JPS5934465A - Exhaust gas purifier for internal combustion engine - Google Patents

Exhaust gas purifier for internal combustion engine

Info

Publication number
JPS5934465A
JPS5934465A JP14480782A JP14480782A JPS5934465A JP S5934465 A JPS5934465 A JP S5934465A JP 14480782 A JP14480782 A JP 14480782A JP 14480782 A JP14480782 A JP 14480782A JP S5934465 A JPS5934465 A JP S5934465A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
negative pressure
passage
drive signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14480782A
Other languages
Japanese (ja)
Inventor
Takashi Kato
孝 加藤
Takaaki Ito
隆晟 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP14480782A priority Critical patent/JPS5934465A/en
Publication of JPS5934465A publication Critical patent/JPS5934465A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/12Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves
    • F02M7/14Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle
    • F02M7/16Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle operated automatically, e.g. dependent on exhaust-gas analysis
    • F02M7/17Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle operated automatically, e.g. dependent on exhaust-gas analysis by a pneumatically adjustable piston-like element, e.g. constant depression carburettors

Abstract

PURPOSE:To secure smooth stationary operation, by connecting a stationary operation detector to a drive signal generation circuit for a solenoid valve for opening and closing an air bleed passage, to cause the circuit to produce a drive signal of second constant frequency in stationary operation to suppress torque fluctuation. CONSTITUTION:When a throttle valve 11 is opened for acceleration, a negative pressure port 60 is opened into an intake passage 7 downstream to the throttle valve to apply negative pressure to the port to intensify the negative pressure in the first chamber 65 of a delay valve 62. However, a check valve 67 is closed so that the negative pressure in a negative pressure chamber 70 remains weak and a movable contact 73 is kept off a fixed contact 74 for a period of time. For the period of the low opening degree of the throttle valve 11 and for the period of time after its opening, a saw-tooth voltage of 1Hz to 2Hz in frequency is applied to a voltage-current converter 55 so that the cross-sectional area of the opening of a valve port 37 changes in a saw-toothed manner in proportion to the electrical current of a solenoid 43. For that reason, the air fuel ratio of a mixture fluctuates smoothly so that the state of combustion does not sharply change. Stable combustion is thus always secured regardless of the operating condition of an engine.

Description

【発明の詳細な説明】 本発明は内燃機関の排気ガス浄化装置に関する。[Detailed description of the invention] The present invention relates to an exhaust gas purification device for an internal combustion engine.

排気ガス中の有害三成分HC,CoおよびNOxを同時
に低減することのできる触媒として、三元触媒が知られ
ている。この三元触媒の浄化効率Rは第1(a)図に示
されるように空燃比N乍がほぼ理論空燃比であるときに
最も高くなシ、例えば80/f−セント以上の浄化効率
Rを得ることのできる空燃比領域は空燃比が0.06程
度の狭い巾である。
A three-way catalyst is known as a catalyst that can simultaneously reduce the three harmful components HC, Co, and NOx in exhaust gas. The purification efficiency R of this three-way catalyst is highest when the air-fuel ratio N is almost the stoichiometric air-fuel ratio, as shown in FIG. The air-fuel ratio range that can be obtained is narrow, with an air-fuel ratio of about 0.06.

