比
であるときに廉も尚くなり、例えば80パ一セント以上
の浄化効率Rを得ることのできる全燃比領域は空燃比が
0.0c程度の狭い巾である。Three harmful components in exhaust gas) 1c, CO and NOx
A three-way catalyst is said to be a catalyst that can reduce k at the same time. The purification efficiency I (of this three-way catalyst is the first (
a) As shown in the figure, the price becomes even better when the air-fuel ratio A/F is approximately the stoichiometric air-fuel ratio. It has a narrow width of about 0.0c.
通常、このように80パ一セント以上の浄化効率を得る
ことのできる窒燃比領域全ウィンドウWと称する0従っ
て、三元M媒を用いて排気ガス中の有害三成分を同時に
低減するためには空燃比をこの狭いウィンドウW内に常
時に維持しなけれはならない。このために従来の断気ガ
ス浄化装(なで汀、空燃比が理論イ尺燃比よVも大きい
か小さ込かケ旬別可能l酸系(纏度検出器を機関排気通
路に取付け、この酸素4度検出器の出力信号に基いて空
燃比がウィンドウWI’Eのを燃比となるように制御し
ている。しかしながらこのような酸素濃度・噴出器を用
いたりY気ガス沙化装置では高価な酸素濃度検出器およ
び望燃比訓飾のだめの高価な電子制御ユニット全必要と
するために排気カス浄化装置の製造コストが高騰すると
いう問題がある0
ところが最近にナラて、5AEpaper No。Normally, in this way, in order to simultaneously reduce the three harmful components in exhaust gas using a ternary M medium, there is a The air/fuel ratio must be maintained within this narrow window W at all times. For this purpose, a conventional gas purification system (with an air-fuel ratio that can be determined whether the air-fuel ratio is larger or smaller than the stoichiometric fuel-fuel ratio) is used. Based on the output signal of the oxygen 4 degree detector, the air-fuel ratio is controlled to match the fuel ratio within the window WI'E. There is a problem in that the manufacturing cost of the exhaust gas purification device increases because it requires an oxygen concentration detector and an expensive electronic control unit for determining the fuel/fuel ratio.However, recently, 5AEpaper No.
760201号、或いは特公昭56−4741号公報に
記載されているように三元触媒の機能が次第に解明され
、三元触媒が酸素保持機能を有することが判明したので
ある。即ち、空燃比が理論空燃比に対してリーンIH!
iにあるときには三元触媒がNOxから虚萬全奪い取っ
てNOx 全還元させると共にこの奪い取った酸素を保
持し、空燃比が理論空燃比よりもリッチ側になると保持
した酢累を放出してCO,HCの酸化を行なうのである
。捉って空燃比を成る基準空燃比に対してリーンt(1
1とリッチl1l11に父互に変動させると基準空燃比
が理論空燃比からずれたとしても上述の1!!2素保持
榛能によりNOxの還元作用およびCO、I(Cの酸化
作用が促進されて高い神化効率′)c得ることができる
。第1図<b)は空燃比全周吸数I Hz で基準全燃
比に苅して±1.0だけ変動妊せた場合の基準空燃比A
/FのウィンドウW。を示している。第1(a)図およ
び第i (b)図からを燃比全一定ハ」仮数で変動させ
た場合にはウィンドウWOが広くなることがわかる。こ
のことは、空燃比を一定周期で変動させれば基準空燃比
が理論空燃比から多少ずれていたとしても高い浄化効率
が得られることを意味していゐ。−万、空燃比の変動S
e、数を低くすると、即ち空燃比の変動通期を長くする
と三元触媒の1&素味付能力が飽和するために酸素・保
持イ幾能をて基つく蛾化還元能力が低下し、三元触媒の
浄化効率が低下する0第1(c)図はこのことを明瞭に
示し−Cいる。第1(C)図において縦軸RはGJ化効
率全上爪、横軸F(1柴燃比の亥励周彼IcXt−示す
。また、空燃比の変動+1]を小さくすると空燃比をリ
ッチ側とリーン+U、++に父生に変動で@なくなるの
でウィンドウの巾は狭くなる。従ってウィンドウの巾を
広くするには最適なを燃比の変動周期と変動中が存在す
ることカニわ〃)る。As described in No. 760201 or Japanese Patent Publication No. 56-4741, the function of the three-way catalyst was gradually elucidated, and it was found that the three-way catalyst had an oxygen retention function. In other words, the air-fuel ratio is lean compared to the stoichiometric air-fuel ratio!
When it is at i, the three-way catalyst removes all of the oxygen from NOx and completely reduces NOx, and retains this stolen oxygen, and when the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio, it releases the retained vinegar and converts CO, HC. oxidation. Lean t(1
1 and rich l1l11, even if the reference air-fuel ratio deviates from the stoichiometric air-fuel ratio, the above-mentioned 1! ! The ability to retain two elements promotes the reduction of NOx and the oxidation of CO and I (C), resulting in a high conversion efficiency. Figure 1<b) shows the reference air-fuel ratio A when the air-fuel ratio is adjusted to the reference full-fuel ratio at the air-fuel ratio full-circumference number I Hz and the air-fuel ratio fluctuates by ±1.0.
/F window W. It shows. It can be seen from FIG. 1(a) and FIG. This means that if the air-fuel ratio is varied at regular intervals, high purification efficiency can be obtained even if the reference air-fuel ratio deviates somewhat from the stoichiometric air-fuel ratio. -10,000, air-fuel ratio fluctuation S
e. If the number is lowered, that is, if the period of air-fuel ratio fluctuation is lengthened, the three-way catalyst's 1 and seasoning ability will become saturated, and the moth-reducing ability, which is based on the oxygen retention function, will decrease. Figure 1(c) clearly shows this, as the purification efficiency of the catalyst decreases. In Fig. 1 (C), the vertical axis R indicates the total GJ conversion efficiency, and the horizontal axis F (indicates the increased excitation frequency of the fuel ratio IcXt-. Also, when the fluctuation of the air-fuel ratio +1) is decreased, the air-fuel ratio is shifted to the rich side. The width of the window becomes narrower because it disappears due to fluctuations in lean + U and ++.Therefore, in order to widen the width of the window, it is necessary to know that there is an optimal period of fluctuation of the fuel ratio and a period of fluctuation.
