JPS5993950A - Exhaust-gas purifier for internal-combustion engine - Google Patents

Exhaust-gas purifier for internal-combustion engine

Info

Publication number
JPS5993950A
JPS5993950A JP57203717A JP20371782A JPS5993950A JP S5993950 A JPS5993950 A JP S5993950A JP 57203717 A JP57203717 A JP 57203717A JP 20371782 A JP20371782 A JP 20371782A JP S5993950 A JPS5993950 A JP S5993950A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
passage
engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57203717A
Other languages
Japanese (ja)
Inventor
Takashi Kato
孝 加藤
Takaaki Ito
隆晟 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57203717A priority Critical patent/JPS5993950A/en
Publication of JPS5993950A publication Critical patent/JPS5993950A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/12Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves
    • F02M7/14Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle
    • F02M7/16Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle operated automatically, e.g. dependent on exhaust-gas analysis
    • F02M7/17Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle operated automatically, e.g. dependent on exhaust-gas analysis by a pneumatically adjustable piston-like element, e.g. constant depression carburettors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/23Fuel aerating devices
    • F02M7/24Controlling flow of aerating air
    • F02M7/26Controlling flow of aerating air dependent on position of optionally operable throttle means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/23Fuel aerating devices
    • F02M7/24Controlling flow of aerating air
    • F02M7/28Controlling flow of aerating air dependent on temperature or pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Abstract

PURPOSE:To efficiently purify exhaust gas by using a low-priced carburetor by arranging a solenoid valve which is opened and closed in a constant frequency into an air bleed passage and connecting a temperature sensing switch which detects the temperature of an engine to the solenoid valve. CONSTITUTION:A carburetor 2 is installed into an engine intake passage 7, and a ternary catalysis converter 5 is installed into an exhaust passage 4, and air is supplied into a fuel passage 25 from an air bleed passage 34. In this case, the carburetor 2 is set so that the average value of air-fuel ratio becomes nearly equal to the theoretical air-fuel ratio. Further, a temperature sensor 54 for detecting the temperature of the engine is connected to a solenoid valve 40, which is closed when the engine temperature is below a predetermined value. Thus, exhaust gas can be efficiently purified by using a low-priced carburetor.

Description

【発明の詳細な説明】 本発明は内燃機関の排気ガス浄化装置に関する。[Detailed description of the invention] The present invention relates to an exhaust gas purification device for an internal combustion engine.

排気ガス中の有害三成分HC、CoおよびNOxを同時
に低減することのできる触媒として、三元触媒が知られ
ている。この三元触媒の浄化効率Rは第1(a)図に示
されるように空燃比A汐がほぼ理論空燃比であるときに
最も高くなね、例えば80ノや一セント以上の浄化効率
Rを得ることのできる空燃比領域は空燃比が0.06程
度の狭い巾である。
A three-way catalyst is known as a catalyst that can simultaneously reduce the three harmful components HC, Co, and NOx in exhaust gas. The purification efficiency R of this three-way catalyst is highest when the air-fuel ratio A is approximately the stoichiometric air-fuel ratio, as shown in Figure 1(a). The air-fuel ratio range that can be obtained is narrow, with an air-fuel ratio of about 0.06.

通常、このように80/4′−セント以上の浄化効率を
得ることのできる空燃比領域をウィンドウWと称する。
Usually, the air-fuel ratio region in which a purification efficiency of 80/4'-cent or more can be obtained is called a window W.

従って、三元触媒を用いて排気ガス中の有害三成分を同
時に低減するためには空燃比をこの狭いウィンドウW内
に常時に維持しなければならない。このために従来の排
気ガス浄化装置では、空燃比が理論空燃比よりも大きい
か小さいかを判別可能な酸素濃度検出器を機関排気通路
に取付け、この酸素濃度検出器の出力信号に基いて空燃
比がウィンドウW内の空燃比となるように制御している
。しかしながらこのような酸素濃度検出器を用いた排気
ガス浄化装置では高価な酸素濃度検出器および空燃比制
御のための高価な電子制御ユニットを必要とするために
排気ガス浄化装置の製造コストが高騰するという問題が
ある。
Therefore, in order to simultaneously reduce the three harmful components in exhaust gas using a three-way catalyst, the air-fuel ratio must be maintained within this narrow window W at all times. To this end, in conventional exhaust gas purification systems, an oxygen concentration detector that can determine whether the air-fuel ratio is greater or less than the stoichiometric air-fuel ratio is installed in the engine exhaust passage, and the output signal of the oxygen concentration detector is used to detect the air-fuel ratio. The fuel ratio is controlled to be within the air-fuel ratio within the window W. However, an exhaust gas purification device using such an oxygen concentration detector requires an expensive oxygen concentration detector and an expensive electronic control unit for air-fuel ratio control, which increases the manufacturing cost of the exhaust gas purification device. There is a problem.

