JPS5996421A - Exhaust gas purifying device of internal-combustion engine - Google Patents

Exhaust gas purifying device of internal-combustion engine

Info

Publication number
JPS5996421A
JPS5996421A JP20449282A JP20449282A JPS5996421A JP S5996421 A JPS5996421 A JP S5996421A JP 20449282 A JP20449282 A JP 20449282A JP 20449282 A JP20449282 A JP 20449282A JP S5996421 A JPS5996421 A JP S5996421A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
negative pressure
engine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20449282A
Other languages
Japanese (ja)
Inventor
Takashi Kato
孝 加藤
Takaaki Ito
隆晟 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP20449282A priority Critical patent/JPS5996421A/en
Publication of JPS5996421A publication Critical patent/JPS5996421A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/222Control of additional air supply only, e.g. using by-passes or variable air pump drives using electric valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/227Control of additional air supply only, e.g. using by-passes or variable air pump drives using pneumatically operated valves, e.g. membrane valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To improve the purification efficiency of a ternary catalyst by closing and opening a solenoid valve for supplying secondary air to the upper stream of the ternary catalyst at the frequency of 1-2Hz, periodically varying an air-fuel ratio within the range of + or -0.2-+ or -0.1, and extending the closing time when an engine load exceeds a prescribed value. CONSTITUTION:A secondary air supplying hole 60 is provided on an exhaust manifold 3, and secondary air is supplied to the upper stream of a ternary catalyst 5 via a control valve 50 and a check valve 59. Negative pressure is introduced into the negative pressure chamber 53 of the control valve 50 via a solenoid valve 51, and this solenoid valve 51 is closed and opened by a solenoid driving circuit 70 at the frequency of 1-2Hz, allowing an air-fuel ratio to be periodically varied via the control valve 50 within the range of + or -0.2-+ or -1.0 taking a theoretical air-fuel ratio as a center. A negative pressure switch 77 is connected to the driving circuit 70, and when an engine load exceeds a prescribed value, the negative pressure in the negative pressure chamber 79 of the negative pressure switch 77 is reduced, turned off, and pulse generators 71, 72 are changed over to each other via AND gates 73, 74, allowing closing time to be extended.

Description

【発明の詳細な説明】 本発明に内燃機関の排気カス浄化装置に関する。[Detailed description of the invention] The present invention relates to an exhaust gas purification device for an internal combustion engine.

排気ガス中の有害三成分子(C,CoおよびN0xf同
時に低減することのできる触媒として、三元触媒が仰ら
れている0この三元触媒の浄化効率Rに第1(a)図に
示されるように空燃比A/Fがほぼ理論空燃比であると
きに最も高くなり、例えば80パ一セント以上の浄化効
率R’を得ることのできる空燃比領域ぼ空燃比が0.0
6程度の狭い巾である。
A three-way catalyst is said to be a catalyst that can simultaneously reduce harmful three-component molecules (C, Co, and NOxf) in exhaust gas.The purification efficiency R of this three-way catalyst is as shown in Figure 1(a). The air-fuel ratio becomes highest when the air-fuel ratio A/F is approximately the stoichiometric air-fuel ratio, and for example, the air-fuel ratio region where a purification efficiency R' of 80 percent or more can be obtained is when the air-fuel ratio is 0.0.
It has a narrow width of about 6 mm.

通常、このように80パ一セント以上の浄化効率を得る
ことのできる空燃比領域をウィンドウWと称する。従っ
て、三元触媒を用いて排気ガス中の有害三成分を同時に
低減するためKは空燃比全この狭いウィ、ドウw8に常
時にM持しヶけλばならない。このために従来の排気ガ
ス浄化装置では、空燃比が理論空燃比よりも大きいか小
さいかを判別可能な酸素濃度検出器を機関排気通路に取
付け、この酸素濃度検出器の出力信号に基いて空燃比が
ウィンドウW同の空燃比となるように制御している。し
かしながらこのような酸素#度検出器を用いた排気カス
浄化装置では高価な酸素濃度検出器および空燃比制御の
ための高価な電子制御ユニット全必要とするために排気
ガス浄化装置の製造コストが高騰するという問題がある
Usually, the air-fuel ratio region in which a purification efficiency of 80 percent or more can be obtained is called a window W. Therefore, in order to simultaneously reduce the three harmful components in the exhaust gas using a three-way catalyst, K must always maintain M at all times λ at this narrow air-fuel ratio. To this end, in conventional exhaust gas purification systems, an oxygen concentration detector that can determine whether the air-fuel ratio is greater or less than the stoichiometric air-fuel ratio is installed in the engine exhaust passage, and the output signal of the oxygen concentration detector is used to detect the air-fuel ratio. The fuel ratio is controlled to be the same air-fuel ratio as the window W. However, such an exhaust gas purification device using an oxygen concentration detector requires an expensive oxygen concentration detector and an expensive electronic control unit for air-fuel ratio control, which increases the manufacturing cost of the exhaust gas purification device. There is a problem with doing so.

ところが最近になって、SAE paper No。However, recently, SAE paper No.