上述のように基準全燃比に対する空燃比の変動中および
変動周波−数を適切に選定すればウィンドウが広くなり
、従って基準空燃比が理論空燃比に対して多少変動して
も高い浄化効率を得ることができる0このことは、基準
空燃比の変動中の狭い燃料供給系を用いれば酸素1度検
出器の出力信号によるフィードバック制御仰を用いなく
ても高い浄化効率ケ得ることができることを意味してい
る。As mentioned above, if the period and frequency of fluctuation of the air-fuel ratio relative to the reference total fuel ratio are appropriately selected, the window becomes wider, and therefore high purification efficiency can be obtained even if the reference air-fuel ratio varies slightly relative to the stoichiometric air-fuel ratio. This means that by using a narrow fuel supply system during fluctuations in the reference air-fuel ratio, high purification efficiency can be obtained without using feedback control based on the output signal of the oxygen 1 degree detector. ing.
無B航燃料供胎系として燃料噴射弁を用いれば基準空燃
比の変動中を、快くすることができるが燃料噴射装置は
高価であるために機関の製造コストが高くなってしまう
という問題があり、更にこのように機関シリンダ内に供
給される空燃比を変動せしめるとたとえ変動中が小さく
ても燃焼が周期的に変動し、斯くして車両運転性が悪化
するとい9問題を生ずる0
不発明は鍍累(一度検出器上用いることなく、シかも機
関シリンダ内に供給される空燃比を変動させることなく
高い排気カス沖化効率金確保することのできる排気ガス
浄化装置tl−提供することにある0
以下、ざΣ附図面を参照して不づ11’lx−詳細に〜
、明する。If a fuel injection valve is used as a non-B aviation fuel supply system, fluctuations in the standard air-fuel ratio can be made easier, but since the fuel injection device is expensive, there is a problem in that the manufacturing cost of the engine increases. Furthermore, if the air-fuel ratio supplied to the engine cylinders is varied in this way, combustion will fluctuate periodically even if the fluctuations are small, resulting in problems such as deterioration of vehicle drivability.0 Non-invention To provide an exhaust gas purification device that can secure high exhaust gas removal efficiency without changing the air-fuel ratio supplied to the engine cylinder without using it once on the detector. There is 0 Below, please refer to the attached drawings and see the details.
, reveal.
第2図を参照すると、1は吸気マニホルド°、2は吸気
マニホルド1上に取着けられたf’Jfベンチュリ型気
化器、3は排気マニホルド、4は触媒コンノく一夕を夫
々示し、触媒コンバータ4の内部には三元モノリス触媒
5が配置されるot51変ベンチュリ型気化器2は気化
器)1ウジング6と、ノ・ウジツク6内を垂直方向に延
びる吸気通路7と、吸気通路7内を横方向に移動するサ
クションピストン8と、サクションピストン8の先端面
に取付けられたニードル9と、サクションピストン3の
先端面vc対向して吸気通路7の内壁面上に固定された
スペーサ10と、サクションピストン8下流の吸気通路
7内に設けられたスロットル弁11と、フロート室12
と全具備し、サクションピストン8の先端面とスペーサ
10間にはベンチエリ部13が形成される0気化器ハウ
ジング6には中壁円筒状のケーシング14が1内足され
、このケーシング14にはケーシング14の内部でケー
シング14の軸線方向に姑びる案内スリーブ15が取付
けられる。案内スリーブ15内には多数のボール16を
!えた軸受17が挿入され、また案内スリーブ15の外
端部は盲蓋18によって閉鉛される。−万、サクション
ピストン8には案内ロッド19が一定され、この案内ロ
ッド19は軸受17内に案内ロッド19の1lII醐方
向に移動可能に挿入される。このようにサクションピス
トン8は軸受17會介してケーシング14により交付さ
れるのでサクションピストン8はその軸線方向に清らか
に移動することができる。ケーシング14の円部はサク
ションピストン8によって負圧室20と大気圧室21と
に分割され、負圧室20内にはサクションピストン8を
常時ベンチュリ部13に向けて押圧する圧縮はね22が
挿入される。負圧室20はサクションピストン8に形成
されたサクション孔23全介してベンチエリ部13に連
結され、大久圧室21は気化器ハウジング6に形成され
た空気孔24を介してサクションピストン8上訛の吸気
通路7内に連結される〇
一万、気化器ハウジング6内にはニードル9が侵入可能
なようにニードル9の軸線方向に延びる燃料通路25が
形成され、この燃料通路25内には計量ジェット26が
設けられる0計財ジエツト26上流の燃料通路25は下
方に延びる燃料ノ(イブ27を介してフロート室12に
連結され、フロート室12内の燃料はこの燃料パイプ2
7を介して燃′++通路25内に送り込まれるO史に、
スペーサ10には燃料洞1@25と共軸的に配置された
中窒円筒状のノズル28が固定される。このノズル28
はスペーサ10の内壁面からペンテエリ部13V′3に
笑出し、しかもノズル28の先端部の上半分は下半分か
ら更にサクシ3ンピストン8に向けて突出している。ニ
ードル9はノズル28および計量ジェット26内t−貫
通して延び、燃料はニードル9と計量ジェット26間に
形成される環状間隙によりdtMされた後にノズル28
から吸気通W!17内に供給される。Referring to FIG. 2, 1 indicates an intake manifold, 2 indicates an f'Jf venturi carburetor mounted on the intake manifold 1, 3 indicates an exhaust manifold, and 4 indicates a catalytic converter. A three-way monolithic catalyst 5 is disposed inside the OT51 variable venturi type carburetor 2, which includes a carburetor) 1 housing 6, an intake passage 7 extending vertically within the intake passage 6, and an intake passage 7 extending vertically within the intake passage 7. A suction piston 8 that moves laterally, a needle 9 attached to the distal end surface of the suction piston 8, a spacer 10 fixed on the inner wall surface of the intake passage 7 facing the distal end surface vc of the suction piston 3, and a suction piston 8. A throttle valve 11 provided in the intake passage 7 downstream of the piston 8 and a float chamber 12
A bench area 13 is formed between the tip surface of the suction piston 8 and the spacer 10.A casing 14 with a cylindrical inner wall is attached to the carburetor housing 6. A guide sleeve 15 is mounted inside the housing 14 in the axial direction of the casing 14 . There are many balls 16 inside the guide sleeve 15! The bearing 17 which has been fitted is inserted, and the outer end of the guide sleeve 15 is closed by a blind cover 18. - A guide rod 19 is fixed to the suction piston 8, and the guide rod 19 is inserted into the bearing 17 so as to be movable in the direction of the guide rod 19. Since the suction piston 8 is thus supported by the casing 14 via the bearing 17, the suction piston 8 can move smoothly in its axial direction. The circular portion of the casing 14 is divided into a negative pressure chamber 20 and an atmospheric pressure chamber 21 by the suction piston 8, and a compression spring 22 is inserted into the negative pressure chamber 20 to constantly press the suction piston 8 toward the venturi portion 13. be done. The negative pressure chamber 20 is connected to the bench area 13 through a suction hole 23 formed in the suction piston 8, and the large pressure chamber 21 is connected to the suction piston 8 through an air hole 24 formed in the carburetor housing 6. A fuel passage 25 is formed in the carburetor housing 6 and extends in the axial direction of the needle 9 so that the needle 9 can enter therein. A fuel passage 25 upstream of the fuel jet 26 in which the jet 26 is provided is connected to the float chamber 12 via a fuel pipe 27 extending downward, and the fuel in the float chamber 12 is transferred to the fuel pipe 2.
