JPS5934468A - Exhaust gas purifier for internal combustion engine - Google Patents

Exhaust gas purifier for internal combustion engine

Info

Publication number
JPS5934468A
JPS5934468A JP14481082A JP14481082A JPS5934468A JP S5934468 A JPS5934468 A JP S5934468A JP 14481082 A JP14481082 A JP 14481082A JP 14481082 A JP14481082 A JP 14481082A JP S5934468 A JPS5934468 A JP S5934468A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
passage
engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14481082A
Other languages
Japanese (ja)
Inventor
Takashi Kato
孝 加藤
Takaaki Ito
隆晟 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP14481082A priority Critical patent/JPS5934468A/en
Publication of JPS5934468A publication Critical patent/JPS5934468A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/12Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves
    • F02M7/14Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle
    • F02M7/16Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle operated automatically, e.g. dependent on exhaust-gas analysis
    • F02M7/17Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle operated automatically, e.g. dependent on exhaust-gas analysis by a pneumatically adjustable piston-like element, e.g. constant depression carburettors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/23Fuel aerating devices
    • F02M7/24Controlling flow of aerating air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Abstract

PURPOSE:To obtain high output power, by detecting the high-load operation of an engine to close a solenoid valve in an air bleed passage during said operation to supply a too thick mixture into the cylinder of the engine. CONSTITUTION:When a throttle valve 11 is almost fully opened, namely, high- load operation such as full-load operation is performed, a throttle switch 54 is turned off so that an analogue switch 52 is also turned off. Consequently, an electrical current to a solenoid 43 is cut off to close a valve port 37 in an air bleed passage 35 to feed a too thick mixture into an engine cylinder so that high output power is obtained.

Description

【発明の詳細な説明】 (1)             A^r本発明は内燃
機関の排気ガス浄化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) A^r The present invention relates to an exhaust gas purification device for an internal combustion engine.

排気ガス中の有害三成分HC,COおよびNOx 7f
同時に低減することのできる触媒として、三元触媒が知
られている。この三元触媒の浄化効率Rは第1 (a)
図に示されるように空燃比A/Fがは埋理論空燃比であ
るときに最も高くなり、例えば80パ一セント以上の浄
化効率R’に得ることのできる空燃比領域は空燃比が0
.06程度の狭い巾である。
Three harmful components HC, CO and NOx in exhaust gas 7f
A three-way catalyst is known as a catalyst that can reduce the amount of water at the same time. The purification efficiency R of this three-way catalyst is the first (a)
As shown in the figure, the air-fuel ratio A/F is highest when it is the buried stoichiometric air-fuel ratio.
.. It has a narrow width of about 0.06 mm.

通常、このように80パ一セント以上の浄化効率を得る
ことのできる空燃比領域をウィンドつWと称する。従っ
て、三元触媒を用いて排気ガス中の有害三成分を開時に
低減するためにに空燃比をこの狭いウィンドウW内に常
時に維持しなければならない。このために従来の排気ガ
ス浄化装置では、空燃比が理論空燃比よりも大きいか7
4%さいか全判別可能な酸素濃度検出器を機関排気通路
に取付け、この酸素濃度検出器の出力信号に基いて空燃
比かウィンドウW内の空燃比となるように制御している
。しかしながらこのよつな酸素濃度検出器音用いた排気
ガス浄化装部では高価な酸素濃度検出器(2) および9燃比制御のための高価な電子制御ユニット全必
要とするために排気ガス浄化装置の製造コストが高騰す
るという問題がある0 ところが最近に’&ッて、5AEpaperNo。
Usually, the air-fuel ratio range in which a purification efficiency of 80 percent or more can be obtained is called a window. Therefore, in order to reduce the three harmful components in the exhaust gas during opening using a three-way catalyst, the air-fuel ratio must be maintained within this narrow window W at all times. For this reason, in conventional exhaust gas purification devices, the air-fuel ratio is higher than the stoichiometric air-fuel ratio.
An oxygen concentration detector capable of determining 4% or more is installed in the engine exhaust passage, and the air-fuel ratio is controlled to be within the window W based on the output signal of this oxygen concentration detector. However, this type of exhaust gas purification system using oxygen concentration detector sound requires an expensive oxygen concentration detector (2) and an expensive electronic control unit for fuel ratio control. There is a problem of rising manufacturing costs.However, recently, 5AEpaperNo.