760201号、或いは特公昭56−4741号公報に
記載さnているように三元触媒の機能が次第に解明され
、三元触媒が酸累憬待機能金有することが判明したので
ある。即ち、空燃比が理論空燃比に対してリーン側にあ
るときには三元触媒がNOxから酸素を奪い取ってNO
xを還元させると共にこの奪い取った酸素全保持し、空
燃比が理論空燃比よりもリッチ側になると保持した酸素
を放出してCo、HCの酸化を行なうのである。従って
空燃比を成る基準空燃比に対してリーン側とリッチ側に
交互に変動させると基準空燃比が理論空燃比からずれた
としても上述の酸素保持機能によりNOxの還元作用2
よびCO,Heの酸化作用が促進されて高い浄化効率を
得ることができる。第1図(b)は空燃比全j司阪数I
 Hz で基準空燃比に対して(3) ±1.0だけ変動させた場合の基準空燃比A/Fのウィ
ンドウWo k示している。第1(a)図および第1申
)図から全燃比を一足周波数で変動させた場合にはウィ
ンドウW。が広くなることがわかる。このことは、空燃
比全一定周期で変動させれば基準空燃比が理論空燃比か
ら多少ずnていたとしても高い浄化効率が得られること
を意味している。−万、空燃比の変動周波数を低くする
と、即ち空燃比の変動周期を長くすると三元触媒の酸素
保持機能が飽オロするために酸素保持機能に基づく酸化
還元能力が低下し、三元触媒の浄化効率が低下する。第
1(C)図はこのこと全明瞭に示している。第1(C)
図に2いて縦軸Rは浄化効率を示し、横軸Fは空燃比の
変動周波数を示す。また、空燃比の変動中を小さくする
と空燃比をリッチ側とり一ン側に交互に変動できなくな
るのでウィンドウの巾に狭くなる。従ってウィンドウの
巾を広くするにrc最適なを燃比の変動周期と変動中が
存在することがわかる。
As described in Japanese Patent Publication No. 760201 and Japanese Patent Publication No. 56-4741, the function of the three-way catalyst was gradually elucidated, and it was found that the three-way catalyst had an acid accumulation function. In other words, when the air-fuel ratio is on the lean side with respect to the stoichiometric air-fuel ratio, the three-way catalyst takes oxygen from NOx and converts it into NOx.
While reducing x, all of this stolen oxygen is retained, and when the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio, the retained oxygen is released to oxidize Co and HC. Therefore, if the air-fuel ratio is alternately varied between the lean side and the rich side with respect to the standard air-fuel ratio, even if the standard air-fuel ratio deviates from the stoichiometric air-fuel ratio, the oxygen retention function described above will reduce NOx.
In addition, the oxidation effect of CO and He is promoted, and high purification efficiency can be obtained. Figure 1 (b) shows the air-fuel ratio total
The window Wok of the reference air-fuel ratio A/F is shown when the reference air-fuel ratio is varied by (3) ±1.0 with respect to the reference air-fuel ratio in Hz. From Figures 1(a) and 1(a), window W is obtained when the total fuel ratio is varied at one frequency. It can be seen that the area becomes wider. This means that if the air-fuel ratio is varied over a constant cycle, high purification efficiency can be obtained even if the reference air-fuel ratio deviates somewhat from the stoichiometric air-fuel ratio. -If the air-fuel ratio fluctuation frequency is lowered, that is, if the air-fuel ratio fluctuation period is lengthened, the oxygen retention function of the three-way catalyst will become saturated, and the oxidation-reduction ability based on the oxygen retention function will decrease. Purification efficiency decreases. FIG. 1(C) shows this very clearly. 1st (C)
In FIG. 2, the vertical axis R shows the purification efficiency, and the horizontal axis F shows the fluctuation frequency of the air-fuel ratio. Furthermore, if the air-fuel ratio fluctuation period is made small, the air-fuel ratio cannot be varied alternately between the rich side and the rich side, so the window becomes narrower. Therefore, it can be seen that there is an optimal RC fluctuation period and a period during which the fuel ratio is varied to widen the window width.

上述のように基準空燃比に対する空燃比の変動(4) 巾2よび変動周波数を適切に選定すればウィンドウが広
くなり、従って基準空燃比が理論空燃比に対して多少変
動しても高い浄化効率全得ることができる。このことば
、基準空燃比の変動中の狭い燃料供給系を用いれば酸素
濃度検出器の出力信号によるフィードバック開側lを用
いなくても高い浄化効率全得ることができること全意味
している0無論、燃料供給系として燃料噴射弁を用いれ
ば基準空燃比の変動中を狭くすることができるが燃料噴
射装置は高価であるためIc機関の製造コストが高くな
ってし1うという問題があり、更にこのように機関シリ
ンダ内に供給される空燃比を変動せしめるとたとえ変動
中が小さくても燃焼が周期的に変動し、斯くして車両運
転性が悪化するという問題を生ずる。
As mentioned above, if the width 2 and the fluctuation frequency of the air-fuel ratio fluctuation relative to the standard air-fuel ratio (4) are appropriately selected, the window becomes wider, and therefore high purification efficiency can be achieved even if the standard air-fuel ratio fluctuates somewhat relative to the stoichiometric air-fuel ratio. You can get everything. Of course, this term means that if a narrow fuel supply system is used during fluctuations in the reference air-fuel ratio, a high purification efficiency can be obtained without using the feedback opening l based on the output signal of the oxygen concentration detector. If a fuel injection valve is used as a fuel supply system, it is possible to narrow the fluctuation period of the reference air-fuel ratio, but since the fuel injection device is expensive, there is a problem that the manufacturing cost of the Ic engine increases. If the air-fuel ratio supplied to the engine cylinders is varied in this way, combustion will fluctuate periodically even if the fluctuations are small, resulting in a problem that vehicle drivability will deteriorate.

本発明に酸素濃度検出器を用いることなく、シかも機関
シリンダ内に供給される空燃比を変動させることなく高
い排気ガス浄化効率を確保することのできる排気ガス浄
化装置を提供することKあるO 以下、添附図面を参照して不発明の詳細な説明する。
It is an object of the present invention to provide an exhaust gas purification device that can ensure high exhaust gas purification efficiency without using an oxygen concentration detector and without changing the air-fuel ratio supplied into an engine cylinder. Hereinafter, the invention will be described in detail with reference to the accompanying drawings.