ところが最近になって、SAE paper A760
201号、或いは特公昭56−4741号公報に記載さ
れているように三元触媒の機能が次第に解明され、三元
触媒が酸素保持機能を有することが判明したのである。
However, recently, SAE paper A760
As described in No. 201 and Japanese Patent Publication No. 56-4741, the function of the three-way catalyst was gradually elucidated, and it was discovered that the three-way catalyst had an oxygen retention function.

即ち、空燃比が理論空燃比に対してリーン側にあるとき
には三元触媒がNo から酸素を奪い取りてNOxを還
元させると共にこの奪い取った酸素を保持し、空燃比が
理論空燃比よりもリッチ側になると保持した酸素を放出
してCo 、 HCの酸化を行なうのである。従って空
燃比を成る基準空燃比に対してリーン側とリッチ側に交
互に変動させると基準空燃比が理論空燃比からずれたと
しても上述の酸素保持機能によりNOxの還元作用およ
びCo 、 HCの酸化作用が促進されて高い浄化効率
を得ることができる。第1図伽)は空燃比を周波数IH
zで基準空燃比に対して±1.0だけ変動させた場合の
基準空燃比A/F′のウィンドウWoを示している。第
1(a)図および第1(b)図から空燃比を一定周波数
で変動させた場合にはウィンドウWoが広くなることが
わかる。このことは、空燃比を一定周期で変動させれば
基準空燃比が理論空燃比から多少ずれていたとしても高
い浄化効率が得られることを意味している。一方、空燃
比の変動周波数を低くすると、即ち空燃比の変動周期を
長くすると三元触媒の酸素保持能力が飽和するために酸
素保持機能に基づぐ酸化還元能力が低下し、三元触媒の
浄化効率が低下する。第1(C)図はこのことを明瞭に
示している。第1(c)図において縦軸Rは浄化効率を
示し、横軸Fは空燃比の変動周波数を示す。また、空燃
比の変動巾を小さくすると空燃比をリッチ側とリーン側
に交互に変動できなくなるのでウィンドウの巾は狭くな
る。従ってウィンドウの巾を広くするには最適な空燃比
の変動周期と変動巾が存在することがわかる。
In other words, when the air-fuel ratio is on the lean side compared to the stoichiometric air-fuel ratio, the three-way catalyst removes oxygen from NOx and reduces NOx, and retains this removed oxygen, causing the air-fuel ratio to become richer than the stoichiometric air-fuel ratio. Then, the retained oxygen is released to oxidize Co and HC. Therefore, if the air-fuel ratio is alternately varied between the lean side and the rich side with respect to the standard air-fuel ratio, even if the standard air-fuel ratio deviates from the stoichiometric air-fuel ratio, the oxygen retention function described above will reduce NOx and oxidize Co and HC. The action is promoted and high purification efficiency can be obtained. Figure 1) shows the air-fuel ratio at the frequency IH.
The window Wo of the reference air-fuel ratio A/F' is shown when the reference air-fuel ratio is varied by ±1.0 with respect to the reference air-fuel ratio in z. It can be seen from FIGS. 1(a) and 1(b) that the window Wo becomes wider when the air-fuel ratio is varied at a constant frequency. This means that if the air-fuel ratio is varied at regular intervals, high purification efficiency can be obtained even if the reference air-fuel ratio deviates somewhat from the stoichiometric air-fuel ratio. On the other hand, when the air-fuel ratio fluctuation frequency is lowered, that is, when the air-fuel ratio fluctuation period is lengthened, the oxygen retention capacity of the three-way catalyst becomes saturated, and the oxidation-reduction ability based on the oxygen retention function decreases. Purification efficiency decreases. Figure 1(C) clearly shows this. In FIG. 1(c), the vertical axis R shows the purification efficiency, and the horizontal axis F shows the fluctuation frequency of the air-fuel ratio. Furthermore, if the air-fuel ratio fluctuation range is made smaller, the air-fuel ratio cannot be varied alternately between the rich side and the lean side, so the width of the window becomes narrower. Therefore, it can be seen that there is an optimal air-fuel ratio fluctuation period and fluctuation width in order to widen the window width.

上述のように基準空燃比に対する空燃比の変動巾および
変動周波数を適切に選定すればウィンドウが広く々す、
従って基準空燃比が理論空燃比に対して多少変動しても
高い浄化効率を得ることができる。このことは、基準空
燃比の変動巾の狭い燃料供給系を用いれば酸素濃度検出
器の出力信号によるフィードバック制御を用いなくても
高い浄化効率を得ることができることを意味している。
As mentioned above, if the fluctuation range and fluctuation frequency of the air-fuel ratio relative to the reference air-fuel ratio are appropriately selected, the window can be widened.
Therefore, high purification efficiency can be obtained even if the reference air-fuel ratio varies somewhat with respect to the stoichiometric air-fuel ratio. This means that if a fuel supply system with a narrow reference air-fuel ratio fluctuation range is used, high purification efficiency can be obtained without using feedback control based on the output signal of the oxygen concentration detector.