7、60201号、或いは特公昭56−4741号公報
に記載されているように三元触媒の機能が次第に解明さ
れ、三元触媒が酸素保持機能全有することが判明したの
である。即ち、空燃比が理論空燃比に対してリーン側に
あるときには三元触媒がNOxから酸素を奪い取ってN
Ox全還元させると共にこの奪い取った酸素を保持し、
空燃比が理論空燃比よジもりシチ側になると保持した酸
素を放出してCO,i(Cの酸化を行なうのである。従
って空燃比を成る基準空燃比に対してリーン側とリッチ
側に交互に変動させると基準空燃比が理@空燃比からず
れたとしても上述の酸素保持機能によりNOxの還元作
用訃よびCo、HCの酸化作用が促進されて高い浄化効
率を得ることができるO第1図(b)は空燃比を周波数
I Hzで基準空燃比に対して±1.0だけ変動させた
場合の基準空燃比A/Fの(3) ウィンドウW。全示している。第1 (a)図および第
1(b)図から仝燃比全一定周波数で変動させた場合に
はウィンドウWoが広くなることがわかる。このことに
、仝燃比全一定周期で変動させれば基準空燃比が理論空
燃比から多少ずれていたとしても高い浄化効率が得られ
ること全意味している。−万、空燃比の変動周波数を低
くすると、即ち空燃比の変動周期を長くすると三元触媒
の酸素保持能力が飽和するために酸素保持機能に基づく
酸化還元能力が低下し、三元触媒の浄化効率が低下する
As described in No. 7, No. 60201 and Japanese Patent Publication No. 56-4741, the function of the three-way catalyst was gradually elucidated, and it was found that the three-way catalyst had all the oxygen retention functions. In other words, when the air-fuel ratio is on the lean side with respect to the stoichiometric air-fuel ratio, the three-way catalyst takes oxygen from NOx and
It completely reduces Ox and retains this stolen oxygen.
When the air-fuel ratio becomes closer to the stoichiometric air-fuel ratio, the retained oxygen is released to oxidize CO,i (C. Even if the reference air-fuel ratio deviates from the normal air-fuel ratio, the above-mentioned oxygen retention function promotes the reduction of NOx and the oxidation of Co and HC, resulting in high purification efficiency. Figure (b) shows the (3) window W of the reference air-fuel ratio A/F when the air-fuel ratio is varied by ±1.0 with respect to the reference air-fuel ratio at a frequency of I Hz. ) and Figure 1(b), it can be seen that when the fuel-fuel ratio is varied at a constant frequency, the window Wo becomes wider.In addition, if the fuel-fuel ratio is varied at a constant frequency, the reference air-fuel ratio is This means that high purification efficiency can be obtained even if there is a slight deviation from the air-fuel ratio. - If the frequency of fluctuation of the air-fuel ratio is lowered, that is, the period of fluctuation of the air-fuel ratio is lengthened, the oxygen retention capacity of the three-way catalyst will increase. saturation, the redox ability based on the oxygen retention function decreases, and the purification efficiency of the three-way catalyst decreases.

第1(C)図はこのことを明瞭に示している。第1(C
)図において縦軸Rは浄化効率全示し、横軸F泣空燃比
の変動周仮数?示す。′f、た、空燃比の変動中を小さ
くすると空燃比をリッチ側とリーン側に交互に変動でき
なくなるのでウィンドウの巾は狭くなる。従ってウィン
ドウの中金広くするには最適な空燃比の変動周期と変動
中が存在することがわかる。
Figure 1(C) clearly shows this. 1st (C
) In the figure, the vertical axis R shows the total purification efficiency, and the horizontal axis F shows the fluctuation mantissa of the air-fuel ratio. show. If the air-fuel ratio is made smaller, the air-fuel ratio cannot be varied alternately between the rich side and the lean side, so the width of the window becomes narrower. Therefore, it can be seen that there are optimal air-fuel ratio fluctuation periods and fluctuation periods in order to widen the window.

上述のように基準空燃比に対する空燃比の変動中および
変動周波数全適切に選定すればウィンド(4) つが広くなり、従って基準空燃比が理論空燃比に対して
多少変動しても高い浄化効率を得ることができる。この
ことは、基準空燃比の変動中の狭い燃料供給系を用いれ
ばrツ累濃度検出器の出力信号によるフィードバック制
御を用いなくても高い浄化効率を得ることができること
全意味している0無論、燃料供給系として燃料噴射弁音
用いれば基準′g!燃此の変動巾盆狭くすることができ
るが燃料噴射装置は高価であるために機関の製造コスト
が高くなってし筐う0従って機関の装造コスト金低く抑
えるためには気化器を用いることが必要となる。しかし
ながら従来の固定ベンチュリ型気化器では基準空燃比の
変動中が広く、また従来の可変ベンチ、 IJ型久化器
では加速時に、或いは機関温度によって基準空燃比が大
きく変動するのでこれらの固定ベンチュリ型気化器、或
いに可変ベンチュリ型気化器を用いても高い浄化効率を
得るのは困難である。
As mentioned above, if the air-fuel ratio fluctuates relative to the standard air-fuel ratio and all the fluctuating frequencies are appropriately selected, the window (4) can be widened, and therefore high purification efficiency can be achieved even if the standard air-fuel ratio slightly fluctuates from the stoichiometric air-fuel ratio. Obtainable. Of course, this means that by using a narrow fuel supply system during fluctuations in the reference air-fuel ratio, high purification efficiency can be obtained without using feedback control based on the output signal of the r-cumulative concentration detector. , if the fuel injection valve sound is used as the fuel supply system, the reference 'g! Although the variable width of the combustion chamber can be narrowed, the fuel injection system is expensive, which increases the manufacturing cost of the engine.Therefore, in order to keep the engine installation cost low, a carburetor is used. Is required. However, in conventional fixed venturi type carburetors, the reference air-fuel ratio fluctuates widely, and in conventional variable bench and IJ type carburetors, the reference air-fuel ratio varies greatly during acceleration or depending on engine temperature. It is difficult to obtain high purification efficiency even when using a vaporizer or a variable venturi type vaporizer.