第2図を参照すると、1は吸気マニホルド、2に吸気マ
ニホルド1上に取付けられた可変ベンチュリ型気化器、
3に′!lP気マニホルド、4ra、触媒コンバータを
夫々示し、触媒コンバータ4の内部にに三元モノリス触
媒5が配置される0可変ベンチユリ型気化器2に気化器
ハウジング6と、ノ1ウジング6Fl垂直万同に延びる
吸気通路7と、吸気通路7円全横万同に移動するサクシ
ョンピストン8と、サクションピストン8の先端面に増
付けられたニードル9と、サクションピストン3の先端
面に対向して吸気通w57の内壁面上に同定されたスペ
ーサ10と、サクションピストン8下流の吸気通路7内
に設けられたスロットル弁11と、フロート室12と全
具備し、サクションピストン8の先端面とスペーサ10
間にはベンチュリ部13が形成される。気化器ハウジン
グ6にに中壁円筒状のケーシング14が固定され、この
ケーシング14にばケーシング14の内部でケーシング
14のl1ll線万同に延びる案内スリーブ15が取付
けられる。案内スリーブ15同にに多数のボール16全
備えた1illl受17が挿入され、葦た案内スリーブ
15の/A塙部はげ蓋18によって閉鎖される。−万、
サクションピストン8にぼ案内ロッド19が固定され、
この案内ロッド19rl:@受17内に案内ロッド19
の軸線方向に移動可能に挿入される0このようにサクシ
ョンピストン8に軸受17を介してケーシング14によ
り支持されるのでサクションピストン8はその軸線方向
に滑らかに移動することができる0ケーシング14の内
部ぽサクションピストン8によって負圧室20と大気圧
室21とに分割され、負圧室20内にぼサクシボンピス
トン8全常時ベンチュリ@13に向けて押圧する圧縮は
ね22が挿入される0負王室20はサクションピストン
8に形成されたサクション孔23を介してベンチュリ部
13に連結され、大気圧室21に気化器ハウジング6に
形成された全気孔24に介してサクションピストン8土
流の吸気通路7173に連結される。
Referring to FIG. 2, 1 is an intake manifold, 2 is a variable venturi carburetor installed on the intake manifold 1,
To 3'! The 1P air manifold, 4RA, and catalytic converter are shown respectively, and the 3-way monolith catalyst 5 is arranged inside the catalytic converter 4, the 0 variable bench lily type carburetor 2, the carburetor housing 6, and the 1 housing 6Fl are vertically aligned. An extending intake passage 7, a suction piston 8 that moves all around the intake passage 7, a needle 9 added to the tip surface of the suction piston 8, and an intake passage w57 facing the tip surface of the suction piston 3. The spacer 10 identified on the inner wall surface of the suction piston 8, the throttle valve 11 provided in the intake passage 7 downstream of the suction piston 8, and the float chamber 12 are all included.
A venturi portion 13 is formed in between. A casing 14 having a cylindrical inner wall is fixed to the carburetor housing 6, and a guide sleeve 15 is attached to the casing 14, which extends along the entire length of the casing 14 inside the casing 14. An illumination receiver 17 having a large number of balls 16 is inserted into the guide sleeve 15, and the reeded guide sleeve 15 is closed by a cover 18. Ten thousand,
A guide rod 19 is fixed to the suction piston 8,
This guide rod 19rl: @ guide rod 19 in the receiver 17
Since the suction piston 8 is supported by the casing 14 via the bearing 17, the suction piston 8 can move smoothly in the axial direction inside the casing 14. It is divided into a negative pressure chamber 20 and an atmospheric pressure chamber 21 by the suction piston 8, and a compression spring 22 that constantly presses the suction piston 8 toward the venturi @13 is inserted into the negative pressure chamber 20. The royal chamber 20 is connected to the venturi part 13 through the suction hole 23 formed in the suction piston 8, and the suction piston 8 is connected to the air intake passage of the suction piston 8 through the entire air hole 24 formed in the carburetor housing 6 to the atmospheric pressure chamber 21. 7173.

(7) 一万、気化器ハウジング6円にはニードル9が侵入可能
なようにニードル9の軸線方向に延びる燃料通路25が
形成され、この燃料通路25円にぼ計量ジェット26が
設けられる。#肝ジェット26上流の燃料通kN5.2
5は下方に延びる燃料バイブ27全介してフロート室1
2に連結され、フロート室12円の燃料はこの燃料パイ
プ27を介して燃料通路25内に送9込1れる。更に、
スペーサ10には燃料通路25と共軸的に配置された中
空円筒状のノズル28が固定される。このノズル28ぼ
スペーサ1oの内壁部からベンチュリ部13円に突出し
、しかもノズル28の先端部の土手分に下手分から更に
サクションピストン8に向けて突出している。ニードル
9はノズル28および計量ジェット2617gを貫通し
て延び、燃#+にニードル9と計重ジェット26間に形
成さnる環状間隙により計量された後にノズル28から
吸気通路7内に供給される。
(7) A fuel passage 25 extending in the axial direction of the needle 9 is formed in the carburetor housing 6 yen so that the needle 9 can enter therein, and a metering jet 26 is provided in this fuel passage 25 yen. # Fuel passage upstream of liver jet 26 kN5.2
5 is a fuel vibrator 27 that extends downward to the float chamber 1.
2, and the fuel in the float chamber 12 is fed into the fuel passage 25 through this fuel pipe 27. Furthermore,
A hollow cylindrical nozzle 28 disposed coaxially with the fuel passage 25 is fixed to the spacer 10 . This nozzle 28 protrudes from the inner wall of the spacer 1o to the venturi portion 13, and further protrudes toward the suction piston 8 from the bank at the tip of the nozzle 28. The needle 9 extends through the nozzle 28 and the metering jet 2617g, and the fuel #+ is metered by the annular gap formed between the needle 9 and the metering jet 26 before being supplied from the nozzle 28 into the intake passage 7. .

第2図に示されるよりにスペーサ10の上端部には吸気
通路7円に向けて水平方向に突出する隆(8) 起壁29が形成され、この隆起壁29とサクションピス
トン8の先端部間に2いて流量制御が行なわれる。機関
運転が開始されると望見は吸気通路7FE3を下方に向
けて流れる0このときを気流にサクションピストン8と
隆起壁29間において絞られるためにベンチュリ部13
にに負圧が発生し、この負圧がサクション孔23を介し
て負圧室20内に導びかれる。サクションピストン8ば
負圧室20と大気圧室21との圧力差が圧縮ばね22の
ばね力により定するほぼ一足圧となるように、即ちベン
チュリ部13円の負圧がほぼ一定となるように移動する
As shown in FIG. 2, a raised wall 29 (8) is formed at the upper end of the spacer 10 and projects horizontally toward the intake passage 7, and between this raised wall 29 and the tip of the suction piston 8. At step 2, flow rate control is performed. When engine operation is started, air flows downward through the intake passage 7FE3.At this time, the airflow is narrowed between the suction piston 8 and the raised wall 29, so that the venturi portion 13
Negative pressure is generated, and this negative pressure is guided into the negative pressure chamber 20 through the suction hole 23. The suction piston 8 is designed so that the pressure difference between the negative pressure chamber 20 and the atmospheric pressure chamber 21 is approximately one foot pressure determined by the spring force of the compression spring 22, that is, the negative pressure in the venturi portion 13 is approximately constant. Moving.