7 into the combustion passage 25,
A cylindrical nozzle 28 is fixed to the spacer 10 and is arranged coaxially with the fuel cavity 1@25. This nozzle 28
protrudes from the inner wall surface of the spacer 10 to the pentagonal portion 13V'3, and the upper half of the tip of the nozzle 28 further protrudes from the lower half toward the piston 8. The needle 9 extends through the nozzle 28 and the metering jet 26, and the fuel passes through the nozzle 28 after being dtM by the annular gap formed between the needle 9 and the metering jet 26.
From the intake vent W! 17.
第2図に示されるようにスペーサ10のよ端部には吸気
通路7内に向けて水平方向に突出する隆起壁29が形成
され、この隆起壁29とサクションピストン8の先端部
間において流量制御が行なわれる。機関運転が開始され
ると空気は吸気通路717’3を下方に向けて流れる0
このとき孕気流はサクションピストン8と隆起壁29間
に2いて絞られるためにベンチュリ813には負圧が発
生し、この負圧がサクション孔23を介して負圧室20
内に導びかれる。サクションピストン8は負圧室20と
大気圧室21との圧力差が圧縮はね22のばね力により
定まるほぼ一定圧となるように、即ちペンチーリ都13
内の負圧がほぼ一定となるように移動する0
第3図および第4図を参照すると、ニードル9の上流側
に位置するサクションピストン先端面部分はその全体が
ニードル9の取付ya面30からニードル9の先端部に
向けて隆起しており、このサクションピストン先端面部
分上には吸気通路7の軸線方向に延びる凹m31が形成
される。この凹婢31の上流11!Q端@31aはU字
形断面形状をなすと共にニードル取付j!m1fii3
0よりもニードル9の先端部に近い側に位置しており、
残少の!!J溝惟分31bは上流側端部31aからニー
ドル取付端面30まで#よぼまっすぐにρ也びる。史に
、ニードル9よりも上a 110に位置するサクション
ピストン先端面部分の断面形状は凹溝31からベンチエ
リ部13に向けて拡開するV字形をなしており、従って
このサクションピストン先端面部分は凹溝31に向けて
傾斜する一対の傾斜壁面11332a。As shown in FIG. 2, a raised wall 29 that projects horizontally into the intake passage 7 is formed at the end of the spacer 10, and the flow rate is controlled between this raised wall 29 and the tip of the suction piston 8. will be carried out. When engine operation starts, air flows downward through the intake passage 717'3.
At this time, the pregnant airflow is narrowed between the suction piston 8 and the raised wall 29, so negative pressure is generated in the venturi 813, and this negative pressure flows through the suction hole 23 into the negative pressure chamber 20.
guided within. The suction piston 8 is arranged so that the pressure difference between the negative pressure chamber 20 and the atmospheric pressure chamber 21 becomes a substantially constant pressure determined by the spring force of the compression spring 22.
Referring to FIGS. 3 and 4, the tip surface of the suction piston located upstream of the needle 9 is entirely separated from the mounting surface 30 of the needle 9. A concave m31 is formed on the distal end surface of the suction piston, which protrudes toward the distal end of the needle 9, and extends in the axial direction of the intake passage 7. Upstream 11 of this cave 31! The Q end @31a has a U-shaped cross section and is equipped with a needle! m1fii3
It is located closer to the tip of the needle 9 than 0,
Only a few left! ! The J groove portion 31b extends approximately straight from the upstream end 31a to the needle attachment end surface 30. Historically, the cross-sectional shape of the suction piston tip surface located above the needle 9 a 110 is V-shaped, expanding from the concave groove 31 toward the bench area 13. Therefore, this suction piston tip surface portion is A pair of inclined wall surfaces 11332a that are inclined toward the groove 31.
32bをMする。M 32b.
第3図かられかるように吸入空気量が少ないときには隆
起壁29、傾斜壁部分32 a T 32 b#および
凹酵上流側端部31aによって11ぼ二等辺三角形状の
吸入空気制御絞り部Kが形成される。As can be seen from FIG. 3, when the amount of intake air is small, the raised wall 29, the inclined wall portion 32a T 32 b#, and the concave upstream end 31a form an isosceles triangular intake air control constriction part K. It is formed.