本発明は酸素濃度検出器音用いることなく、価格の低い
気化器を用いて高い排気ガス浄化効率を確保することの
できる排気ガス浄化装置を提供することにある。
An object of the present invention is to provide an exhaust gas purification device that can ensure high exhaust gas purification efficiency using an inexpensive carburetor without using an oxygen concentration detector.

以下、砲附図面を釡照して本発明の詳細な説明する0 第2図を参照すると、1μ吸気マニホルド、2は吸気マ
ニホルドl上に取付けられた可変ベンチュリ型気化器、
3は排気マニホルド、4は触媒コンバータ全夫々示し、
触媒コンバータ4の内部には三元モノリス触媒5が配置
される。可変ベンチ=り型気化器2は気化器ハウジング
6と、ノ1ウジング6内を@直方間に延びる吸気通路7
と、吸気通路7内を横方向に移動するサクションピスト
ン8と、サクションピストン8の先端面に取付けられた
ニードル9と、サクションピストン3の先端面に対向し
て吸気道w17の内壁面上に固定されたスペーサ10と
、サクションピストン8下流の吸気通路7内に設けられ
たスロットル弁11と、70−ト室12とを具備し、サ
クションピストン8の先端面とスペーサ10間にはベン
テユIJ @ L 3が形成される。気化器ハウジング
6には中空円筒状のケーシング14が固定され、このケ
ーシング14にはケーシング14の内部でケーシング1
4の軸線方向に延びる案内スリーブ15が取付けられる
。案内スリーブ15内には多数のボール16會備えた軸
受17が挿入され、また案内スリーブ15の外端部は盲
蓋18によって閉鎖される。−万、サクションピストン
8に鉱案内ロッドエ9が固定され、この案内ロッド19
は軸受17内に案内ロッド19の軸線方向に移動可能に
挿入される。
The present invention will be described in detail below with reference to the attached drawings. Referring to FIG. 2, a 1μ intake manifold, 2 a variable venturi carburetor mounted on the intake manifold l,
3 shows the exhaust manifold, 4 shows the catalytic converter,
A three-way monolith catalyst 5 is arranged inside the catalytic converter 4 . The variable bench type carburetor 2 has a carburetor housing 6 and an intake passage 7 extending in the nozzle 6 in a rectangular direction.
, a suction piston 8 that moves laterally within the intake passage 7, a needle 9 attached to the tip surface of the suction piston 8, and a needle 9 fixed on the inner wall surface of the intake passage w17 opposite to the tip surface of the suction piston 3. The spacer 10 is provided with a spacer 10, a throttle valve 11 provided in the intake passage 7 downstream of the suction piston 8, and a 70-tooth chamber 12. 3 is formed. A hollow cylindrical casing 14 is fixed to the carburetor housing 6 , and a casing 1 is attached to the inside of the casing 14
A four axially extending guide sleeve 15 is mounted. A bearing 17 with a number of balls 16 is inserted into the guide sleeve 15, and the outer end of the guide sleeve 15 is closed by a blind cover 18. - 10,000, a mineral guide rod 9 is fixed to the suction piston 8, and this guide rod 19
is inserted into the bearing 17 so as to be movable in the axial direction of the guide rod 19.

このようにサクションピストン8は軸受17を介してケ
ーシング14により支持されるのでサクションピストン
8はその軸線方向に清らかに移動することができる。ケ
ーシング14の内部ハサクションピストン8によって負
圧室20と大気圧室21とに分割され、負王室20内に
はサクションピストン8を常時ベンチュリ部13に向け
て押圧する圧縮ばね22が挿入される。負王室20はサ
クションピストン8に形成されたサクション孔2苧を介
してベンチュ!7 B’li 13に連結され、大気圧
室21は気化器ハウジング6に形成された空気(γ) 孔24を介してザクジョンピストン8上流の吸気通路7
内に連結される。
Since the suction piston 8 is thus supported by the casing 14 via the bearing 17, the suction piston 8 can move smoothly in its axial direction. The interior of the casing 14 is divided into a negative pressure chamber 20 and an atmospheric pressure chamber 21 by the suction piston 8, and a compression spring 22 is inserted into the negative chamber 20 to constantly press the suction piston 8 toward the venturi portion 13. The negative rotor 20 is vented through two suction holes formed in the suction piston 8! 7 B'li 13, and the atmospheric pressure chamber 21 is connected to the intake passage 7 upstream of the suction piston 8 through the air (γ) hole 24 formed in the carburetor housing 6.
connected within.