第3図2よび第4図を参照すると、ニードル9の上流側
に位置するサクションピストン先端面部分はその全体が
ニードル9の増灯端面30からニードル9の先端部に向
けて隆起しておシ、このサクションピストン先端面部分
上にに吸気通1!1i57の@線方向に延びる凹溝31
が形成される。この凹溝31のよRUJ07fa m 
31 a n U字形断面形状をなすと共にニードル取
付端面30よシもニードル9の先端部に近い側に位置し
て′J?シ、残シの凹溝部分31bに上流fHIJ端部
31aからニードル取付端面30までほぼまっすぐに延
びる。更に、ニードル9よりも上流側に位置するサクシ
ョンピストン先端面部分の断面形状は凹溝31からベン
チュリ部13に向けて拡開するV字形をなしており、従
ってこのサクションピストン先端面部分ハロ溝31に向
けて傾斜する一対の傾斜壁面部32a。
Referring to FIG. 32 and FIG. 4, the entire tip surface of the suction piston located on the upstream side of the needle 9 is raised from the multi-light end surface 30 of the needle 9 toward the tip of the needle 9. , a concave groove 31 extending in the @ line direction of the intake vent 1!1i57 on the tip end surface of the suction piston.
is formed. This concave groove 31 RUJ07fa m
31 a n It has a U-shaped cross section and is located on the side closer to the tip of the needle 9 than the needle mounting end surface 30. The remaining concave groove portion 31b extends almost straight from the upstream fHIJ end 31a to the needle attachment end surface 30. Furthermore, the cross-sectional shape of the suction piston tip surface located upstream of the needle 9 is V-shaped, expanding from the concave groove 31 toward the venturi portion 13. A pair of inclined wall surface portions 32a that are inclined toward.

32bを肩する。Shoulder 32b.

第3図かられかるように吸入全気量が少ないときには隆
起壁29、傾斜壁部分32a、32b。
As can be seen from FIG. 3, when the total intake air volume is small, the raised wall 29 and the inclined wall portions 32a and 32b.

Pよび凹溝上流側端部31aによってほぼ二等辺三角形
状の吸入空気制御絞り部Kが形成される。
P and the upstream end portion 31a of the groove form an intake air control constriction portion K having a substantially isosceles triangular shape.

このように吸入空気制御絞り部Kを形成することによっ
てサクションピストン8のリフトtが吸入空気制御絞9
部にの開口面積に比例するようになシ、従ってサクショ
ンピストン8のリフ)J!trc吸入窒気量の増大に応
じて滑らかに増大するようになる。更に、サクションピ
ストン8に佃]受17[よって支持されているので吸入
全気量の変化に対して応答性よく移動し、斯くしてサク
ションピストン8に吸入空気量が増大したときに吸入空
気量の増大に応答性よくかつ清らかに移動する。その結
果、加速運転時のように吸入9気量が急激に変化する場
合であってもサクションピストン8のリフトが吸入空気
量の増大に比例して増大するためにノズル28から供給
される燃料の量は吸入空気量に常時比例することになる
。更に、第3図かられかるように吸入空気量が少ないと
きには吸入9久が吸気通路7の中央部を流通せしめられ
、その結果ノズル28から供給された溶料I/:i吸入
孕気流と共に即座に機関シリンダ内に供給されるので吸
入空気量が少ないときであってもノズル28から供給さ
れた燃料に即座に機関シリンダ内に供給される0従って
、力ロ速運転時のように吸入空気量が急激に増大しても
上述したようにノズル28から供給される燃料の童が吸
入空気量に比例し、しかもノズル28から供給さ几fC
燃料が即座に機関シリンダ内に供給さ几るので機関シリ
ンダ内に供給される混合気の空燃比ぼ吸入費気重が急激
に変化してもほぼ一定に維持される01だ、サクション
ピストン8に軸受17によって支持されているので機関
温度がサクションピストン8の移動に影響を与えること
がナク、斯くしてサクションピストン8は機関温度とは
無関係に吸入空気量の変化に応答性よく移動することが
できる。斯くして、第2図に示す可変ベンチ−り型気化
器2を用いると、機関温度2よび機関運転状態にかかわ
らずに機関シリンダ内に供給される混合気の空燃比をほ
ぼ一足値、例えば14.0程度に維持することができる
By forming the intake air control throttle part K in this way, the lift t of the suction piston 8 is reduced by the intake air control throttle 9.
Therefore, the rift of the suction piston 8) J! The trc increases smoothly as the intake nitrogen amount increases. Furthermore, since the suction piston 8 is supported by the suction piston 8, it moves with good responsiveness to changes in the total intake air volume, and thus, when the suction piston 8 increases the intake air volume, the intake air volume increases. It moves responsively and clearly to the increase in the number of people. As a result, even when the intake air volume changes rapidly, such as during acceleration, the lift of the suction piston 8 increases in proportion to the increase in the intake air volume, so that the amount of fuel supplied from the nozzle 28 increases. The amount will always be proportional to the intake air amount. Furthermore, as can be seen from FIG. 3, when the amount of intake air is small, the intake air is made to flow through the center of the intake passage 7, and as a result, the solvent I/:i is immediately supplied with the intake airflow from the nozzle 28. Therefore, even when the intake air amount is small, the fuel supplied from the nozzle 28 is immediately supplied into the engine cylinder. Even if fC increases rapidly, the amount of fuel supplied from the nozzle 28 is proportional to the amount of intake air as described above, and moreover, the amount of fuel supplied from the nozzle 28 is
Since the fuel is immediately supplied into the engine cylinder, the air-fuel ratio of the mixture supplied into the engine cylinder remains almost constant even if the intake cost and air weight change rapidly. Since it is supported by the bearing 17, the engine temperature does not affect the movement of the suction piston 8, and thus the suction piston 8 can move responsively to changes in the amount of intake air regardless of the engine temperature. can. Thus, when the variable bench carburetor 2 shown in FIG. 2 is used, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders can be adjusted to approximately a single value, e.g., regardless of the engine temperature 2 and engine operating conditions. It can be maintained at about 14.0.

従って機関シリンダ円にに望燃比が14.0程度の過濃
混合気が常時供給されることになる。
Therefore, a rich air-fuel mixture with a desirable fuel-fuel ratio of about 14.0 is constantly supplied to the engine cylinders.