このように吸入空気制御絞り部に’に形成することによ
ってサクションピストン8のリフトtttが吸入9気制
御絞98にの開口面相に北向するようになジ、従ってサ
クションピストン8のり7ト良は吸入苧気硬のノ胃大に
応じて滑らかに増大するようになる。更に、ザクジョン
ピストン8は軸受17によって支持されているので吸入
望気蚕の変化に対して応答性よく移動し、斯くしてサク
ションピストン8は吸入空気猜が増大したときに吸入望
気量の増大に応答性よくかつ滑らかに移動する。その結
果、力日蓮運転時のように吸入窒気量が急激に変化する
場合であってもサクションピストン8のリフトが吸入を
気量のi・4大に比例して増大するためにノズル28か
ら供f@をれる燃料の市は吸入苧気簀に常時比例するこ
とになる。更に、渠3図かられかるように吸入空気貴が
少ないときには吸入精気が吸り1通路7の中央部を流通
せしめられ、その結果ノズル28から供給された燃料は
吸入伊気流と共に即座にイRセ関シリンダ内に供給され
るので吸入望気量が少ないときであってもノズル28か
ら供給された燃料は叩ノ平に機関シリンダ内に供給され
る。従って、加速運転時のように吸入苧気量が急激に請
人しても上述したようにノズル28から供給される燃料
の1tが吸入望気准に比1タリし、しかもノズル28か
ら供給された燃料′i:)新1ノ座に機関シリンダ内に
供給されるので潮間シリンダ内に供給される混合気の空
燃比は吸入を気7i−が急+lJkに変化してもほぼ一
定に維持される。また、サクションピストン8はl1l
l受17によりて支持されているので機関温度がサクシ
ョンピストン8の移動にbeを与えることが1<、斯く
してザクジョンピストン8け機関温度とは無関係に強入
望気破の変化に応答性よく移動することができる。斯く
して、第2図に示す可変ベンチュリ型気化器2を用いる
と機関温度おまひ機関運転状、態にかかわらずに機関シ
リンダ内に供給される混合気の空燃比をほぼ一定値、例
えばほぼ理論空燃比に維持することができる。By forming the intake air control throttle in this way, the lift ttt of the suction piston 8 is directed north toward the opening surface of the intake air control throttle 98. It will increase smoothly according to the size of the stomach. Furthermore, since the suction piston 8 is supported by a bearing 17, it moves with good response to changes in the desired intake air, and thus the suction piston 8 changes the desired intake air amount when the intake air quantity increases. Moves smoothly and responsively to increases. As a result, even when the amount of suction nitrogen changes rapidly, such as during power supply operation, the lift of the suction piston 8 increases the amount of suction from the nozzle 28 in proportion to the amount of air. The amount of fuel supplied will always be proportional to the amount of suction. Furthermore, as can be seen from Fig. 3, when the intake air flow is low, the intake spirit is sucked and circulated through the center of the first passage 7, and as a result, the fuel supplied from the nozzle 28 is immediately irradiated along with the intake air flow. Since the fuel is supplied into the engine cylinder, even when the desired intake air amount is small, the fuel supplied from the nozzle 28 is uniformly supplied into the engine cylinder. Therefore, even if the amount of intake air suddenly increases as during acceleration, the 1 ton of fuel supplied from the nozzle 28 is 1 ton compared to the desired intake air, as described above, and the amount of fuel supplied from the nozzle 28 is Since the fuel 'i:) is supplied into the engine cylinder at the new position, the air-fuel ratio of the air-fuel mixture supplied into the intertidal cylinder remains almost constant even if the intake air suddenly changes to +lJk. Ru. Also, the suction piston 8 is l1l
Since the engine temperature is supported by the suction piston 17, the suction piston 8 responds to changes in forced air pressure independently of the engine temperature. Can move easily. In this way, when the variable venturi type carburetor 2 shown in FIG. 2 is used, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders can be kept at a nearly constant value, for example, regardless of the engine operating condition or the engine temperature. It is possible to maintain the stoichiometric air-fuel ratio.
第2図を8月すると、d十皺ジヱノト26の九■1用に
は環状仝気室33が形成され、この環状貨2室33に通
ずる偶数個のエアブリード孔34がij’iziジェッ
ト26の内周壁血止に形成される。猿状苧気罠33はエ
アブリード通路342よびエアブリ−ドジエソト35を
介して隆起壁29上流の吸気通路7日に連結きれ、この
エアブリード通路34同にはmlの電イ[6弁40によ
って開1コ面誼がfl制御式れる弁ボート36が形成さ
れる0この第1電磁弁40は弁ボート36乞開1ちIt
liり慴1する弁体41と、弁体41に連結された可動
ブランジーr42と、可動ブランジャ42全吸引するた
めのソレノイド43とを具1jijL、ソレノイド43
はソレノイド、鳴動回路70にづ長続される。ソレノイ
ド43が消勢されたときは弁体41によって弁ボート3
6が閉鎖され、ソレノイド43が句勢されたときは弁体
41が弁ボート36を全開する0工アブリード通路34
、エアブリードジエソト35および弁ボート36の寸法
は弁ボート36がI¥I鎖されたときに機関シリンダ内
に供給烙れる混合気が14.0程度の空燃比の’I(l
混合気となり、弁ボート36が全開せしめられたときに
機関シリンダ内に供給される混合気が416博混合気と
なるように設定される〇−万、機関何気マニホルド3に
は2次空気の供給ii+ll 1i11I忙する2次借
気供給1ii111卸升50がI!21=Jけられ、吸
気マニホルド1には2次空気811:′ti制碑うP2
Oの作動を制御する第2の【41:両弁51が取付けら
れる。2次空気供鮒制御弁50(まダイアフラム52に
よって隔離された負圧室53と大気圧室54全哨し、負
IL室53内にはダイアクラム押圧用圧縮ばね55が挿
入される。人気H−,室5室内4内ダイアフラム52に
向けて突出する中壁′け5Gが固定配置され、この中空
管56の先端部にはダイアフラム52に固M’−Aれた
弁体58によって開閉制御される弁ボート57が形成さ
れる。この弁ボート57は弁ボート57から法気マニホ
ルド3同に向けてのみ流通J能な逆止弁592よび2次
空気供給孔60を介して俳気マニホルド31りぐこ]1
1当結される。従って弁ボート57あ・よび2次伊気供
給孔60が2次空気供給通路全形成する0一方、第2峨
磁弁51は弁室62と、弁室62内に配置□□−された
弁体63と、ヅP室62内に1南口しかつ1戊気マニホ
ルド11りに連結され7ヒ負圧ボート64と、弁室62
内に開口しかつ大気に連1[1Nする人気ボート65と
、弁体63に連結されたrEf動プランジャ66と、可
動プランジャ66f:吸引するためのソレノイド67と
を具備し、負圧ボート64および大気ボート65は弁体
63vこよって開閉制御される。弁室62は導管68を
介して2次空気供給制御弁50の負圧室53に連結され
、ソレノイド67はソレノイド駆動回路70に接続され
る。ソレノイド駆動回路70は第5図(a)K示すよう
なlHzから2Hzの周波数の矩形パルスを発生するパ
ルス発生器71と、パルス発生器71の出力音−万の人
力としインバータ72の出力を他方の人力とするアンド
ゲート73と、アンドゲート73の出力端子に接靭〕さ
れた第1の電力増巾器74と、第2の電力増巾器75と
により構成される0第1電力増巾器74の出力端子はソ
レノイド67に接続され、第2′酎力増巾器75の出力
端子はソレノイド43に接続される。また、インバータ
72の入力端子は負圧スイッチ80に接続される0負圧
スイツチ80はダイアフラム81によって隔離された負
圧室82と大気圧室83と全具備し、大気圧室83内に
はインバータ72の入力端子に接続された固定接点84
と、ダイアフラム81に固着されかつ電源(図示せず)
に接続された可動接点85が配置される。−万、p川岸
82は負圧遅延弁s a>ヨヒ負圧導管87を介して負
圧ボート88に連結される。負圧遅延弁86は吸気通路
7から負圧室82内に向けてのみ流通aJ能な逆止弁8
9と絞り90とを具備し、これら逆止弁89および絞シ
90は並列配置される。また負圧ボート88は第2図に
示されるようにスロットル弁11がアイドリンク位置に
あるときにスロットル弁11上流の吸気通路7内に開口
し、スロットル弁11が開弁するとスロットル弁11下
流の吸気通路7内に開口する。2, an annular air chamber 33 is formed for the 9th part of the d tenth jet 26, and an even number of air bleed holes 34 communicating with this annular part 2 chamber 33 are connected to the ij'izi jet 26. Formed on the inner peripheral wall of the hemostasis. The monkey-like moth trap 33 is connected to the intake passage 7 upstream of the raised wall 29 via an air bleed passage 342 and an air bleed pipe 35, and this air bleed passage 34 is connected to The first solenoid valve 40 is formed with a valve boat 36 that can be controlled by fl.