一万、気化器ハウジング6内にはニードル9が侵入可能
なようにニードル9の軸線方向に延びる燃料通路25が
形成され、この燃料通路25内には計量ジェット26が
設けられる。計量ジェット26上流の燃料通路25に下
方に延びる燃料パイプ27を介してフロート室12に連
結され、フロート室12内の燃料にこの燃料パイプ27
會介して燃料通路25内に送り込まれる。更に、スペー
サ10には燃料通路25と共軸的に配置された中壁円筒
状のノズル28が固定される。このノズル28はスペー
サ10の内壁面からベンチュリ部13内に突出し、しか
もノズル28の先端部の下半分は下半分から更にサクシ
ョンピストン8に向けて突出している。ニードル9はノ
ズル28および計量ジェット26内を貫通して延び、燃
料にニードル9と計量ジェット26間に形成される環状
間隙により計量された後にノズル28から吸気通路7内
に供給される。
A fuel passage 25 extending in the axial direction of the needle 9 is formed in the carburetor housing 6 so that the needle 9 can enter therein, and a metering jet 26 is provided in the fuel passage 25. The fuel passage 25 upstream of the metering jet 26 is connected to the float chamber 12 via a fuel pipe 27 extending downward, and the fuel in the float chamber 12 is connected to the fuel pipe 27.
It is sent into the fuel passage 25 through the communication. Further, a nozzle 28 having a cylindrical inner wall and arranged coaxially with the fuel passage 25 is fixed to the spacer 10 . This nozzle 28 protrudes into the venturi portion 13 from the inner wall surface of the spacer 10, and the lower half of the tip of the nozzle 28 further protrudes from the lower half toward the suction piston 8. The needle 9 extends through the nozzle 28 and the metering jet 26 and the fuel is metered by the annular gap formed between the needle 9 and the metering jet 26 before being fed from the nozzle 28 into the intake passage 7 .

(8) 第2図に示されるようにスペーサ10の上端部にに吸気
通路7内に向けて水平方向に突出する隆起壁29が形成
され、この隆起壁29とサクションピストン8の先端部
間において流量制御が行なわれる。機関運転が開始され
ると空気に吸気通路7内金下方に向けて流れる。このと
き空気流にサクションピストン8と隆起壁29間におい
て絞られるためにベンチュIJ ff1l 13には負
圧が発生し、この負圧がサクション孔23′f、介して
負圧M2O内に導びかれる0サクシヨンピストン8は負
圧室20と大気圧室21との圧力差が圧縮ばね22のば
ね力により定まるほぼ一定圧となるように、即ちベンチ
ーリ部13内の負圧がほぼ一定となるように移動する0 第3図および第4図を参照すると、ニードル9の上流側
に位置するサクションピストン先端面部分はその全体が
ニードル9の取付端面30からニードル9の先端部に向
けて隆起しており、このサクシコンピストン先端面部分
上には吸気通路7の軸線方向に延びる凹#ll31が形
成されるOこの凹溝31の上流側端部31aはU字形断
面形状をなすと共にニードル取付端面30よりもニード
ル9の先端部に近い側に位置して2す、残りの凹#4部
分31bは上流側端部31aからニードル取付端面30
までほぼまっすぐに延びる。更に、ニードル9よpも上
N、側に位置するサクシジンピストン先端筒部分の断面
形状は凹溝31からベンテーリ部13に向けて拡開する
V字形金なしており、従ってこのサクションピストン先
ims分は凹溝31に向けて傾斜する一対の傾斜壁面部
32a。
(8) As shown in FIG. 2, a raised wall 29 is formed at the upper end of the spacer 10 and projects horizontally into the intake passage 7, and between this raised wall 29 and the tip of the suction piston 8. Flow rate control is performed. When engine operation is started, air flows toward the inner wall of the intake passage 7 and downward. At this time, since the air flow is constricted between the suction piston 8 and the raised wall 29, negative pressure is generated in the vent IJ ff1l 13, and this negative pressure is guided into the negative pressure M2O through the suction hole 23'f. The zero suction piston 8 is designed so that the pressure difference between the negative pressure chamber 20 and the atmospheric pressure chamber 21 becomes a substantially constant pressure determined by the spring force of the compression spring 22, that is, so that the negative pressure inside the ventili portion 13 becomes substantially constant. 0 Referring to FIGS. 3 and 4, the entire tip surface of the suction piston located upstream of the needle 9 is raised from the mounting end surface 30 of the needle 9 toward the tip of the needle 9. A recess #ll31 extending in the axial direction of the intake passage 7 is formed on the tip end surface of the SAXICON piston.The upstream end 31a of the recess groove 31 has a U-shaped cross section and is connected to the needle mounting end surface 30. The remaining concave #4 portion 31b extends from the upstream end 31a to the needle mounting end surface 30.
It extends almost straight up to. Furthermore, the cross-sectional shape of the tip tube of the suction piston located on the upper N side of the needle 9 is a V-shape that expands from the concave groove 31 toward the ventilator portion 13, so that the suction piston tip ims A pair of inclined wall surface portions 32a are inclined toward the groove 31.