通常、このように80パ一セント以上の浄化効率を得る
ことのできる空燃比領域をウィンPつWと称する。従っ
て、三元触媒を用いて排気ガス中の有害三成分を同時に
低減するためには空燃比をこの狭いウィンドウW内に常
時に維持しなければならない、このために従来の排気ガ
ス浄化装置では、空燃比が理論空燃比よりも大きいか小
さいかを判別可能な酸素濃度検出器を機関排気通路に取
付け、この酸素濃度検出器の出力信号に基いて空燃比が
ウィンドウW内の空燃比となるように制御している。し
かしながらこのような酸素濃度検出器を用いた排気ガス
浄化装置では高価な酸素濃度検出器および空燃比制御の
ための高価な電子制御ユニットを必要とするために排気
ガス浄化装置の製造コストが高騰するという問題がある
Usually, the air-fuel ratio range in which a purification efficiency of 80 percent or more can be obtained is referred to as win P and W. Therefore, in order to simultaneously reduce the three harmful components in exhaust gas using a three-way catalyst, the air-fuel ratio must be maintained within this narrow window W at all times.For this reason, in conventional exhaust gas purification devices, An oxygen concentration detector capable of determining whether the air-fuel ratio is larger or smaller than the stoichiometric air-fuel ratio is installed in the engine exhaust passage, and the air-fuel ratio is adjusted to be within the window W based on the output signal of this oxygen concentration detector. is controlled. However, an exhaust gas purification device using such an oxygen concentration detector requires an expensive oxygen concentration detector and an expensive electronic control unit for air-fuel ratio control, which increases the manufacturing cost of the exhaust gas purification device. There is a problem.

ところが最近になって、SAE paper No、 
760201号、或いは特公昭56−4741号公報に
記載されているように三元触媒の機能が次第に解明され
三元触媒が酸素保持機能を有することが判明したのであ
る。即ち、空燃比が理論空燃比に対してリーン側にある
ときには三元触媒がNOxから酸素を奪い取ってNOx
を還元させると共にこの奪い取った酸素を保持し、空燃
比が理論空燃比よりもリッチ側になると保持した酸素を
放出してCo、HCの酸化を行なうのである。従って空
燃比を成る基準空燃比に対してリーン側とリッチ側に交
互に変動させると基準空燃比が理論空燃比からずれたと
しても上述の酸素保持機能により NOxの還元作用お
よびco 、 HCの酸化作用が促進されて高い浄化効
率を得ることができる。第1図(b)は空燃比を周波数
I Hzで基準空燃比に対して±1.0だけ変動させた
場合の基準空燃比ヤ乍のウィンドウWoを示している。
However, recently, SAE paper No.
As described in Japanese Patent Publication No. 760201 and Japanese Patent Publication No. 56-4741, the function of the three-way catalyst was gradually elucidated and it was found that the three-way catalyst has an oxygen retention function. In other words, when the air-fuel ratio is on the lean side with respect to the stoichiometric air-fuel ratio, the three-way catalyst takes oxygen from NOx and
At the same time, this stolen oxygen is retained, and when the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio, the retained oxygen is released to oxidize Co and HC. Therefore, if the air-fuel ratio is alternately varied between the lean side and the rich side with respect to the standard air-fuel ratio, even if the standard air-fuel ratio deviates from the stoichiometric air-fuel ratio, the above-mentioned oxygen retention function will reduce NOx and oxidize CO and HC. The action is promoted and high purification efficiency can be obtained. FIG. 1(b) shows a window Wo of the standard air-fuel ratio when the air-fuel ratio is varied by ±1.0 with respect to the standard air-fuel ratio at a frequency of I Hz.