A valve body 41 that absorbs liquid, a movable plunger R42 connected to the valve body 41, and a solenoid 43 for completely suctioning the movable plunger 42 are assembled.
is continued for a long time by the solenoid and the ringing circuit 70. When the solenoid 43 is deenergized, the valve body 41 closes the valve boat 3.
6 is closed and the solenoid 43 is energized, the valve body 41 fully opens the valve boat 36.
, the dimensions of the air bleed engine 35 and the valve boat 36 are such that when the valve boat 36 is connected, the air-fuel mixture supplied into the engine cylinder has an air-fuel ratio of about 14.0.
The air-fuel mixture is set so that when the valve boat 36 is fully opened, the air-fuel mixture supplied into the engine cylinder becomes a 416 air-fuel mixture. Supply ii+ll 1i11I busy secondary debt supply 1ii111 wholesale 50 is I! 21 = J cut, secondary air 811: 'ti control P2 in intake manifold 1
A second [41: both valves 51 that control the operation of the valve 51] are attached. A secondary air supply control valve 50 (also has a negative pressure chamber 53 and an atmospheric pressure chamber 54 separated by a diaphragm 52), and a compression spring 55 for pressing a diaphragm is inserted into the negative IL chamber 53.Popular H- , an inner wall 5G protruding toward the inner diaphragm 52 of the chamber 5 is fixedly disposed, and the opening and closing of the hollow tube 56 is controlled by a valve body 58 fixed to the diaphragm 52. A valve boat 57 is formed.This valve boat 57 is connected to the exhaust manifold 31 via a check valve 592 and a secondary air supply hole 60 that allow flow only from the valve boat 57 to the exhaust manifold 3. Guko] 1
1 hit is concluded. Therefore, the valve boat 57A and the secondary air supply hole 60 form the entire secondary air supply passage.On the other hand, the second intensifier valve 51 has a valve chamber 62 and a valve located within the valve chamber 62. A negative pressure boat 64 having a south entrance into the P chamber 62 and connected to the exhaust manifold 11, and a valve chamber 62.
A popular boat 65 that opens inward and communicates with the atmosphere, an rEf moving plunger 66 connected to a valve body 63, a movable plunger 66f: a solenoid 67 for suction, and a negative pressure boat 64 and The opening and closing of the atmospheric boat 65 is controlled by the valve body 63v. The valve chamber 62 is connected to the negative pressure chamber 53 of the secondary air supply control valve 50 via a conduit 68, and the solenoid 67 is connected to a solenoid drive circuit 70. The solenoid drive circuit 70 includes a pulse generator 71 that generates a rectangular pulse with a frequency of 1Hz to 2Hz as shown in FIG. A first power amplification device comprising an AND gate 73 that is manually powered, a first power amplification device 74 connected to the output terminal of the AND gate 73, and a second power amplification device 75. The output terminal of the device 74 is connected to the solenoid 67, and the output terminal of the second ′-th power amplifier 75 is connected to the solenoid 43. The input terminal of the inverter 72 is connected to a negative pressure switch 80. The negative pressure switch 80 is completely equipped with a negative pressure chamber 82 and an atmospheric pressure chamber 83 separated by a diaphragm 81. Fixed contact 84 connected to input terminal 72
and a power source (not shown) fixed to the diaphragm 81.
A movable contact 85 connected to is arranged. The riverbank 82 is connected to a negative pressure boat 88 via a negative pressure delay valve sa>yohi negative pressure conduit 87. The negative pressure delay valve 86 is a check valve 8 that can flow only from the intake passage 7 into the negative pressure chamber 82.
The check valve 89 and the throttle valve 90 are arranged in parallel. Further, as shown in FIG. 2, the negative pressure boat 88 opens into the intake passage 7 upstream of the throttle valve 11 when the throttle valve 11 is in the idle link position, and when the throttle valve 11 opens, the negative pressure boat 88 opens into the intake passage 7 upstream of the throttle valve 11 when the throttle valve 11 is in the idle link position. It opens into the intake passage 7.