32bを有する。32b.

第3図かられかるように吸入空気量が少ないときには隆
起壁29、傾斜壁部分32a、32b。
As can be seen from FIG. 3, when the amount of intake air is small, the raised wall 29 and the inclined wall portions 32a and 32b.

および凹溝上流側端部31aによってほぼ二等辺三角形
状の吸入空気制御絞シ8Kが形成される。
A substantially isosceles triangular intake air control throttle 8K is formed by the upstream end portion 31a of the concave groove.

このように吸入空気制御絞り部に’lk形成することに
よってサクションピストン8のリフト縫が吸入空気制御
絞り部にの開口面積に比例するようになり、従ってサク
ションピストン8のリフ)−[tU吸入空気量の増大に
応じて滑らかに増大するよりになる。更に、サクション
ピストン8は軸受17によって支持されているので吸入
空気量の変化に対して応答性よく移動し、斯くしてサク
ションピストン8は吸入空気量が増大したときに吸入空
気量の増大に応答性よくかつ清らかに移動する。その結
果、刀l速運転時のように吸入空気量が急激に変化する
場合であってもサクションピストン8のり7トが吸入空
気量の増大に比例して増大するためにノズル28から供
給される燃料の量は吸入空気蓋に常時比例することにな
る。更に、第3図かられかるように吸入空気量が少ない
ときにμ吸入空気が吸気通路7の中央部全流通せしめら
れ、その結果ノズル28から供給された燃料は吸入空気
流と共に即座に機関シリンダ内に供給されるので吸入空
気量が少ないときであってもノズル28から供給された
燃料は即座に機関シリンダ内に供給される。従って、加
速運転時のよりに吸入空気蓋が急激に増大しても上述し
たようにノズル28から供給される燃料の量が吸入空気
量に比例し、しかもノズル28から供給された燃料が即
座に機関シリンダ内に供給されるので機関シリンダ内に
供給される混合気の空燃比は吸入空気量が急激に変化し
てもほぼ一定に維持される。また、サクションピストン
8は軸受17によって支持されているので機関温度がサ
クションピストン8の移動に影響を与えることがなく、
斯くしてサクションピストン8は機関温度とは無関係に
吸入空気量の変化に応答性よく移動することができる。
By forming 'lk in the intake air control throttle part in this way, the lift seam of the suction piston 8 becomes proportional to the opening area of the intake air control throttle part, and therefore the lift of the suction piston 8) - [tU intake air It will increase smoothly as the amount increases. Furthermore, since the suction piston 8 is supported by the bearing 17, it moves with good response to changes in the amount of intake air, and thus the suction piston 8 responds to increases in the amount of intake air when the amount of intake air increases. Move gracefully and cleanly. As a result, even when the amount of intake air changes rapidly, such as during high-speed operation, the amount of suction piston 8 increases in proportion to the increase in the amount of intake air, so that it is supplied from the nozzle 28. The amount of fuel will always be proportional to the intake air cap. Furthermore, as can be seen from FIG. 3, when the amount of intake air is small, the μ intake air is made to flow through the entire center of the intake passage 7, and as a result, the fuel supplied from the nozzle 28 immediately flows into the engine cylinder together with the intake air flow. Therefore, even when the amount of intake air is small, the fuel supplied from the nozzle 28 is immediately supplied into the engine cylinder. Therefore, even if the intake air cap increases rapidly during acceleration, the amount of fuel supplied from the nozzle 28 is proportional to the amount of intake air as described above, and moreover, the fuel supplied from the nozzle 28 is immediately Since the air-fuel mixture is supplied into the engine cylinder, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder is maintained substantially constant even if the amount of intake air changes rapidly. Furthermore, since the suction piston 8 is supported by the bearing 17, the engine temperature does not affect the movement of the suction piston 8.
In this way, the suction piston 8 can move with good responsiveness to changes in the amount of intake air, regardless of the engine temperature.

斯くして、第2図に示す可変ベンチュリ型気化器2を用
いると、機関温度および機関運転状態にかかわらずに機
関シリンダ内に供給される混合気の空燃比をほぼ一足値
、例えばほぼ理論空燃比に維持することができる。
In this way, when the variable venturi type carburetor 2 shown in FIG. 2 is used, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders can be kept at approximately the same value, for example, approximately at the stoichiometric value, regardless of the engine temperature and engine operating conditions. fuel ratio can be maintained.

第2図を参照すると、計量ジェット26の周囲には環状
空気室33が形成され、この環状空気室33に通ずる複
数個のエアブリード孔34が計量ジェット26の内周壁
面上に形成される。環状空気室33はエアブリード通路
35およびエアブリードジェット36全介して隆起壁2
9上流の吸気通路7内に連結され、このエアブリード通
路35内にはりニアソレノイド弁40によって開口面積
が制御される弁ボート37が形成される。
Referring to FIG. 2, an annular air chamber 33 is formed around the metering jet 26, and a plurality of air bleed holes 34 communicating with the annular air chamber 33 are formed on the inner peripheral wall surface of the metering jet 26. The annular air chamber 33 is connected to the raised wall 2 through the air bleed passage 35 and the air bleed jet 36.
A valve boat 37 is connected to the intake passage 7 upstream of the air bleed passage 35 and has an opening area controlled by a solenoid valve 40 formed within the air bleed passage 35 .