第1(&)図および第1(b)図がら空燃比を一定周波
数で変動させた場合にはウィンドウWo  が広くなる
ことがわかる。このことは、空燃比を一定周期で変動さ
せれば基準空燃比が理論空燃比から多少ずれていたとし
ても高い浄化効率が得られることを意味している。一方
、空燃比の変動周波数を低くすると、即ち空燃比の変動
周期を長くすると三元触媒の酸素保持能力が飽和するた
めに酸素保持機能に基づく酸化還元能力が低下し、三元
触媒の浄化効率が低下する。第1(c)図はこのことを
明瞭に示している。第1(c)図において縦軸Rは浄化
効率を示し、横軸Fは空燃比の変動周波数を示す。また
、空燃比の変動中を小さくすると空燃比をリッチ側とリ
ーン側に交互に変動できなくなるのでウィンドウの巾は
狭くなる。従ってウィンドウの巾を広くするには最適な
空燃比の変動周期と変動中が存在することがわかる。
It can be seen from FIGS. 1(&) and 1(b) that the window Wo becomes wider when the air-fuel ratio is varied at a constant frequency. This means that if the air-fuel ratio is varied at regular intervals, high purification efficiency can be obtained even if the reference air-fuel ratio deviates somewhat from the stoichiometric air-fuel ratio. On the other hand, when the air-fuel ratio fluctuation frequency is lowered, that is, when the air-fuel ratio fluctuation period is lengthened, the oxygen retention capacity of the three-way catalyst becomes saturated, and the oxidation-reduction capacity based on the oxygen retention function decreases, resulting in the purification efficiency of the three-way catalyst. decreases. Figure 1(c) clearly shows this. In FIG. 1(c), the vertical axis R shows the purification efficiency, and the horizontal axis F shows the fluctuation frequency of the air-fuel ratio. Furthermore, if the air-fuel ratio is changed during a small period, the air-fuel ratio cannot be varied alternately between rich and lean sides, so the width of the window becomes narrower. Therefore, it can be seen that there are optimal air-fuel ratio fluctuation periods and fluctuation periods in order to widen the window width.

上述のように基準空燃比に対する空燃比の変動中および
変動周波数を適切に選定すればウィンドウが広くなり、
従って基準空燃比が理論空燃比に対して多少変動しても
高い浄化効率を得ることができる。このことは、基準空
燃比の変動中の狭い燃料供給系を用いれば酸素濃度検出
器の出力信号によるフィードパ、り制御を用いなくても
高い浄化効率を得ることができることを意味している。
As mentioned above, if the air-fuel ratio is fluctuating relative to the standard air-fuel ratio and the fluctuation frequency is appropriately selected, the window will become wider.
Therefore, high purification efficiency can be obtained even if the reference air-fuel ratio varies somewhat with respect to the stoichiometric air-fuel ratio. This means that by using a narrow fuel supply system during fluctuations in the reference air-fuel ratio, high purification efficiency can be obtained without using feed control based on the output signal of the oxygen concentration detector.

理論、燃料供給系として燃料噴射弁を用いれば基準空燃
比の変動中を狭くすることができるが燃料噴射装置は高
価であるために機関の製造コストが高くなってしまう。
Theoretically, if a fuel injection valve is used as a fuel supply system, it is possible to narrow the fluctuation period of the reference air-fuel ratio, but since the fuel injection device is expensive, the manufacturing cost of the engine increases.

従って機関の製造コストを低く抑えるためには気化器を
用いることが必要となる。しかしながら従来の固定ベン
チュリ型気化器では基準空燃比の変動中が広く、また従
来の可変ベンチュリ型気化器では加速時に、或いは機関
温度によって基準空燃比が大きく変動するのでこれらの
固定ベンチュリ型気化器、或いは可変ペンチエリ型気化
器を用いても高い浄化効率を得るのは困難である。
Therefore, in order to keep the manufacturing cost of the engine low, it is necessary to use a carburetor. However, in conventional fixed venturi type carburetors, the reference air-fuel ratio fluctuates widely, and in conventional variable venturi type carburetors, the reference air-fuel ratio varies greatly during acceleration or depending on engine temperature. Alternatively, even if a variable Pentieri type vaporizer is used, it is difficult to obtain high purification efficiency.

本発明は酸素濃度検出器を用いることなく、価格の低い
気化器を用いて高い排気ガス浄化効率を確保することの
できる排気ガス浄化装置を提供することにある。
An object of the present invention is to provide an exhaust gas purification device that can ensure high exhaust gas purification efficiency using an inexpensive carburetor without using an oxygen concentration detector.