熱論、燃料供給系として燃料噴射弁を用いれば基準空燃
比の変動巾を狭くすることができるが燃料噴射装置は高
価であるために機関の製造コストが高くなってしまう。
In theory, if a fuel injection valve is used as a fuel supply system, the fluctuation range of the reference air-fuel ratio can be narrowed, but since the fuel injection device is expensive, the manufacturing cost of the engine increases.

従って機関の製造コストを低く抑えるためには気化器を
用いることが必要となる。しかしながら従来の固定ベン
チュリ型気化器では基準空燃比の変動巾が広く、また従
来の可変ベンチュリ型気化器では加速時に、或いは機関
温度によって基準空燃比が大きく変動するのでこれらの
固定ベンチュリ型気化器、或いは可変ベンチュリ型気化
器を用いても高−浄化効率を得るのは困難である。
Therefore, in order to keep the manufacturing cost of the engine low, it is necessary to use a carburetor. However, in conventional fixed venturi type carburetors, the standard air-fuel ratio fluctuates over a wide range, and in conventional variable venturi type carburetors, the standard air-fuel ratio fluctuates greatly during acceleration or depending on engine temperature. Alternatively, it is difficult to obtain high purification efficiency using a variable venturi type vaporizer.

本発明は酸素濃度検出器を用いること々く、価格の低い
気化器を用いて高い排気ガス浄化効率を確保することの
できる排気ガス浄化装置を提供することにある。
An object of the present invention is to provide an exhaust gas purification device that can ensure high exhaust gas purification efficiency using an inexpensive carburetor while also using an oxygen concentration detector.

以下、添附図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第2図を参照すると、1は吸気マニホルド、2は吸気マ
ニホルド1上に取付けられた可変ベンチュリ型気化器、
3は排気マニホルド、4は触媒コンバータを夫々示し、
触媒コンバータ4の内部には三元モノリス触媒5が配置
される。可変ベンチュリ型気化器2は気化器ハウジング
6と、へウジング6内を垂直方向に延びる吸気通路7と
、吸気i路7M[方向に移動するサクションピストン8
と、サクションピストン8の先端面に取付けられたニー
ドル9と、サクションピストン3の先端面に対向して吸
気通路7の内壁面上に固定されたスペーサ10と、サク
ションピストン8下流の吸気通路7内に設けられたスロ
ットル弁11と、フロート室12とを具備し、サクショ
ンピストン8の先端面とスペーサ1o間にはベンチュリ
部13が形成される。気化器ハウジング6には中空円筒
状のケーシング14が固定され、このケーシング14に
はケーシング14の内部でケーシング14の軸線方向に
延びる案内スリーブ15が取付けられる。案内スリーブ
15内には多数のが−ル16を備えた軸受17が挿入筋
れ、また案内スリーブ15の外端部は盲蓋18によって
閉鎖される。一方、サクションピストン8には案内ロッ
ド19が固定され、この案内ロッド19は軸受17内に
案内ロッド19の軸線方向に移動可能に挿入される。
Referring to FIG. 2, 1 is an intake manifold, 2 is a variable venturi carburetor installed on the intake manifold 1,
3 indicates an exhaust manifold, 4 indicates a catalytic converter,
A three-way monolith catalyst 5 is arranged inside the catalytic converter 4 . The variable venturi carburetor 2 includes a carburetor housing 6, an intake passage 7 extending vertically within the housing 6, and a suction piston 8 that moves in the direction of the intake i-path 7M.
, a needle 9 attached to the distal end surface of the suction piston 8 , a spacer 10 fixed on the inner wall surface of the intake passage 7 facing the distal end surface of the suction piston 3 , and a spacer 10 fixed to the inner wall surface of the intake passage 7 downstream of the suction piston 8 . A venturi portion 13 is formed between the tip end surface of the suction piston 8 and the spacer 1o. A hollow cylindrical casing 14 is fixed to the carburetor housing 6, and a guide sleeve 15 extending in the axial direction of the casing 14 inside the casing 14 is attached. A bearing 17 with a number of holes 16 is inserted into the guide sleeve 15, and the outer end of the guide sleeve 15 is closed by a blind cover 18. On the other hand, a guide rod 19 is fixed to the suction piston 8, and the guide rod 19 is inserted into the bearing 17 so as to be movable in the axial direction of the guide rod 19.