リニアソレノイド升40は弁ボート37の開口面積を制
御する弁体41と、弁体41に連結された可動プランジ
−r42と、可動プランジャ42′fc吸引するだめの
ソレノイド43と全具備し、ソレノイド43はソレノイ
ド駆動回路50に接続される。このリニアソレノイド升
40でμソレノイド43を流れる電流に比例した距離だ
け可動プランジ−r42が移動し、ソレノイド43を流
れる電流が増大するにつれて弁体41が右方に移動する
The linear solenoid box 40 is fully equipped with a valve body 41 that controls the opening area of the valve boat 37, a movable plunger 42 connected to the valve body 41, and a solenoid 43 that sucks the movable plunger 42'fc. is connected to the solenoid drive circuit 50. This linear solenoid cell 40 moves the movable plunger r42 by a distance proportional to the current flowing through the μ solenoid 43, and as the current flowing through the solenoid 43 increases, the valve body 41 moves to the right.

従って、弁ボート37の開口面積はソレノイド43全流
れる電流に比例して変化することになる。
Therefore, the opening area of the valve boat 37 changes in proportion to the current flowing through the solenoid 43.

ソレノイド駆動向@SOは第5図(a)に示すよりなI
Hzから2Hzの周波数の鋸波状電圧を発生する鋸歯発
生器51と、鋸波発生器51の出力端子に接続されたア
ナログスイッチ52と、アナログスイッチ52の出力端
子に接続された電圧電流変換器s3からなり、電圧電流
変換器53の出力端子はソレノイド43に接続される。
The solenoid drive direction @SO is as shown in Figure 5(a).
A sawtooth generator 51 that generates a sawtooth voltage with a frequency of Hz to 2Hz, an analog switch 52 connected to the output terminal of the sawtooth generator 51, and a voltage-current converter s3 connected to the output terminal of the analog switch 52. The output terminal of the voltage-current converter 53 is connected to the solenoid 43.

−万、スロットル弁11にはスロットルスイッチ54の
開閉動作に応動するスロットルスイッチ54が取付けら
れる。このスロットルスイッチ54はスロットル弁がほ
ぼ全開になったとき、即ちほぼ全負荷運転のような高負
荷運転時にオフとなり、その他の@号負荷運転時にはオ
ンとなる。アナログスイッチ52にスロットルスイッチ
54の出力電圧によって制御され、スロットルスイッチ
54がオンのときに導通状態になる。
- 10,000, a throttle switch 54 is attached to the throttle valve 11 and responds to opening/closing operations of the throttle switch 54. This throttle switch 54 is turned off when the throttle valve is almost fully opened, that is, during high load operation such as almost full load operation, and turned on during other @ load operation. It is controlled by the analog switch 52 and the output voltage of the throttle switch 54, and becomes conductive when the throttle switch 54 is on.

上述したように部分負荷運転時にはアナログスイッチ5
2が導通状態となるので鋸歯発生器51の出力電圧が電
圧電流変換器53に2いて対応する電流に変換されてソ
レノイド43に供給される。
As mentioned above, during partial load operation, analog switch 5
2 becomes conductive, the output voltage of the sawtooth generator 51 is sent to the voltage-current converter 53, where it is converted into a corresponding current and supplied to the solenoid 43.

前述したように弁ボート37の開口面積はソレノイド4
3全流れる電流に比例して変化し、ソレノイド43には
第5(a)図に示すよりな″を流が供給されるので升ボ
ート37の開口面積に鋸閲状に変化することがわかる。
As mentioned above, the opening area of the valve boat 37 is larger than that of the solenoid 4.
It can be seen that the opening area of the boat 37 changes in a sawtooth pattern because the solenoid 43 is supplied with a current as shown in FIG. 5(a).