以下、添附図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第2図を参照すると、1は吸気マニホルド、2は吸気マ
ニホルド1上に取付けられた可変ベンチs−’)型気化
器、3は排気マニホルド、4は触媒コンバータを夫々示
し、触媒コンバータ4の内部には三元モノリス触媒5が
配置される。可変ベンチュリ型気化器2は気化器ハウジ
ング6と、ハウジング6内を垂直方向に延びる吸気通路
7と、吸気通路7内を横方向に移動するサクションピス
トン8と、サクションピストン8の先端面に取付けられ
たニードル9と、サクションピストン3の先端面に対向
して吸気通路7の内壁面上に固定されたスペーサ10と
、ザクジョンピストン8下流の吸気通路7内に設けられ
たスロットル弁11と、フロート室12とを具備し、サ
クションピストン8の先端面とスペーサ10間にはベン
チュリ部13が形成される。気化器ハウジング6には中
空円筒状ノケーシング14が固定され、このケーシング
14にはケーシング14の内部でケーシング14の軸線
方向に延びる案内スリーブ15が取付けられる。案内ス
リーブ15内には多数のが−ル16を備えた軸受17が
挿入され、また案内スリーブ15の外端部は盲蓋18に
よって閉鎖される。一方、サクションピストン8には案
内ロッド19が固定され、この案内ロッド19は軸受1
7内に案内ロッド19の軸線方向に移動可能に挿入され
る。
Referring to FIG. 2, 1 is an intake manifold, 2 is a variable bench s-') type carburetor mounted on the intake manifold 1, 3 is an exhaust manifold, and 4 is a catalytic converter. A ternary monolithic catalyst 5 is disposed at. The variable venturi type carburetor 2 includes a carburetor housing 6, an intake passage 7 extending vertically within the housing 6, a suction piston 8 that moves laterally within the intake passage 7, and a suction piston 8 that is attached to the distal end surface of the suction piston 8. a spacer 10 fixed on the inner wall surface of the intake passage 7 facing the tip surface of the suction piston 3, a throttle valve 11 provided in the intake passage 7 downstream of the suction piston 8, and a float. A venturi portion 13 is formed between the distal end surface of the suction piston 8 and the spacer 10. A hollow cylindrical casing 14 is fixed to the carburetor housing 6, and a guide sleeve 15 extending in the axial direction of the casing 14 inside the casing 14 is attached thereto. A bearing 17 with a number of holes 16 is inserted into the guide sleeve 15, and the outer end of the guide sleeve 15 is closed by a blind cover 18. On the other hand, a guide rod 19 is fixed to the suction piston 8, and this guide rod 19 is attached to the bearing 1.
7 so as to be movable in the axial direction of the guide rod 19.

このようにサクションピストン8は軸受17を介シテケ
ーシング14により支持されるのでサクションピストン
8はその軸線方向に滑らかに移動することができる。ケ
ーシング14の内部はサクションピストン8によって負
圧室2oと大気圧室21とに分割され、負圧室2o内に
はサクションピストン8を常時ベンチュリ部13に向け
て押圧する圧縮ばね22が挿入される。負圧室20はサ
クションピストン8に形成されたサクション孔23を介
してベンチュリ部13に連結され、大気圧室21は気化
器ハウジング6に形成された空気孔24’e介してサク
ションピストン8上流の吸気通路7内に連結される。
Since the suction piston 8 is thus supported by the casing 14 via the bearing 17, the suction piston 8 can move smoothly in its axial direction. The interior of the casing 14 is divided into a negative pressure chamber 2o and an atmospheric pressure chamber 21 by the suction piston 8, and a compression spring 22 that constantly presses the suction piston 8 toward the venturi portion 13 is inserted into the negative pressure chamber 2o. . The negative pressure chamber 20 is connected to the venturi section 13 through a suction hole 23 formed in the suction piston 8, and the atmospheric pressure chamber 21 is connected to the upstream side of the suction piston 8 through an air hole 24'e formed in the carburetor housing 6. It is connected to the intake passage 7.