このようにサクションピストン8は軸受17を介してケ
ーシング14により支持されるのでサクションピストン
8はその軸線方向に滑らかに移動することができる。ケ
ーシング14の内部はサクションピストン8によりて負
圧室20と大気圧室21とに分割され、負王室20内に
はサクションぎストン8を常時ベンチュリ部13に向け
て押圧する圧縮ばね22が挿入される。負圧室20はサ
クションピストン8に形成されたサクション孔23を介
してベンチュリ部13に連結され、大気圧室21は気化
器ハウジング6に形成された空気孔24を介してサクシ
ョンピストン8上流の吸気通路7内に連結される。
Since the suction piston 8 is thus supported by the casing 14 via the bearing 17, the suction piston 8 can move smoothly in its axial direction. The interior of the casing 14 is divided into a negative pressure chamber 20 and an atmospheric pressure chamber 21 by the suction piston 8, and a compression spring 22 is inserted into the negative pressure chamber 20 to constantly press the suction piston 8 toward the venturi portion 13. Ru. The negative pressure chamber 20 is connected to the venturi section 13 through a suction hole 23 formed in the suction piston 8, and the atmospheric pressure chamber 21 is connected to the intake air upstream of the suction piston 8 through an air hole 24 formed in the carburetor housing 6. It is connected within the passage 7.

一方、気化器ハウジング6内にはニードル9が侵入可能
なようにニードル9の軸線方向に延びる燃料通路25が
形成され、この燃料通路25内には計量ジェット26が
設けられる。計量ジェット26上流の燃料通路25は下
方に延びる燃料・母イブ27を介してフロート室12に
連結され、フロート室12内の燃料はこの燃料パイプ2
7を介して燃料通路25内に送り込まれる。更に、スペ
ーサ10には燃料通路25と共軸的に配置された中空円
筒状のノズル28が固定される。このノズル28はスペ
ーサ10の内壁面からベンチュリ部13内に突出し、し
かもノズル28の先端部の上半分は下半分から更にサク
ションぎストン8に向けて突出している。ニードル9は
ノズル28および計量ジェット26内を貫通して延び、
燃料はニードル9と計量ジェット26間に形成される環
状間隙により計量された後にノズル28から吸気通路7
内に供給される。
On the other hand, a fuel passage 25 extending in the axial direction of the needle 9 is formed in the carburetor housing 6 so that the needle 9 can enter therein, and a metering jet 26 is provided in the fuel passage 25. The fuel passage 25 upstream of the metering jet 26 is connected to the float chamber 12 via a fuel/main tube 27 extending downward, and the fuel in the float chamber 12 is passed through this fuel pipe 2.
7 into the fuel passage 25. Furthermore, a hollow cylindrical nozzle 28 arranged coaxially with the fuel passage 25 is fixed to the spacer 10 . This nozzle 28 protrudes into the venturi portion 13 from the inner wall surface of the spacer 10, and the upper half of the tip of the nozzle 28 further protrudes from the lower half toward the suction piston 8. Needle 9 extends through nozzle 28 and metering jet 26;
After being metered by the annular gap formed between the needle 9 and the metering jet 26, the fuel flows from the nozzle 28 to the intake passage 7.
supplied within.

第2図に示されるようにスペーサ10の上端部には吸気
通路7内に向けて水平方向に突出する隆起壁29が形成
され、この隆起壁29とサクションピストン8の先端部
間において流量制御が行なわれる。機関運転が開始され
ると空気は吸気通路7内を下方に向けて流れる。このと
き空気流はサクションピストン8と隆起壁29間におい
て絞られるためにベンチュリ部13には負圧が発生し、
この負圧がサクション孔23を介して負圧室20内に導
びかれる。サクションピストン8は負圧室20と大気圧
室21との圧力差が圧縮ばね22のばね力により定まる
ほぼ一定圧となるように、即ちベンチュリ部13内の負
圧がほぼ一定となるように移動する。
As shown in FIG. 2, a raised wall 29 is formed at the upper end of the spacer 10 and projects horizontally into the intake passage 7, and the flow rate is controlled between this raised wall 29 and the tip of the suction piston 8. It is done. When engine operation is started, air flows downward in the intake passage 7. At this time, since the airflow is restricted between the suction piston 8 and the raised wall 29, negative pressure is generated in the venturi section 13.
This negative pressure is guided into the negative pressure chamber 20 through the suction hole 23. The suction piston 8 moves so that the pressure difference between the negative pressure chamber 20 and the atmospheric pressure chamber 21 becomes a substantially constant pressure determined by the spring force of the compression spring 22, that is, the negative pressure inside the venturi portion 13 becomes substantially constant. do.