第2図に示されるようにスロットル弁11がアイドリン
ク位置にあるときには負圧スイッチ8゜の負圧室82内
はほぼ大気圧となっており、従ってこのときダイアフラ
ム81が右方に移l1ill しているために可動接点
85と固定接点84は非接触状態にある。斯くしてこの
ときツレ。ノイド43が消勢されるために弁体41が弁
ボート36を1−4°肩し、従って機関シリンダ内には
望燃比゛が14.0程反の濃混合2が供給される。−刀
、このときインバータ72の出力′市川が高レベルとな
るのでアンドゲート73の出力′市川はパルス発生器7
1がパルスを発生する毎に高レベルとなり、斯くしてソ
レノイド67はパルス発生器67の出力信号によって駆
動制御される。次いで加速すべくスロットル弁11が開
弁すると負圧ボート88には大きな負圧が加わるが、逆
止弁89が閉鎖状態に作付されるために負圧室82内の
負圧は小さい状態に維持され、斯くして可動接点85は
固定接点84と非接触状態に維持はれる。次いで加速運
転開始後暫らくすると負圧室82内の負圧が大きくなる
ためにダイアフラム81が左方に移動しぐその結果fj
J動接点85と固定接点84が接触する。このときソレ
ノイド43が付勢されるために弁体41が弁ポー)36
ffi全開し、斯くして機関シリンダ内には稀薄混合気
が供給される。更にこのときインバータ72の出力′電
圧が低レベルとなるためにアンドゲート73の出力重圧
は低レベルに維持され、斯くしてソレノイド67が消勢
され続ける。このように加速運転開始後暫らくすると、
即ち定常運転状態になるとソレノイド43が付勢され、
ソレノイド67が消勢されることがわかる。As shown in FIG. 2, when the throttle valve 11 is in the idle link position, the inside of the negative pressure chamber 82 of the negative pressure switch 8° is at almost atmospheric pressure, and therefore the diaphragm 81 moves to the right at this time. Therefore, the movable contact 85 and the fixed contact 84 are in a non-contact state. That's how it happened at this time. Since the noid 43 is deenergized, the valve body 41 shoulders the valve boat 36 by 1-4 degrees, and therefore, the rich mixture 2 with a desirable fuel ratio of about 14.0 is supplied into the engine cylinder. At this time, the output of the inverter 72 'Ichikawa' becomes a high level, so the output of the AND gate 73 'Ichikawa' becomes the pulse generator 7.
1 becomes a high level every time a pulse is generated, and thus the solenoid 67 is driven and controlled by the output signal of the pulse generator 67. Next, when the throttle valve 11 is opened to accelerate, a large negative pressure is applied to the negative pressure boat 88, but since the check valve 89 is closed, the negative pressure in the negative pressure chamber 82 is maintained at a small state. Thus, the movable contact 85 is maintained out of contact with the fixed contact 84. Then, some time after the acceleration operation starts, the negative pressure in the negative pressure chamber 82 becomes large, so the diaphragm 81 moves to the left, and as a result, fj
The J moving contact 85 and the fixed contact 84 come into contact. At this time, since the solenoid 43 is energized, the valve body 41
ffi is fully opened, and thus a lean air-fuel mixture is supplied into the engine cylinder. Furthermore, at this time, since the output voltage of the inverter 72 is at a low level, the output pressure of the AND gate 73 is maintained at a low level, and thus the solenoid 67 continues to be deenergized. In this way, after a while after starting acceleration operation,
That is, when the steady operating state is reached, the solenoid 43 is energized,
It can be seen that solenoid 67 is deenergized.
上述したようにアイドリンク運転時あ・よひノ111速
運転時には機関シリンダ内に濃混合気が供給され、ソレ
ノイド67がパルス発生b71の出力信号によって駆動
制御される。弁体63は西常弁ボート64全閉鎖すると
共に大気ボート65を開口しておシ、パルス発生器71
がパルスを発生するとソレノイド67が付勢はれてブP
体64が右方に移動し、それによって弁体63が負圧ボ
ート64r開口すると共に大気ボート65全fMj屈す
る。従って負圧ボート64変よび大気ボート65は11
(zがら2 Hzの周波数でもって開閉動作が繰返され
、斯くして2次空気1よ(給制御弁50の月圧ち糧53
にはl t(zから2 Hzの周波数でもって負圧、又
は大気圧が交互に専びかれる0負圧室53内に負圧が加
わると弁体58がシfポー) 57 f fJl1口し
、このとき排気脈動によシ()[気マニホルド3同に発
生する負圧によって夕気が2次を気供給孔60から排気
マニホルド3内に吸入される。従って上述のように負圧
苗53内が1 r(zから2H7の周波数でもって又互
に大気圧、又は装用になると弁体58が弁ボート57
f 1 )1zから2klzの周波数でもって開口し、
斯くして2次空気が排気マニホルド3内にI Hzから
2 Hzの周波数でもって間欠的に供給されることにな
る02次窒空気Jシr気マニホルド3内に間欠的に供給
されると排気マニホルド3内の排気ガス中のC段素?4
′!度が周期的に変動し、斯くして空燃比が変動するこ
とになる。なお、ここで空燃比という用語は通常用いら
れる意味とは多少違った意味で使用されてかり、この空
燃比は三元触媒コンバータ4土流の作動ガス通路内に供
給された全空気B;((+孜人仝気と2次望気の和)と
全・然科量との比を39゜三元触媒5は排気ガス中に存
在する過剰なi′に累に対して前述したような葭粱保持
機能を弔しておジ、この7局判酸素が吸気系に供給され
た吸A孕気によるものか、又は排気系に供給された2次
空気によるものかは関係ない。従って排気マニホルド3
内に供給される2次苧気の川音変動させることによって
空燃比全周期的に変動芒せた場合にこのを燃比の平均値
が絹1(b)図のウィンドウW。内に維持されれば筒い
浄化効率金・得ることができる。第2図に示す実施世1
において弁ボート57および2次望気供給孔60の寸法
はダイアフラム52の弁体58が弁ボート57の開閉全
繰返し行なったときに空燃比A/Fの平均価力叩↓5(
b)図に示されるようにほぼ埋−空燃比となり、空燃比
の変動中が理論空燃比に文1してほぼ±0.2から±1
.0となるように定められる。このように弁体58の単
純な開閉動作の繰返しによって空燃比A/Fの平均値を
はぼ理論空燃比に維持できるのは気化器2において形成
される混合気の空燃比が一定に維持されているからであ
る。従って機関の運転状態にかかわらずに空燃比は11
(Zから21(zの周波数でもってほぼ理論空燃比に苅
して±0.2から±1.0の範囲で変動せしめられ、し
かもこの空燃比の平均1@は第1(b)図のウィンドウ
1V0内に維持式れるので三元モノリス触媒5の酸素保
愕機能を利用して高い浄化効率を得ることができる〇−
万、定常運転時には=+1述したようにソレノイド43
が付勢されるために弁ボート36が全開せしめられ、斯
くしてこのときには(α関シリンダ内に稀薄混合気が供
給される0このように本発明では車両走行時に′154
繁に行なわれる定常虐行時に稀薄混合気が供給されるの
で燃料消費率を向上することができる。ところがこのよ
うに稀薄混合気が供給されている場合には未燃HC,C
oの排出量が少なく、従ってこのようなときに2次空気
を供給すると未燃uc、coの酸化反応による発熱作用
が期待できず、むしろ2次免気による冷却作用の方が大
きくなるためにm:媒5の温度が活性化温度以下に低下
してしまうという問題を生ずる0そこで本発明では定常
運転時にソレノイド67を消勢して2次朶気供給制御弁
50の弁ポート57を閉鎖状態に維持し、それによって
2次孕気の供給を停止することにより触媒5の温度が低
下するのを阻止するようにしているO
このように本発明によれば筒価なj寂素濃度検出器およ
び高価なを燃比制御用の′電子iff!I御ユニットを
用いることなく、価格の低い気化器舶1」いて卵「気ガ
スを良好に浄化できるので排気カスυ化装置位の製造コ
スト全大巾に低減することができる0史に、機関シリン
ダ内に供給される混合気の空燃比は一定に維持されるの
で燃焼変動が生ずることもなく、斯くして滑らかな機関
の運転をイ准保することができる。また、定常走行時に
は稀薄混合気を供給することによって燃料消費率全向上
することができ、史にこのときには2次空気(v供給を
停止することによって三元触媒の温度75≦活性イし温
度、以下に低下するのを阻止することができる。As described above, during idle link operation and 111 speed operation, a rich air-fuel mixture is supplied into the engine cylinder, and the solenoid 67 is driven and controlled by the output signal of the pulse generator b71. The valve body 63 completely closes the western valve boat 64 and opens the atmospheric boat 65, and the pulse generator 71
When P generates a pulse, the solenoid 67 is energized and P