一方、気化器ハウジング6内にはニードル9が侵入可能
なようにニードル9の軸線方向に延びる燃料通路25が
形成され、この燃料通路25内には計量ジェット26が
設けられる。計量ジェット26上流の燃料通路25は下
方に延びる燃料パイf27f介してフロート室12に連
結され、フロート室12内の燃料はこの燃料・千イノ2
7を介して燃料通路25内に送シ込まれる。更に、スペ
ーサ10には燃料通路25と共軸的に配置された中空円
筒状のノズル28が固定される。このノズル28はスペ
ーサ10の内壁面からペンチ−り部13内に突出し、し
かもノズル28の先端部の上半分は下半分から更にサク
ションピストン8に向けて突出している。ニードル9は
ノズル28および計算ジェット26内を貫通して延び、
燃料はニードル9と計量ジェット26間に形成される環
状間隙により計量された後にノズル28から吸気通路7
内に供給される。
On the other hand, a fuel passage 25 extending in the axial direction of the needle 9 is formed in the carburetor housing 6 so that the needle 9 can enter therein, and a metering jet 26 is provided in the fuel passage 25. The fuel passage 25 upstream of the metering jet 26 is connected to the float chamber 12 via a fuel pipe f27f extending downward, and the fuel in the float chamber 12 is supplied with this fuel.
7 into the fuel passage 25. Furthermore, a hollow cylindrical nozzle 28 arranged coaxially with the fuel passage 25 is fixed to the spacer 10 . This nozzle 28 protrudes from the inner wall surface of the spacer 10 into the pliers 13, and the upper half of the tip of the nozzle 28 further protrudes from the lower half toward the suction piston 8. Needle 9 extends through nozzle 28 and calculation jet 26;
After being metered by the annular gap formed between the needle 9 and the metering jet 26, the fuel flows from the nozzle 28 to the intake passage 7.
supplied within.

第2図に示されるようにスペーサ10の上端部には吸気
通路7内に向けて水平方向に突出する隆起壁29が形成
され、この隆起壁29とサクションピストン8の先端部
間において流量制御が行なわれる。機関運転が開始され
ると空気は吸気通路7内を下方に向けて流れる。このと
き空気流はサクションピストン8と隆起壁29間におい
て絞られるためにベンチュリ部13には負圧が発生し、
この負圧がサクション孔23を介して負圧室20内に導
びかれる。サクションピストン8は負圧室20と大気圧
室21との圧力差が圧縮ばね22のばね力によシ定まる
#Iは一定圧となるように、即ちベンチュリ部13内の
負圧がほぼ一定となるように移動する。
As shown in FIG. 2, a raised wall 29 is formed at the upper end of the spacer 10 and projects horizontally into the intake passage 7, and the flow rate is controlled between this raised wall 29 and the tip of the suction piston 8. It is done. When engine operation is started, air flows downward in the intake passage 7. At this time, since the airflow is restricted between the suction piston 8 and the raised wall 29, negative pressure is generated in the venturi section 13.
This negative pressure is guided into the negative pressure chamber 20 through the suction hole 23. The suction piston 8 is designed so that #I, where the pressure difference between the negative pressure chamber 20 and the atmospheric pressure chamber 21 is determined by the spring force of the compression spring 22, is a constant pressure, that is, the negative pressure inside the venturi part 13 is almost constant. move so that

第3図および第4図を参照すると、ニードル9の上流側
に位置するサクションピストン先端面部分はその全体が
ニードル9の取付端面30からニードル9の先端部に向
けて隆起しておシ、このサクションピストン先端面部分
上には吸気通路7の軸線方向に延びる凹溝31が形成さ
れる。この凹溝31の上流側端部31aはU字形断面形
状をなすと共にニードル取付端面30よシもニードル9
の先端部に近い側圧位置しておル、残シの凹溝部分31
bは上流側端部31mからニードル取付端面30までほ
ぼまっすぐに延びる。更に、ニードル9よシも上流側に
位置するサクションピストン先端面部分の断面形状は凹
溝31からベンチュリ部13に向けて拡開するV字形を
なしておシ、従ってこのサクションピストン先端面部分
は凹溝31に向けて傾斜する一対の傾斜壁面部32a。
Referring to FIGS. 3 and 4, the entire tip surface of the suction piston located upstream of the needle 9 is raised from the mounting end surface 30 of the needle 9 toward the tip of the needle 9. A groove 31 extending in the axial direction of the intake passage 7 is formed on the tip end surface of the suction piston. The upstream end 31a of this concave groove 31 has a U-shaped cross section, and the needle 9 also has a U-shaped cross section.
If the side pressure is located near the tip of the lever, the concave groove portion 31 of the remaining
b extends almost straight from the upstream end 31m to the needle attachment end surface 30. Furthermore, the cross-sectional shape of the suction piston tip surface located on the upstream side of the needle 9 is V-shaped, expanding from the concave groove 31 toward the venturi portion 13. Therefore, the suction piston tip surface portion is A pair of inclined wall surface portions 32a that are inclined toward the groove 31.