第3図および第4図を参照すると、ニードル9の上流側
に位置するサクションピストン先端面部分はその全体が
ニードル9の取付端面30からニードル9の先端部に向
けて隆起しており、このサクションピストン先端面部分
上には吸気通路7の軸線方向に延びる凹溝31が形成さ
れる。この凹溝31の上流側端部31aはU字形断面形
状をなすと共にニードル取付端面30よりもニードル9
の先端部に近い側に位置しており、残りの凹溝部分31
bは上流側端部31aからニードル取付端面30までほ
ぼまっすぐに延びる。更に、ニードル9よりも上流側に
位置するサクションピストン先端面部分の断面形状は凹
溝31からベンチュリ部13に向けて拡開するV字形を
なしており、従ってこのサクションピストン先端面部分
は凹溝31に向けて傾斜する一対の傾斜壁面部32a。
Referring to FIGS. 3 and 4, the entire tip surface of the suction piston located upstream of the needle 9 is raised from the mounting end surface 30 of the needle 9 toward the tip of the needle 9. A groove 31 extending in the axial direction of the intake passage 7 is formed on the tip end surface of the piston. The upstream end 31a of this concave groove 31 has a U-shaped cross section and is closer to the needle 9 than the needle mounting end surface 30.
The remaining concave groove portion 31
b extends substantially straight from the upstream end 31a to the needle attachment end surface 30. Furthermore, the cross-sectional shape of the suction piston tip surface located upstream of the needle 9 is V-shaped, expanding from the groove 31 toward the venturi portion 13. A pair of inclined wall surface parts 32a which are inclined toward 31.

32bを有する。32b.

第3図かられかるように吸入空気量が少ないときには隆
起壁29、傾斜壁部分32ap32b。
As can be seen from FIG. 3, when the amount of intake air is small, the raised wall 29 and the inclined wall portion 32ap32b.

および凹溝上流側端部31mによってほぼ二等辺三角形
状の吸入空気制御絞り部Kが形成される。
The upstream end portion 31m of the concave groove forms an intake air control constriction portion K having a substantially isosceles triangular shape.

このように吸入空気制御絞り部Kを形成することによっ
てサクションぎストン8のリフト量が吸入空気制御絞り
部にの開口面積に比例するようになり、従ってサクショ
ンピストン8のり7ト量は吸入空気量の増大に応じて滑
らかに増大するようになる。更に、サクションピストン
8は軸受17によって支持されているので吸入空気量の
変化に対して応答性よく移動し、斯くしてサクションピ
ストン8は吸入空気量が増大したときに吸入空気量の増
大に応答性よくかつ滑らかに移動する。その結果、加速
運転時のように吸入空気量が急激に変化する場合であり
τもサクションピストン8のリフトが吸入空気量の増大
に比例して増大するためにノズル28から供給される燃
料の量は吸入空気量に常時比例することに々る。更に、
第3図かられかるように吸入空気量が少ないときには吸
入空気が吸気通路7の中央部を流通せしめられ、その結
果ノズル28から供給された燃料は吸入空気流と共に即
座に機関シリンダ内に供給されるので吸入空気量が少な
いときであってもノズル28から供給された燃料は即座
に機関シリンダ内に供給される。従って、加速運転時の
ように吸入空気量が急激に増大しても上述したようにノ
ズル28から供給される燃料の量が吸入空気量に比例し
、しかもノズル28から供給された燃料が即座に機関シ
リンダ内に供給されるので機関シリンダ内に供給される
混合気の空燃比は吸入空気量が急激に変化してもほぼ一
定に維持される。また、サクションピストン8け軸受1
7によって支持されているので機関温度がサクションピ
ストン8の移動に影響を与えることがなく、斯くしてサ
クションピストン8は機関温度とは無関係に吸入空気量
の変化に応答性よく移動することができる。斯くして、
第2図に示す可変ベンチュリ型気化器2を用いると、機
関温度および機関運転状態にかかわらずに機関シリンダ
内に供給される混合気の空燃比をほぼ一定値、例えばほ
ぼ理論空燃比に維持することができる。
By forming the intake air control throttle part K in this way, the lift amount of the suction piston 8 becomes proportional to the opening area of the intake air control throttle part, and therefore the amount of suction piston 8 is equal to the intake air amount. It increases smoothly as the value increases. Furthermore, since the suction piston 8 is supported by the bearing 17, it moves with good response to changes in the amount of intake air, and thus the suction piston 8 responds to increases in the amount of intake air when the amount of intake air increases. Moves smoothly and smoothly. As a result, when the amount of intake air changes rapidly, such as during acceleration, the lift of the suction piston 8 increases in proportion to the increase in the amount of intake air, so the amount of fuel supplied from the nozzle 28 increases. is always proportional to the amount of intake air. Furthermore,
As can be seen from FIG. 3, when the amount of intake air is small, the intake air is made to flow through the center of the intake passage 7, and as a result, the fuel supplied from the nozzle 28 is immediately supplied into the engine cylinder together with the intake air flow. Therefore, even when the amount of intake air is small, the fuel supplied from the nozzle 28 is immediately supplied into the engine cylinder. Therefore, even if the amount of intake air increases rapidly as during accelerated driving, the amount of fuel supplied from the nozzle 28 is proportional to the amount of intake air as described above, and moreover, the amount of fuel supplied from the nozzle 28 is immediately increased. Since the air-fuel mixture is supplied into the engine cylinder, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder is maintained substantially constant even if the amount of intake air changes rapidly. In addition, suction piston 8 bearings 1
7, the engine temperature does not affect the movement of the suction piston 8, and thus the suction piston 8 can move responsively to changes in the amount of intake air regardless of the engine temperature. . Thus,
When the variable venturi carburetor 2 shown in FIG. 2 is used, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders can be maintained at a substantially constant value, for example, at approximately the stoichiometric air-fuel ratio, regardless of engine temperature and engine operating conditions. be able to.