第2図を参照すると、計量ジェット26の周囲には環状
を気室33が形成され、この環状空気案33に通ずる複
数個のエアブリード孔34が計量ジェット26の円周壁
面上に形成される0壌状孕気室33はエアブリード通路
35.36およびエアブリードジェット37を介して隆
起壁29上流の吸気通路7内に連結され、これらエアブ
リード通路35.36の連結部にはワックス弁38によ
って駆動される弁体39が配置される0ワツクス弁38
の感温部38aの周囲Kに冷却水循環室39が形成され
、この冷却水循環室39内には冷却水流入口40から冷
却水が導入され、この冷却水は冷却水流出口41からυ
[出されるO機関冷却水温が上昇すると弁体39が左方
に移動し、それによってエアブリード通路の流れ面積が
増大するためにエアブリード量が増大する。暖機運転が
完了すると弁体39がエアブリード通路を全開し、この
とき機関シリンダ内に供給される混合気ホ窒燃比が14
.0程度の濃混合気となる〇−万、機関排気マニホルド
3にば2次孕気の供給制御をする2次空気供給制御弁5
0が取付けられ、吸気マニホルド1には2次空気供給制
御弁50の作動を制御する電磁弁51が取付けられる。
Referring to FIG. 2, an annular air chamber 33 is formed around the metering jet 26, and a plurality of air bleed holes 34 communicating with the annular air chamber 33 are formed on the circumferential wall surface of the metering jet 26. The loam-like air chamber 33 is connected to the intake passage 7 upstream of the raised wall 29 via an air bleed passage 35, 36 and an air bleed jet 37, and a wax valve 38 is provided at the connection of these air bleed passages 35, 36. 0 wax valve 38 in which a valve body 39 driven by
A cooling water circulation chamber 39 is formed around the temperature sensing part 38a, and cooling water is introduced into this cooling water circulation chamber 39 from a cooling water inlet 40, and this cooling water is introduced from a cooling water outlet 41 to υ
[When the temperature of the output O engine cooling water rises, the valve body 39 moves to the left, thereby increasing the flow area of the air bleed passage and thus increasing the amount of air bleed. When the warm-up operation is completed, the valve body 39 fully opens the air bleed passage, and at this time, the nitrogen-fuel ratio of the air-fuel mixture supplied into the engine cylinder is 14.
.. The secondary air supply control valve 5 controls the supply of secondary air to the engine exhaust manifold 3 when the mixture becomes a rich mixture of about 0.
0 is attached to the intake manifold 1, and a solenoid valve 51 for controlling the operation of the secondary air supply control valve 50 is attached to the intake manifold 1.

2次々気供給制御弁51Jダイアフラム52によって隔
離された負圧室53と大気圧室54を有し、負圧室53
内にはダイアフラム押圧用圧縮ばね55が挿入される0
大気圧室54内にはダイアフラム52に同けて突出する
中空管56が固定配置され、この中空管56の先端部に
はダイアフラム52に固着された弁体58によって開閉
制御される弁ボート57が形成される0この弁ボート5
7は弁ボート57から排気マニホルド3円に同けてのみ
流通可能な逆止弁59および2次伊気供給孔60を介し
て排気マニホルド3内に一1!!iされる。
A secondary air supply control valve 51J has a negative pressure chamber 53 and an atmospheric pressure chamber 54 separated by a diaphragm 52, and the negative pressure chamber 53
A compression spring 55 for pressing the diaphragm is inserted inside.
A hollow tube 56 that protrudes along with the diaphragm 52 is fixedly disposed within the atmospheric pressure chamber 54, and a valve boat 56 whose opening and closing are controlled by a valve body 58 fixed to the diaphragm 52 is provided at the tip of the hollow tube 56. 57 is formed 0 this valve boat 5
7 flows into the exhaust manifold 3 from the valve boat 57 through the check valve 59 and the secondary air supply hole 60, which can flow only at the same time as the exhaust manifold 3! ! I will be treated.