このよりに弁ボート37の開口面積が鋸歯状に変化する
とエアブリード孔34から燃料通路25内に供給される
空気量も鋸歯状に変化するので機関シリンダ内に供給さ
れる混合気の空燃比A/Fは第5(b)図に示されるよ
うに波状に滑らかに変化することになる。エアブリード
ジェット36および弁ボート37の寸法ハリニアソレノ
イド弁40の弁体41が弁ボート37の流れ面積全繰返
し増大減少したときに機関シリンダ内に供給される混合
気の空燃比の平均値が第5(b)図に示されるようにほ
ぼ理論空燃比となり、空燃比の変動中が理論空燃比に対
してほぼ±0.2から±1.0となるように定められる
0従って機関温度および機関運転状態にかかわらずに機
関シリンダ内に供給される混合気の空燃比はIHzから
2Hzの周波数でもってほぼ理論空燃比に対して±0.
2から±1.0の範囲で変動せしめられ、しかもこの空
燃比の平均値は第1(b)図のウィンドウW。同に維持
されるので三元モノリス触媒5の酸素保持機能を利用し
て高い浄化効率を得ることができる。更に、第5(b)
図に示されるように空燃比が清らかに変動するので燃焼
状態が急激に変化することがなく、斯くして機関の運転
状態にかかわらずに常時安定した燃焼全確保することが
できる。
As a result, when the opening area of the valve boat 37 changes in a sawtooth pattern, the amount of air supplied from the air bleed hole 34 into the fuel passage 25 also changes in a sawtooth pattern, so that the air-fuel ratio A of the air-fuel mixture supplied into the engine cylinder /F changes smoothly in a wave-like manner as shown in FIG. 5(b). Dimensions of air bleed jet 36 and valve boat 37 When the valve body 41 of the linear solenoid valve 40 repeatedly increases and decreases the flow area of the valve boat 37, the average value of the air-fuel ratio of the mixture supplied into the engine cylinder is As shown in Figure 5(b), the air-fuel ratio is approximately stoichiometric, and the air-fuel ratio is approximately ±0.2 to ±1.0 with respect to the stoichiometric air-fuel ratio during fluctuations. Regardless of the operating condition, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders is within ±0.0% of the stoichiometric air-fuel ratio at frequencies from IHz to 2Hz.
2 to ±1.0, and the average value of this air-fuel ratio is window W in FIG. 1(b). Since the same is maintained, high purification efficiency can be obtained by utilizing the oxygen retention function of the three-way monolith catalyst 5. Furthermore, Section 5(b)
As shown in the figure, since the air-fuel ratio fluctuates clearly, the combustion state does not change suddenly, and thus stable combustion can be ensured at all times regardless of the operating state of the engine.

−万、機関高負荷運転時には前述したようにスロットル
スイッチ54がオフとなるのでアナログスインチ52は
非導通状態となる。その結果、ソレノイド43への電流
の供給が停止されるので弁体41が升ボート37全閉鎖
する。斯くして機関シリンダ内には過濃な混合気が供給
されるために高出力全得ることができる。
- When the engine is operated under high load, the throttle switch 54 is turned off as described above, so the analog switch 52 becomes non-conductive. As a result, the supply of current to the solenoid 43 is stopped, and the valve body 41 completely closes the boat 37. In this way, a rich air-fuel mixture is supplied into the engine cylinders, so that a full high output can be obtained.

このように本発明によれば高価な酸素濃度検出器および
高価な空燃比制御用の電子制御ユニットを用いることな
く、価格の低い気化器を用いて排気ガス全良好に浄化で
きるので排気ガス浄化装置の製造コスh’1大巾に低減
することができる0更に、エアブリード通路に電磁弁そ
設けるだけなので構造は極めて簡単であり、従って排気
ガス浄化装置の信頼性全向上することができる。また、
機関高負荷運転時には過@な混合気が機関シリンダ内に
供給されるので高出力を得ることができる0
As described above, according to the present invention, exhaust gas can be thoroughly purified using an inexpensive carburetor without using an expensive oxygen concentration detector or an expensive electronic control unit for air-fuel ratio control. Furthermore, the structure is extremely simple since only a solenoid valve is provided in the air bleed passage, and therefore the reliability of the exhaust gas purification device can be completely improved. Also,
During high-load engine operation, excess air-fuel mixture is supplied into the engine cylinders, making it possible to obtain high output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は排気ガス浄化効率を示す線図、第2図は機関吸
排気系の1jtU而断面面、第3図は第2図の矢印■に
沿ってみた平面図、第4図はサクションピストンの側面
断面図、第5図は空燃比の変動全示す線図である。 2・・・気化器、     8・・・サクションピスト
ン、9・・・ニードル、    25・・・燃料通路、
28・・・ノズル、    35・・・エアブリード通
路、40・・・リニアソレノイド弁。 特許出願人 トヨタ自動車株式会社 特許出願代理人 弁理士 青水 朗 弁理士 西舘和之 弁理士 中山恭介 弁理士 山口昭之 (゛)−42!
Figure 1 is a diagram showing exhaust gas purification efficiency, Figure 2 is a cross-sectional view of the engine intake and exhaust system, Figure 3 is a plan view taken along the arrow ■ in Figure 2, and Figure 4 is a suction piston. FIG. 5 is a diagram showing all the fluctuations in the air-fuel ratio. 2... Carburetor, 8... Suction piston, 9... Needle, 25... Fuel passage,
28... Nozzle, 35... Air bleed passage, 40... Linear solenoid valve. Patent Applicant: Toyota Motor Corporation Patent Attorney: Akira Aomi, Patent Attorney, Kazuyuki Nishidate, Patent Attorney, Kyosuke Nakayama, Patent Attorney, Akiyuki Yamaguchi (゛)-42!