第2図を参照すると、計量ジェット26の周囲には環状
空気室33が形成され、この環状空気室33に通ずる複
数個のエアブリード孔34が計量ジェット26の内周壁
面上に形成される。環状空気室33はエアブリード通路
34およびエアブリードジェット35を介して隆起壁2
9上流の吸気通路7内に連結され、このエアブリード通
路34内にはりニアソレノイド弁40によって開口面積
が制御される弁ポート36が形成される。
Referring to FIG. 2, an annular air chamber 33 is formed around the metering jet 26, and a plurality of air bleed holes 34 communicating with the annular air chamber 33 are formed on the inner peripheral wall surface of the metering jet 26. The annular air chamber 33 is connected to the raised wall 2 via an air bleed passage 34 and an air bleed jet 35.
A valve port 36 is connected to the intake passage 7 upstream of the air bleed passage 34 and has an opening area controlled by a solenoid valve 40 formed within the air bleed passage 34 .

リニアソレノイド弁40は弁ポート36の開口面積を制
御する弁体41と、弁体41に連結された可動プランジ
ャ42と、可動プランジャ42を吸引するためのソレノ
イド43とを具備シ、ソレノイド43はソレノイド駆動
回路5oに接続される。このリニアツレ/イド弁40で
はソレノイド43を流れる電流に比例した距離だけ可動
プランジャ42が移動し、ソレノイド43を流れる電流
が増大するにつれて弁体41が右方に移動する。
The linear solenoid valve 40 includes a valve body 41 that controls the opening area of the valve port 36, a movable plunger 42 connected to the valve body 41, and a solenoid 43 that sucks the movable plunger 42. It is connected to the drive circuit 5o. In this linear slide/id valve 40, the movable plunger 42 moves by a distance proportional to the current flowing through the solenoid 43, and as the current flowing through the solenoid 43 increases, the valve body 41 moves to the right.

従って、弁ポート36の開口面積はソレノイド43を流
れる電流に比例して変化することになる。
Therefore, the opening area of the valve port 36 changes in proportion to the current flowing through the solenoid 43.

ソレノイド駆動回路50は第5図(、)に示すようなI
 Hzから2 Hzの周波数の鋸波状電圧を発生する鋸
歯発生器51と、鋸波発生器51の出力端子にスイッチ
52を介して接続された電圧電流変換器53からなり、
電圧電流変換器53の出力端子はソレノイド43に接続
される。スイッチ52は機関冷却水温を検出する温度セ
ンサ54に応動するスイッチであって、このスイッチ5
2は機関冷却水温が予め定められた温度以下のときにオ
フとなる。従って機関冷却水温が予め定められた温度以
上のときにはスイッチ52はオンになっており、このと
き鋸波発生器51の出力電圧が電圧電流変換器53にお
いて対応する電流に変換せしめられてこの電流がソレノ
イド43に供給される。前述したように弁ポート36の
開口面積はソレノイド43を流れる電流に比例して変化
し、ソレノイド43には第5(a)図に示すよう々電流
が供給されるので弁ポート36の開口面積は鋸歯状に変
化することがわかる。このように弁ポート36の開口面
積が鋸歯状に変化するとエアブリード孔33から燃料通
路25内に供給される空気量も鋸歯状に変化するので機
関シリンダ内に供給される混合気の空燃比A/Fは第5
伽)図に示されるように波状に滑らかに変化することに
なる。エアブリードジェット35および弁ポート36の
寸法はりニアソレノイド弁40の弁体41が弁ボート3
6の流れ面積を繰返し増大減少したときに機関シリンダ
内に供給される混合気の空燃比の平均値が第5伽)図に
示されるようにほぼ理論空燃比となり、空燃比の変動中
が理論空燃比に対してほぼ±0.2から±1,0となる
ように定められる。従って機関温度および機関運転状態
にかかわらずに機関シリンダ内に供給される混合気の空
燃比はI Hzから2H2の周波数でもってほぼ理論空
燃比に対して±0.2から±1.0の範囲で変動せしめ
られ、しかもこの空燃比の平均値は第1(b)図のウィ
ンバウWo内に維持されるので三元モノリス触媒5の酸
素保持機能を利用して高い浄化効率を得ることができる
。更に、第5(b)図に示されるように空燃比が滑らか
に変動するので燃焼状態が急激に変化することがなく、
斯くして機関の運転状態にかかわらずに常時安定した燃
焼を確保することができる。
The solenoid drive circuit 50 has an I as shown in FIG.
It consists of a sawtooth generator 51 that generates a sawtooth voltage with a frequency of Hz to 2 Hz, and a voltage-current converter 53 connected to the output terminal of the sawtooth generator 51 via a switch 52.
An output terminal of the voltage-current converter 53 is connected to the solenoid 43. The switch 52 is a switch that responds to a temperature sensor 54 that detects the engine cooling water temperature.
2 is turned off when the engine cooling water temperature is below a predetermined temperature. Therefore, when the engine cooling water temperature is above a predetermined temperature, the switch 52 is turned on, and at this time, the output voltage of the sawtooth wave generator 51 is converted into a corresponding current in the voltage-current converter 53, and this current is It is supplied to the solenoid 43. As mentioned above, the opening area of the valve port 36 changes in proportion to the current flowing through the solenoid 43, and since the current is supplied to the solenoid 43 as shown in FIG. 5(a), the opening area of the valve port 36 is It can be seen that it changes in a sawtooth pattern. When the opening area of the valve port 36 changes in a sawtooth pattern as described above, the amount of air supplied from the air bleed hole 33 into the fuel passage 25 also changes in a sawtooth pattern, so that the air-fuel ratio A of the air-fuel mixture supplied into the engine cylinder. /F is the fifth
佽) As shown in the figure, it changes smoothly in a wave-like manner. The dimensions of the air bleed jet 35 and the valve port 36 are such that the valve body 41 of the near solenoid valve 40 is
When the flow area of 6 is repeatedly increased and decreased, the average value of the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder becomes almost the stoichiometric air-fuel ratio as shown in Fig. It is determined to be approximately ±0.2 to ±1.0 with respect to the air-fuel ratio. Therefore, regardless of engine temperature and engine operating conditions, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders is approximately within the range of ±0.2 to ±1.0 with respect to the stoichiometric air-fuel ratio at frequencies from IHz to 2H2. Moreover, since the average value of this air-fuel ratio is maintained within the Winbow Wo range shown in FIG. 1(b), high purification efficiency can be obtained by utilizing the oxygen retention function of the three-way monolith catalyst 5. Furthermore, as shown in FIG. 5(b), since the air-fuel ratio fluctuates smoothly, the combustion state does not change suddenly.
In this way, stable combustion can be ensured at all times regardless of the operating state of the engine.