従って弁ボート57および2次望見供給孔60が2次空
気供給通路を形成する〇一方、電磁弁51は弁室62と
、弁室62FE3に配置された弁体63と、弁室62V
3に開口しかつ吸気マニホルド1円に連結された負圧ボ
ート64と、弁室62内に開口しかつ大気に連通ずる大
気ボート65と、弁体63に連結さnた可動プランジ+
66と、可動プランジャ66を吸引するためのソレノイ
ド67とを具備し、負圧ボート64および大気ボート6
5は弁体63によって開閉制御される0弁呈62に導管
68を介して2次空気供給制御弁50の負圧室53に運
転され、ソレノイド67はソレノイド駆動回路70に接
続される。ソレノイド駆動回路70ぼ第5図(a)に示
すようにデー−ティー比t/Tがは1丁50パーセント
のI Hzから2 H7の周波数の矩形パルスを発生す
る第1のパルス発生器71と、デユーティ−比t/Tが
ほぼ20パーセントから30パーセントのI Hzから
2 H2の周波数の矩形パルスを発生する第2のパルス
発生器72と、第1パルス発生器71の出力を一刀の入
力とする第1のアンドゲート73と、第2パルス発生器
72の出力を一刀の入力とする第2のアンドゲート74
と、第1アンドゲート73および第2アンドゲート74
の出力端子に接続はれた電力増巾器75とにより構成さ
れ、電力増巾器75の出力端子にソレノイド67に接続
される。また、第1アンドゲート73の他方の入力は負
圧スイッチ77に接続され、第2アンドゲート74の他
方の入力にインバータ76を介して負圧スイッチ77に
接続される。負圧スイッチ77はダイアフラム78によ
って隔離された負圧室79と大気圧室80とをMし、負
圧室79に負圧導管81を介して吸気マニホルドl内に
連結される。大気圧室80内にに第1アンドゲート73
と第2アンドゲート74の入力に接続さnた固定接点8
2と、ダイアフラム78に固定さnかつ電源(図示せず
)に接続さfした可動接点83とが配置さnる。スロッ
トル弁11の開度が小さな低負荷運転時には負圧スイッ
チ77の負圧室79内に大きな負圧が発生するためにダ
イアフラム78が左方に移動し、可IvI接点83と固
定接点82とが接触する。従ってこのとき第1アンドゲ
ート73の出力電圧に第1パルス発生器71がパルスを
発生する毎に高レベルとなシ、−1第2アンドゲート7
4の出力電圧に低レベルに維持されるのでソレノイド6
1J第1パルス発生器71の出力パルスによって駆動制
御される0−万、スロットル弁11の開度が大きくなっ
て高負荷運転状態になると負圧スイッチ77の負圧室7
9内の負圧が小さくなるために可動接点83と固定接点
82に非接触状態となる。その結果、第1アンドゲート
73の出力電圧は低レベルに維持され、−1第2アンド
ゲート74の出力電圧に第2パルス発生器72がパルス
を発生する毎に高レベルとなるためにソレノイド67i
i2パルス発生器72の出力パルスによって駆動制御さ
れる0 上述したように機関低負荷運転時にはソレノイド67に
第1パルス発生器71の出力パルスによって駆動制御さ
れる。弁体63ば通常負圧ボート64を閉鎖すると共に
大気ボート65を開口して詮シ、第1パルス発生器71
がパルスを発生するとソレノイド67が付勢されて弁体
64が右方に移動し、そnによって弁体63が負圧ボー
ト64を開口すると共に大気ボート65を閉鎖する。従
って負圧ボート64′J?よび大気ボート65 Lrl
 I Hzから2Hzの周波数でもって開閉動作が繰返
され、斯くして2次空気供給制御弁50の負圧室53K
にI Hzから2Hzの周波数でもって負圧、又に大気
圧が交互に導びかれる0負圧室53内に負圧が加わると
弁体58が弁ボート57を開口し、このとき排気脈動に
よシ排気マニホルド31KJに発生する負圧によって9
気が2次空気供給孔60から排気マニホルド3内に吸入
される0従って上述のように負圧室53内がI Hzか
ら2. Hzの周波数でもって交互に大気圧、又に負圧
になると弁体58が弁ボート57をI Hzから2Hz
の周波数でもって開口し、斯くして2次空気がわト気マ
ニホルド3内にI Hzから2Hzの周波数でもって間
欠的に供給されることになる。2次空気がり「気マニホ
ルド3内に間欠的に供給されると〃F気マニホルド3内
の排気ガス中の酸素濃度が周期的に変動し、斯くして空
燃比が変動することになる0なお、ここで空燃比という
用語に通常用いられる意味とは多少違った意味で使用さ
れており、この空燃比に三元触媒コンバータ4上流の作
動ガス通路内に供給された全9気量(吸入空気と2次空
気の和)と全燃料量との比を言う〇三元触媒5に排気ガ
ス中に存在する過剰な酸素に対して前述したような酸素
保持機能を肩して29、この過剰酸素が吸気系に供給さ
れた吸入空気によるものか、又は排気系に供給された2
次空気によるものかば関係ない0従って排気マニホルド
3内に供給される2次空気の童を変動させることによっ
て空燃比を周期的に変動させた場合にこの空燃比の平均
1直が第1(b)図のウインドウWo内に維持されれば
高い浄化効率を得ることができる。第2図に示す実施例
に2いて、弁ボート572よび2次9気供給孔600寸
法にダイアフラム52の弁体58が弁ボート57の開閉
を繰返し行なったときに空燃比A/Fの平均値が第5(
b)図に示されるようにほぼ理論空燃比となシ、空燃比
の変動中が理論空燃比に対してほぼ±0.2から±1.
0となるように定められる0このように弁体58の単純
な開閉動作の繰返しによって9燃比A/Fの平均筒をほ
ぼ理論空燃比に維持できるのは気化器2において形成さ
れる混合気の9燃比が一定に維持されているからである
。従って機関の運転状態にかかわらずに空燃比vX、I
H2から2Hzの周波数でもってほぼ理論空燃比に対し
て±0.2から±1.0の範囲で変動せしめられ、しか
も、この空燃比の平均値に第1山)図のウィンドウWo
内に維持されるので三元モノリス触媒5の11R累保持
機能をオリ用して高い浄化効率を得ることができる。
Therefore, the valve boat 57 and the secondary viewing supply hole 60 form a secondary air supply passage. On the other hand, the solenoid valve 51 has a valve chamber 62, a valve body 63 disposed in the valve chamber 62FE3, and a valve chamber 62V.
a negative pressure boat 64 that opens into the valve chamber 62 and is connected to the intake manifold 1, an atmospheric boat 65 that opens into the valve chamber 62 and communicates with the atmosphere, and a movable plunger connected to the valve body 63.
66 and a solenoid 67 for suctioning the movable plunger 66, the negative pressure boat 64 and the atmospheric boat 6
5 is operated to the negative pressure chamber 53 of the secondary air supply control valve 50 via a conduit 68 to a zero valve 62 whose opening and closing are controlled by a valve body 63, and a solenoid 67 is connected to a solenoid drive circuit 70. As shown in FIG. 5(a), the solenoid drive circuit 70 includes a first pulse generator 71 that generates rectangular pulses with a frequency of IHz to 2H7 with a duty ratio t/T of 1-50%. , a second pulse generator 72 that generates a rectangular pulse with a frequency of IHz to 2H2 with a duty ratio t/T of approximately 20% to 30%, and the output of the first pulse generator 71 are used as inputs. and a second AND gate 74 that takes the output of the second pulse generator 72 as its input.
and a first AND gate 73 and a second AND gate 74
The output terminal of the power amplifier 75 is connected to the solenoid 67. Further, the other input of the first AND gate 73 is connected to a negative pressure switch 77 , and the other input of the second AND gate 74 is connected to the negative pressure switch 77 via an inverter 76 . The negative pressure switch 77 connects a negative pressure chamber 79 and an atmospheric pressure chamber 80 separated by a diaphragm 78, and is connected to the negative pressure chamber 79 through a negative pressure conduit 81 into the intake manifold l. The first AND gate 73 in the atmospheric pressure chamber 80
and a fixed contact 8 connected to the input of the second AND gate 74
2 and a movable contact 83 fixed to the diaphragm 78 and connected to a power source (not shown). During low-load operation with a small opening of the throttle valve 11, a large negative pressure is generated in the negative pressure chamber 79 of the negative pressure switch 77, so the diaphragm 78 moves to the left, causing the movable IvI contact 83 and the fixed contact 82 to Contact. Therefore, at this time, the output voltage of the first AND gate 73 becomes high level every time the first pulse generator 71 generates a pulse.
Solenoid 6 is maintained at a low level to the output voltage of 4.
The negative pressure chamber 7 of the negative pressure switch 77 is driven and controlled by the output pulse of the first pulse generator 71.
Since the negative pressure inside 9 becomes small, the movable contact 83 and the fixed contact 82 are brought into a non-contact state. As a result, the output voltage of the first AND gate 73 is maintained at a low level, and becomes a high level every time the second pulse generator 72 generates a pulse to the output voltage of the -1 second AND gate 74, so that the output voltage of the solenoid 67i is maintained at a low level.
The drive is controlled by the output pulse of the i2 pulse generator 72.0 As described above, the drive of the solenoid 67 is controlled by the output pulse of the first pulse generator 71 during low engine load operation. The valve body 63 normally closes the negative pressure boat 64 and opens the atmospheric boat 65 to open the first pulse generator 71.
When a pulse is generated, the solenoid 67 is energized and the valve body 64 moves to the right, thereby causing the valve body 63 to open the negative pressure boat 64 and close the atmospheric boat 65. Therefore, negative pressure boat 64'J? and atmospheric boat 65 Lrl
The opening and closing operations are repeated at a frequency of IHz to 2Hz, and thus the negative pressure chamber 53K of the secondary air supply control valve 50
When negative pressure is applied to the negative pressure chamber 53, into which negative pressure and atmospheric pressure are alternately introduced at a frequency of I Hz to 2 Hz, the valve body 58 opens the valve boat 57, and at this time, the exhaust pulsation occurs. 9 due to the negative pressure generated in the exhaust manifold 31KJ.
Air is sucked into the exhaust manifold 3 from the secondary air supply hole 60.Therefore, as described above, the inside of the negative pressure chamber 53 changes from IHz to 2.0Hz. When atmospheric pressure and negative pressure alternate at a frequency of Hz, the valve element 58 changes the valve boat 57 from IHz to 2Hz.
Thus, secondary air is intermittently supplied into the main air manifold 3 at a frequency of IHz to 2Hz. If secondary air is intermittently supplied into the air manifold 3, the oxygen concentration in the exhaust gas in the air manifold 3 will fluctuate periodically, thus causing the air-fuel ratio to fluctuate. , the term air-fuel ratio is used here in a slightly different meaning from the usual meaning, and this air-fuel ratio includes the total nine air volumes (intake air) supplied into the working gas passage upstream of the three-way catalytic converter 4. and secondary air) and the total amount of fuel.The three-way catalyst 5 has the above-mentioned oxygen retention function against the excess oxygen present in the exhaust gas29, and this excess oxygen is is caused by intake air supplied to the intake system or by intake air supplied to the exhaust system.
Therefore, if the air-fuel ratio is periodically varied by varying the amount of secondary air supplied to the exhaust manifold 3, the average of this air-fuel ratio will be the first shift ( b) High purification efficiency can be obtained if it is maintained within the window Wo in the figure. In the second embodiment shown in FIG. 2, when the valve body 58 of the diaphragm 52 repeatedly opens and closes the valve boat 57 in the dimensions of the valve boat 572 and the secondary 9 air supply hole 600, the average value of the air-fuel ratio A/F is the fifth (
b) As shown in the figure, the air-fuel ratio is approximately at the stoichiometric air-fuel ratio, and during the fluctuation of the air-fuel ratio, it is approximately ±0.2 to ±1.
The reason why the average cylinder of 9 fuel ratio A/F can be maintained at almost the stoichiometric air-fuel ratio by repeating the simple opening and closing operation of the valve body 58 is because of the air-fuel mixture formed in the carburetor 2. This is because the fuel ratio is maintained constant. Therefore, regardless of the operating state of the engine, the air-fuel ratio vX, I
It is made to fluctuate in the range of ±0.2 to ±1.0 with respect to the stoichiometric air-fuel ratio at a frequency of H2 to 2 Hz, and moreover, the average value of this air-fuel ratio has a window Wo
Therefore, high purification efficiency can be obtained by fully utilizing the 11R accumulation retention function of the three-way monolith catalyst 5.