Claims (1)

【特許請求の範囲】[Claims] 機関吸気通路に気化器を取付けると共に機関排気通路に
三元触媒コンバータを取付け、該気化器の燃料通路にエ
アブリード通路全連結して該エアブリード通路から燃料
通路内に排気を供給するようにした内燃機関において、
上記エアブリード通路内に該エアブリード通路の流れ断
面積をほぼIH2から2Hzの一定周波数でもって変化
させる電磁弁を配置し、該エアブリード通路の流れ断面
積を変化させた際に空燃比が平均値に対してほぼ±0.
2から±1,0の間で周期的に変動すると共に該空燃比
の平均値がほぼ理論空燃比となるようにエアブリード通
路の流路面槓全定め、更に1関高負荷運転を検出0T能
な検出器全具備して機関高負荷運転時に上記電磁弁を閉
弁するようにした内燃機関の排気ガス浄化装置。
A carburetor was installed in the engine intake passage, and a three-way catalytic converter was installed in the engine exhaust passage, and the air bleed passage was fully connected to the fuel passage of the carburetor, so that exhaust gas was supplied from the air bleed passage into the fuel passage. In internal combustion engines,
A solenoid valve that changes the flow cross-sectional area of the air bleed passage at a constant frequency of approximately IH2 to 2 Hz is disposed in the air bleed passage, and when the flow cross-sectional area of the air bleed passage is changed, the air-fuel ratio is adjusted to the average. Approximately ±0.
The flow path surface of the air bleed passage is fully set so that the air-fuel ratio fluctuates periodically between 2 and ±1.0 and the average value of the air-fuel ratio becomes approximately the stoichiometric air-fuel ratio. An exhaust gas purification device for an internal combustion engine, which is equipped with all of the above detectors and closes the solenoid valve when the engine is operated under high load.
JP14481082A 1982-08-23 1982-08-23 Exhaust gas purifier for internal combustion engine Pending JPS5934468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14481082A JPS5934468A (en) 1982-08-23 1982-08-23 Exhaust gas purifier for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14481082A JPS5934468A (en) 1982-08-23 1982-08-23 Exhaust gas purifier for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS5934468A true JPS5934468A (en) 1984-02-24

Family

ID=15370983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14481082A Pending JPS5934468A (en) 1982-08-23 1982-08-23 Exhaust gas purifier for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5934468A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150449A (en) * 1987-12-09 1989-06-13 Kawasaki Steel Corp Nozzle for producing rapidly cooled metal strip
WO1991004399A1 (en) * 1989-09-21 1991-04-04 Robert Bosch Gmbh Process for controlling the air supply to an internal combustion engine of a motor vehicle
CN116164139A (en) * 2023-04-25 2023-05-26 河北安信燃气设备有限公司 Safety cut-off valve for high-pressure gas pipeline

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150449A (en) * 1987-12-09 1989-06-13 Kawasaki Steel Corp Nozzle for producing rapidly cooled metal strip
WO1991004399A1 (en) * 1989-09-21 1991-04-04 Robert Bosch Gmbh Process for controlling the air supply to an internal combustion engine of a motor vehicle
CN116164139A (en) * 2023-04-25 2023-05-26 河北安信燃气设备有限公司 Safety cut-off valve for high-pressure gas pipeline

Similar Documents

Publication Publication Date Title
US3942493A (en) Fuel metering system
US4342443A (en) Multi-stage fuel metering valve assembly
US3796200A (en) Fuel injection apparatus
JPS5934468A (en) Exhaust gas purifier for internal combustion engine
US4079714A (en) Air-fuel mixture supply device of internal combustion engine
US4506644A (en) Exhaust gas-purifying device of an internal combustion engine
JPS5934456A (en) Exhaust gas purifier for internal combustion engine
US4512312A (en) Variable venturi-type carburetor
JPS5910724A (en) Exhaust emission control device for internal-combustion engine
JPS5934455A (en) Exhaust gas purifier for internal combustion engine
JPS5934466A (en) Exhaust gas purifier for internal combustion engine
US4446834A (en) System for feedback control of air-fuel ratio in internal combustion engine
JPS5934461A (en) Exhaust gas purifier for internal combustion engine
JPS5934458A (en) Exhaust gas purifier for internal combustion engine
JPS5934462A (en) Exhaust gas purifier for internal combustion engine
JPS5993951A (en) Exhaust-gas purifier for internal-combustion engine
JPS5934465A (en) Exhaust gas purifier for internal combustion engine
JPS5934464A (en) Exhaust gas purifier for internal combustion engine
JPS5934460A (en) Exhaust gas purifier for internal combustion engine
JPS5934457A (en) Exhaust gas purifier for internal combustion engine
JPS5934467A (en) Exhaust gas purifier for internal combustion engine
JPS5993950A (en) Exhaust-gas purifier for internal-combustion engine
JPS5934463A (en) Exhaust gas purifier for internal combustion engine
JPS5934454A (en) Exhaust gas purifier for internal combustion engine
JPS5993949A (en) Exhaust-gas purifier for internal-combustion engine