一方、機関冷却水温が予め定められた温度よりも低いと
きには前述したようにスイッチ52がオフとなり、その
結果ソレノイド43が消勢されるために弁体41が弁ポ
ート36を閉鎖する。斯くしてこのとき過濃な混合気が
機関シリンダ内に供給されるために機関温度が低くても
安定した燃焼を得ることができる。
On the other hand, when the engine cooling water temperature is lower than a predetermined temperature, the switch 52 is turned off as described above, and as a result, the solenoid 43 is deenergized, so that the valve body 41 closes the valve port 36. In this way, since a rich mixture is supplied into the engine cylinder at this time, stable combustion can be achieved even if the engine temperature is low.

このように本発明によれば高価な酸素濃度検出器および
高価な空燃比制御用の電子制御ユニットを用いることな
く、価格の低い気化器を用いて排気ガスを良好に浄化で
きるので排気ガス浄化装置の製造コストを大巾に低減す
ることができる。更に、エアブリード通路に電磁弁を設
けるだけなので構造は極めて簡単であり、従って排気ガ
ス浄化装置の信頼性を向上することができる。また、機
関シリンダ内に供給される混合気の空燃比が滑らかに変
動せしめられるので安定した燃焼を確保することができ
る。また、機関温度が低いときには過濃な混合気が機関
シリンダ内に供給されるために機関温度が低くても安定
した燃焼を得ることができる。
As described above, according to the present invention, exhaust gas can be effectively purified using an inexpensive carburetor without using an expensive oxygen concentration detector or an expensive electronic control unit for air-fuel ratio control. The manufacturing cost can be reduced significantly. Furthermore, since only a solenoid valve is provided in the air bleed passage, the structure is extremely simple, and therefore the reliability of the exhaust gas purification device can be improved. Further, since the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders is smoothly varied, stable combustion can be ensured. Further, when the engine temperature is low, a rich air-fuel mixture is supplied into the engine cylinders, so that stable combustion can be obtained even when the engine temperature is low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は排気ガス浄化効率を示す線図、第2図は機関吸
排気系の側面断面図、第3図は第2図の矢印■に溢って
みた平面図、第4図はサクションピストンの側面断面図
、第5図は空燃比の変動を示す縮図である。 2・・・気化器、8・・・サクションピストン、9・・
・二1’ル、25・・・燃料通路、28・・・ノズル、
34・・・エアブリード通路、40・・・リニアソレノ
イド弁、54・・・温度センサ。 特許出願人 トヨタ自動車株式会社 特許出願代理人 弁理士 青 木   朗 弁理士西舘和之 弁理土中山恭介 弁理士 山 口 昭 之
Figure 1 is a diagram showing exhaust gas purification efficiency, Figure 2 is a side cross-sectional view of the engine intake and exhaust system, Figure 3 is a plan view overflowing the arrow ■ in Figure 2, and Figure 4 is the suction piston. The side sectional view of FIG. 5 is a microcosm showing the fluctuation of the air-fuel ratio. 2... Carburetor, 8... Suction piston, 9...
・21'le, 25...Fuel passage, 28...Nozzle,
34... Air bleed passage, 40... Linear solenoid valve, 54... Temperature sensor. Patent applicant Toyota Motor Corporation Patent application agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney Kyosuke Tsuchinakayama Patent attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] 機関吸気通路に気化器を取付けると共に機関排気通路に
三元触媒コンバータを取付け、該気化器の燃料通路にエ
アブリード通路を連結して該エアブリード通路から燃料
通路内に空気を供給するようにした内燃機関においてバ
上記エアブリード通路内に該エアブリード通路をほぼI
Hzから2−Hzの一定周波数で開閉する電磁弁を配置
し、該エアブリード通路を開閉した際に空燃比が平均値
に対してほぼ±0.2から±1,0の間で周期的に変動
するようにエアブリード通路の流れ抵抗を定めると共に
上記空燃比の平均値がほぼ理論空燃比となるように気化
器を設定し、更に機関温度を検出する温度センサを上記
電磁弁に接続して機関温度が予め定められた温度以下の
ときに該電磁弁を閉鎖するようにした内燃機関の排気ガ
ス浄化装置。
A carburetor is installed in the engine intake passage, a three-way catalytic converter is installed in the engine exhaust passage, and an air bleed passage is connected to the fuel passage of the carburetor, so that air is supplied from the air bleed passage into the fuel passage. In an internal combustion engine, the air bleed passage is located within the air bleed passage above the bar.