一方、加速運転時2よび足當高負荷運転時のような高負
荷運転時にはNOxの発生量が増大し、従りてこのよう
な高負荷運転時にVX、NOxを積極的に浄化せしめる
ことが大気中に放出さnる排気ガス中の有害成分を低減
する土で好ましい。本発明でに前述したように機関高負
荷運転時に第6図(a)に示すようなデユーティ−比t
/Tの小さなパルスによってソレノイド67が駆動制御
されるために2次望見供給制御9P50の弁ボート57
の開口時間が短かくなシ、升ボート57の閉鎖時間が長
くなる。その結果、第6図(b)に示すように空燃比が
理論空燃比よりも小さくなる時間が長くなるためにNO
xの還元作用に費やざnる時間が長くなシ、その結果N
Oxの浄化効率を向上することができる。
On the other hand, the amount of NOx generated increases during high-load operation such as during acceleration operation 2 and during high-load operation, and therefore it is important to actively purify VX and NOx during such high-load operation. It is preferred in soils that reduce harmful components in exhaust gases emitted into the atmosphere. As described above in the present invention, the duty ratio t as shown in FIG. 6(a) is
Since the solenoid 67 is driven and controlled by a small pulse of /T, the valve boat 57 of the secondary vision supply control 9P50
If the opening time of the box boat 57 is short, the closing time of the box boat 57 will be long. As a result, as shown in Figure 6(b), the time during which the air-fuel ratio becomes smaller than the stoichiometric air-fuel ratio becomes longer, and NO
The time spent on the reduction of x is long, and as a result N
Ox purification efficiency can be improved.