The body 64 moves to the right, thereby causing the valve body 63 to open the negative pressure boat 64r and bend the atmospheric boat 65 completely fMj. Therefore, the negative pressure boat 64 and the atmospheric boat 65 are 11
(The opening and closing operations are repeated at a frequency of 2 Hz, and the secondary air 1 (monthly pressure supply 53 of the supply control valve 50
(When negative pressure is applied to the negative pressure chamber 53, which is alternately occupied by negative pressure or atmospheric pressure at a frequency from z to 2 Hz, the valve body 58 is turned off.) 57 f At this time, secondary air is sucked into the exhaust manifold 3 from the air supply hole 60 due to the negative pressure generated in the exhaust manifold 3 due to the exhaust pulsation. Therefore, as mentioned above, when the inside of the negative pressure seedling 53 reaches atmospheric pressure at a frequency of 1 r (z to 2H7) or when the valve body 58 is used, the valve body 58
f 1 ) opens with a frequency of 1z to 2klz,
In this way, secondary air is intermittently supplied into the exhaust manifold 3 at a frequency of I Hz to 2 Hz.When the secondary air is intermittently supplied into the air manifold 3, the exhaust C-stage elements in the exhaust gas in manifold 3? 4
′! The temperature will fluctuate periodically, thus causing the air-fuel ratio to fluctuate. Note that the term air-fuel ratio is used here in a slightly different meaning from its usual meaning, and this air-fuel ratio is defined as the total air B supplied into the working gas passage of the three-way catalytic converter 4; The ratio between (+the sum of the energy and the secondary energy) and the total amount of energy is 39°. It does not matter whether this 7-station oxygen is due to the intake air supplied to the intake system or the secondary air supplied to the exhaust system. Manifold 3
If the air-fuel ratio is made to fluctuate throughout the entire period by varying the flow of secondary air supplied within the window W, the average value of the fuel ratio will be the window W in Figure 1(b). If maintained within the range, the tube purification efficiency can be obtained. The implementation world 1 shown in Figure 2
The dimensions of the valve boat 57 and the secondary air supply hole 60 are such that when the valve body 58 of the diaphragm 52 opens and closes the valve boat 57 all the time, the average value of the air-fuel ratio A/F is ↓ 5 (
b) As shown in the figure, the air-fuel ratio is almost buried, and the fluctuation of the air-fuel ratio is approximately ±0.2 to ±1 compared to the stoichiometric air-fuel ratio.
.. It is set to be 0. The reason why the average value of the air-fuel ratio A/F can be maintained at almost the stoichiometric air-fuel ratio by repeating the simple opening and closing operations of the valve body 58 is because the air-fuel ratio of the air-fuel mixture formed in the carburetor 2 is maintained constant. This is because Therefore, the air-fuel ratio is 11 regardless of the engine operating condition.
(From Z to 21 (at the frequency of z, the air-fuel ratio is approximately the same as the stoichiometric air-fuel ratio, and is varied in the range of ±0.2 to ±1.0, and the average of this air-fuel ratio is 1@ as shown in Figure 1(b). Since it is maintained within the window 1V0, high purification efficiency can be obtained by using the oxygen retention function of the three-way monolith catalyst 5.
10,000, during steady operation = +1 As mentioned above, solenoid 43
Since the valve boat 36 is energized, the valve boat 36 is fully opened, and at this time (a lean air-fuel mixture is supplied into the α cylinder).
Since a lean air-fuel mixture is supplied during steady-state abuse, which is often performed, the fuel consumption rate can be improved. However, when a lean mixture is supplied like this, unburned HC, C
The amount of CO emitted is small, and therefore, if secondary air is supplied in such a case, the exothermic effect due to the oxidation reaction of unburned UC and CO cannot be expected, but rather the cooling effect due to secondary air relief becomes greater. m: This causes a problem that the temperature of the medium 5 falls below the activation temperature. Therefore, in the present invention, during steady operation, the solenoid 67 is deenergized and the valve port 57 of the secondary steam supply control valve 50 is closed. Thus, according to the present invention, the temperature of the catalyst 5 is prevented from decreasing by stopping the supply of secondary air. and an expensive 'electronic IF! for fuel ratio control! Since the low-cost carburetor can effectively purify the gas without using an I control unit, the overall manufacturing cost of the exhaust sludge converter can be greatly reduced. Since the air-fuel ratio of the air-fuel mixture supplied into the cylinder is maintained constant, combustion fluctuations do not occur, thus ensuring smooth engine operation.Also, during steady driving, the air-fuel ratio is kept constant. By supplying the three-way catalyst, the fuel consumption rate can be completely improved, and in this case, by stopping the supply of secondary air (V), the temperature of the three-way catalyst is 75 ≦ active temperature, and the temperature is prevented from decreasing below. be able to.