A solenoid valve that opens and closes at a constant frequency of Hz to 2-Hz is arranged, and when the air bleed passage is opened and closed, the air-fuel ratio periodically changes between approximately ±0.2 and ±1.0 with respect to the average value. The flow resistance of the air bleed passage is determined so as to fluctuate, and the carburetor is set so that the average value of the air-fuel ratio is approximately the stoichiometric air-fuel ratio, and a temperature sensor for detecting the engine temperature is connected to the solenoid valve. An exhaust gas purification device for an internal combustion engine, which closes the solenoid valve when the engine temperature is below a predetermined temperature.
JP57203717A 1982-11-22 1982-11-22 Exhaust-gas purifier for internal-combustion engine Pending JPS5993950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57203717A JPS5993950A (en) 1982-11-22 1982-11-22 Exhaust-gas purifier for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57203717A JPS5993950A (en) 1982-11-22 1982-11-22 Exhaust-gas purifier for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS5993950A true JPS5993950A (en) 1984-05-30

Family

ID=16478679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57203717A Pending JPS5993950A (en) 1982-11-22 1982-11-22 Exhaust-gas purifier for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5993950A (en)

Similar Documents

Publication Publication Date Title
US3942493A (en) Fuel metering system
JPS5993950A (en) Exhaust-gas purifier for internal-combustion engine
US4450684A (en) Exhaust gas cleaning system for internal combustion engine
JPS597723A (en) Exhaust gas purifier of internal-combustion engine
JPS5910724A (en) Exhaust emission control device for internal-combustion engine
JPS5934456A (en) Exhaust gas purifier for internal combustion engine
JPS5934468A (en) Exhaust gas purifier for internal combustion engine
JPS5993952A (en) Exhaust-gas purifier for internal-combustion engine
US4512312A (en) Variable venturi-type carburetor
JPS5934457A (en) Exhaust gas purifier for internal combustion engine
JPS5993951A (en) Exhaust-gas purifier for internal-combustion engine
JPS5993949A (en) Exhaust-gas purifier for internal-combustion engine
JPS5912114A (en) Exhaust gas purifying device of internal combustion engine
JPS5934460A (en) Exhaust gas purifier for internal combustion engine
JPS5934452A (en) Exhaust gas purifier for internal combustion engine
JPS5934461A (en) Exhaust gas purifier for internal combustion engine
JPS5934466A (en) Exhaust gas purifier for internal combustion engine
JPS5928013A (en) Purifier for exhaust gas of internal combustion engine
US4191013A (en) Device for purifying exhaust gases from internal combustion engine
JPS5934459A (en) Exhaust gas purifier for internal combustion engine
JPS597724A (en) Exhaust gas purifier of internal-combustion engine
JPS5910725A (en) Exhaust gas purifying device for internal-combustion engine
JPS5934464A (en) Exhaust gas purifier for internal combustion engine
JPS5934465A (en) Exhaust gas purifier for internal combustion engine
JPS5996418A (en) Exhaust gas purifying device of internal-combustion engine