このように本発明によれば高価な酸素濃変検出器および
高価な9燃比制御用の電子制御ユニットを用いることな
く、価格の低い気化器を用いて排気ガスを良好に浄化で
きるのです「気ガス浄化装置の製造コストを大巾に低減
することができる。更に、機関シリンダ内に供給される
混合気のを燃比ば一足に維持されるので燃焼変動が生ず
ることもなく、斯くして滑らかな機関の運転を確保する
ことができる。′!!た、NOxの発生量の多い機関高
負荷運転時にはNOXの浄化効率が向上せしめられるた
めに大気中に放出される排気ガス中の有害成分を一様に
低減することができる。
In this way, according to the present invention, exhaust gas can be effectively purified using an inexpensive carburetor without using an expensive oxygen concentration change detector or an expensive electronic control unit for fuel ratio control. The manufacturing cost of the gas purification device can be greatly reduced.Furthermore, since the fuel ratio of the air-fuel mixture supplied into the engine cylinder is maintained at a constant level, combustion fluctuations do not occur, thus ensuring smooth combustion. The operation of the engine can be ensured.In addition, when the engine is operated under high load, which generates a large amount of NOx, the purification efficiency of NOx is improved, so harmful components in the exhaust gas released into the atmosphere are eliminated. It can be reduced as follows.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は排気ガス浄化効率を示す線図、第2図に機関吸
排気系の側面断面図、第3図は第2図の矢印■に沿って
みた平面図、第4図にサクションピストンの側面断面図
、第5図に空燃比の変動を示す囚、第6図に空燃比の変
動を示す図である02・・・気化器、      8・
・・サクションピストン、9・・・ニードル、25・・
・燃料通路、28・・・ノズル、50・・・2次空気供
給制御弁、  51・・・電磁弁、60・・・2次孕気
供給孔、77・・・負圧スイッチ。 特許出願人 トヨタ自動車株式会社 特許出願代理人 弁理士  青 木   朗 弁理士 西舘和之 弁理士 中山恭介 弁理士  山 口 昭 之
Figure 1 is a diagram showing exhaust gas purification efficiency, Figure 2 is a side sectional view of the engine intake and exhaust system, Figure 3 is a plan view taken along the arrow ■ in Figure 2, and Figure 4 is a diagram of the suction piston. Side cross-sectional view, Fig. 5 shows the fluctuations in the air-fuel ratio, and Fig. 6 shows the fluctuations in the air-fuel ratio. 02...carburizer;
...Suction piston, 9...Needle, 25...
- Fuel passage, 28... Nozzle, 50... Secondary air supply control valve, 51... Solenoid valve, 60... Secondary air supply hole, 77... Negative pressure switch. Patent applicant Toyota Motor Corporation Patent agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney Kyosuke Nakayama Patent attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] 機関シリンダ内に過濃な混合気全供給するための燃料供
給装置全具備すると共に機関排気通路に三元触媒コンバ
ータを取付けた内燃機関において、三元触媒コンバータ
上流の排気通路内に2次窒気供給通路全連結し、該2次
孕気供給通路内にほぼI Hzから2 Hzの一定周波
数で開閉する電磁弁を配置し、該2次窒気供給通路を開
閉した際に空燃比が平均値に対してほぼ±0.2から±
1.0の間で周期的に変動すると共に該空燃比の平均値
がほぼ理論空燃比となるように上記2次窒気供給通路の
流路面8#を足め、更に機関負荷を検出する負荷検出器
を上記電磁弁に接続して機関負荷が予め定められた負荷
よりも大きくなったときに上記2次孕気供給通路の開口
時間を短かくすると共に該2次窒気供給通路の閉鎖時間
を長くするようにした同船機関の排気ガス浄化装置。
In an internal combustion engine that is fully equipped with a fuel supply device to fully supply a rich mixture into the engine cylinders and a three-way catalytic converter installed in the engine exhaust passage, secondary nitrogen gas is generated in the exhaust passage upstream of the three-way catalytic converter. All the supply passages are connected, and a solenoid valve that opens and closes at a constant frequency of about I Hz to 2 Hz is arranged in the secondary nitrogen supply passage, so that when the secondary nitrogen supply passage is opened and closed, the air-fuel ratio is the average value. approximately ±0.2 to ±
1.0, and the flow path surface 8# of the secondary nitrogen supply passage is added so that the average value of the air-fuel ratio becomes approximately the stoichiometric air-fuel ratio, and the load for detecting the engine load is added. A detector is connected to the electromagnetic valve to shorten the opening time of the secondary nitrogen supply passage and the closing time of the secondary nitrogen supply passage when the engine load becomes larger than a predetermined load. The exhaust gas purification system for the ship's engine has a longer length.
JP20449282A 1982-11-24 1982-11-24 Exhaust gas purifying device of internal-combustion engine Pending JPS5996421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20449282A JPS5996421A (en) 1982-11-24 1982-11-24 Exhaust gas purifying device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20449282A JPS5996421A (en) 1982-11-24 1982-11-24 Exhaust gas purifying device of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS5996421A true JPS5996421A (en) 1984-06-02

Family

ID=16491420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20449282A Pending JPS5996421A (en) 1982-11-24 1982-11-24 Exhaust gas purifying device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5996421A (en)

Similar Documents

Publication Publication Date Title
JPH09256825A (en) Internal combustion engine, and head structure of internal combustion engine
JPS5996421A (en) Exhaust gas purifying device of internal-combustion engine
US4450684A (en) Exhaust gas cleaning system for internal combustion engine
JPS6218741B2 (en)
JPH0228699B2 (en)
JPS5910724A (en) Exhaust emission control device for internal-combustion engine
JPS597723A (en) Exhaust gas purifier of internal-combustion engine
JPS5996418A (en) Exhaust gas purifying device of internal-combustion engine
JPS5996420A (en) Exhaust gas purifying device of internal-combustion engine
JPS5934468A (en) Exhaust gas purifier for internal combustion engine
JPS59101527A (en) Exhaust gas purging device of internal-combustion engine
JPS5996419A (en) Exhaust gas purifying device of internal-combustion engine
JPS5934456A (en) Exhaust gas purifier for internal combustion engine
JPS5996425A (en) Exhaust gas purifying device of internal-combustion engine
JPS5934464A (en) Exhaust gas purifier for internal combustion engine
JPS59101529A (en) Exhaust gas purging device of internal-combustion engine
JPS5996424A (en) Exhaust gas purifying device of internal-combustion engine
JPS5996422A (en) Exhaust gas purifying device of internal-combustion engine
JPS59101528A (en) Exhaust gas purging device of internal-combustion engine
JPS5928013A (en) Purifier for exhaust gas of internal combustion engine
JPS5993950A (en) Exhaust-gas purifier for internal-combustion engine
JPS5912114A (en) Exhaust gas purifying device of internal combustion engine
JPS5912113A (en) Exhaust gas purifying device of internal combustion engine
JP2610512B2 (en) Air-fuel ratio control device for gas engine
JPS5934452A (en) Exhaust gas purifier for internal combustion engine