第1図は排気カス浄化効率を示す1%1図1、第2図は
機関吸排気系の側面断面図、第3し1は第2図の矢印■
に沿ってみた平面図、第4図はサクシワンピストンの側
面断面図、第5図は空燃比のに動を示す線図である0
200.気化器、 8・・・サクシコンピストン
)9・・・ニードル、 25・・・燃′IP+通路
、28・・・ノズル、 50・・・2次望気供給制
御弁、51・・・電磁弁、 60・・・2次空気供給
孔、80・・・負圧スイッチ、86・・・負圧遅延弁。
特許出願人
トヨタ自動車株式会社
特許出願代理人
プP理士 宵木 朗
弁理士 西紹和之
弁理士 中山恭介
弁理士 山 口 昭 之Figure 1 shows the exhaust gas purification efficiency of 1%1. Figure 2 is a side sectional view of the engine intake and exhaust system.
4 is a side sectional view of the SAXI-ONE piston, and FIG. 5 is a diagram showing the air-fuel ratio movement. Carburetor, 8... Succincone piston) 9... Needle, 25... Fuel IP+ passage, 28... Nozzle, 50... Secondary desired air supply control valve, 51... Solenoid valve , 60... Secondary air supply hole, 80... Negative pressure switch, 86... Negative pressure delay valve. Patent applicant Toyota Motor Corporation Patent application agent PuP Attorney Akira Yoiki Patent attorney Kazuyuki Nishi Patent attorney Kyosuke Nakayama Patent attorney Akira Yamaguchi
Claims (1)
択的に供給可能な燃料供給装置を具備すると共に)炭量
排気通路に三元触媒コンバータを取付けた内燃機関にお
いて1.珈関の定常運転状態を検出可能な定常運転検出
器を上記燃料供給装置に連結して定常運転時には稀薄混
合気を機関シリンダ内に供給すると共に定常運転時以外
のときには虐混合気全機関シリンダ内に供給し、上記三
元融媒コンバータ上流の併気通@同に2次を気供給通路
を連結して該2次空気供給油路内に上記定常運転検出器
に応動する′電磁弁を設け、定常運転時には該電磁弁に
より2次空気供給通路を閉鎖すると共に定常運転時以外
のときには該屯臓升によシ22次空気供給路をIよぼI
H?、から2 Hzの一定周波数で開閉せしめ、該電磁
弁が2?′に便気供給曲路を周期的に開1,1−] し
た際に空燃比が平均値に対しては、ぼ十0.2から±1
.0の間で周期的に変動すると共に該空燃比の平均値が
ほぼ理論空燃比となるように上記2次空気供給通路の流
路面積勿定のた円虐機関の排気カス浄化装置。In an internal combustion engine equipped with a fuel supply device capable of selectively supplying a rich mixture or a lean mixture within the engine cylinder, and a three-way catalytic converter installed in the coal exhaust passage.1. A steady-state operation detector capable of detecting the steady-state operating state of the engine is connected to the fuel supply system, and a lean mixture is supplied to the engine cylinders during steady operation, and a lean mixture is supplied to all engine cylinders during non-steady operation. A solenoid valve responsive to the steady operation detector is provided in the secondary air supply oil passage by connecting the secondary air supply passage to the secondary air supply passage upstream of the three-way fusion converter. During steady operation, the secondary air supply passage is closed by the solenoid valve, and when other than steady operation, the secondary air supply passage is closed by the tunnel.
H? , the solenoid valve is opened and closed at a constant frequency of 2 Hz. When the fecal air supply curve is periodically opened at 1, 1-], the air-fuel ratio varies from about 0.2 to ±1 from the average value.
.. The exhaust scum purifying device for an exhaust engine is characterized in that the passage area of the secondary air supply passage is constant so that the air-fuel ratio periodically fluctuates between zero and the average value of the air-fuel ratio becomes approximately the stoichiometric air-fuel ratio.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20925382A JPS59101528A (en) | 1982-12-01 | 1982-12-01 | Exhaust gas purging device of internal-combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20925382A JPS59101528A (en) | 1982-12-01 | 1982-12-01 | Exhaust gas purging device of internal-combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59101528A true JPS59101528A (en) | 1984-06-12 |
Family
ID=16569890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20925382A Pending JPS59101528A (en) | 1982-12-01 | 1982-12-01 | Exhaust gas purging device of internal-combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59101528A (en) |
-
1982
- 1982-12-01 JP JP20925382A patent/JPS59101528A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4289103A (en) | Altitude compensating device of an internal combustion engine | |
JPS59101528A (en) | Exhaust gas purging device of internal-combustion engine | |
US4450684A (en) | Exhaust gas cleaning system for internal combustion engine | |
JPS5934456A (en) | Exhaust gas purifier for internal combustion engine | |
JPS597723A (en) | Exhaust gas purifier of internal-combustion engine | |
JPS5910724A (en) | Exhaust emission control device for internal-combustion engine | |
JPS5996418A (en) | Exhaust gas purifying device of internal-combustion engine | |
US4250706A (en) | Apparatus for controlling the amount of secondary air fed into an internal combustion engine | |
JPS5996425A (en) | Exhaust gas purifying device of internal-combustion engine | |
JPS5934468A (en) | Exhaust gas purifier for internal combustion engine | |
JPS5996420A (en) | Exhaust gas purifying device of internal-combustion engine | |
JPS5934452A (en) | Exhaust gas purifier for internal combustion engine | |
JPS5996421A (en) | Exhaust gas purifying device of internal-combustion engine | |
JPS5996422A (en) | Exhaust gas purifying device of internal-combustion engine | |
JPS5934461A (en) | Exhaust gas purifier for internal combustion engine | |
JPS59101529A (en) | Exhaust gas purging device of internal-combustion engine | |
JPS5910725A (en) | Exhaust gas purifying device for internal-combustion engine | |
JPS5912114A (en) | Exhaust gas purifying device of internal combustion engine | |
JPS5934464A (en) | Exhaust gas purifier for internal combustion engine | |
JPS597724A (en) | Exhaust gas purifier of internal-combustion engine | |
JPS5915620A (en) | Exhaust gas purifier of internal-combustion engine | |
JPS5934466A (en) | Exhaust gas purifier for internal combustion engine | |
JPS5934460A (en) | Exhaust gas purifier for internal combustion engine | |
JPS5996424A (en) | Exhaust gas purifying device of internal-combustion engine | |
JPS5993950A (en) | Exhaust-gas purifier for internal-combustion engine |