32bを有する。32b.

第3図かられかるように吸入空気量が少ないときには隆
起壁29、傾斜壁部分32a、32b、および凹溝上流
側端部31mによってほぼ二等辺三角形状の吸入空気制
御絞シ部Kが形成される。
As can be seen from FIG. 3, when the amount of intake air is small, the raised wall 29, the inclined wall portions 32a and 32b, and the upstream end portion 31m of the groove form an intake air control restrictor K having a substantially isosceles triangular shape. Ru.

このように吸入空気制御絞り部Kを形成することによっ
てサクションピストン8のリフト量が吸入空気制御絞り
部にの開口面積に比例するようになり、従ってサクショ
ンピストン8のリフト1は吸入空気量の増大に応じて滑
らかに増大するようになる。更に、サクションピストン
8は軸受17によって支持されているので吸入空気量の
変化に対して応答性よく移動し、斯くしてサクションピ
ストン8は吸入空気量が増大したときに吸入空気量の増
大に応答性よくかつ清らかに移動する。その結果、加速
運転時のように吸入空気量が急激に変化する場合であっ
てもサクションピストン8のリフトが吸入空気量の増大
に比例して増大するためにノズル28から供給される燃
料の量は吸入空気量に常時比例することに々る。更に、
第3図かられかるように吸入空気量が少ないときには吸
入空気が吸気通路7の中央部を流通せしめられ、その結
果ノズル28から供給された燃料は吸入空気流と共に即
座に機関シリンダ内に供給されるので吸入空気量が少な
いときであってもノズル28から供給された燃料は即座
に機関シリンダ内に供給される。従って、加速運転時の
ように吸入空気量が急激に増大しても上述したようにノ
ズル28から供給される燃料の量が吸入空気量に比例し
、しかもノズル28から供給された燃料が即座に機関シ
リンダ内に供給されるので機関シリンダ内に供給される
混合気の空燃比は吸入空気量が急激に変化してもほぼ一
定に維持される。また、サクションピストン8は軸受1
7によって支持されているので機関温度がサクションピ
ストン8の移動に影響を与えることがなく、斯くしてサ
クションピストン8は機関温度とは無関係に吸入空気量
の変化に応答性よく移動することができる。斯くして、
第2図に示す可変ペンチーリ型気化器2を用いると、機
関温度および機関運転状態にかかわらずに機関シリンダ
内に供給される混合気の空燃比をほぼ一定値、例えばほ
ぼ理論空燃比に維持することができる。
By forming the intake air control throttle part K in this way, the lift amount of the suction piston 8 becomes proportional to the opening area of the intake air control throttle part, and therefore, the lift 1 of the suction piston 8 increases the amount of intake air. It will increase smoothly according to the Furthermore, since the suction piston 8 is supported by the bearing 17, it moves with good response to changes in the amount of intake air, and thus the suction piston 8 responds to increases in the amount of intake air when the amount of intake air increases. Move gracefully and cleanly. As a result, even when the amount of intake air changes rapidly, such as during acceleration, the lift of the suction piston 8 increases in proportion to the increase in the amount of intake air, so the amount of fuel supplied from the nozzle 28 increases. is always proportional to the amount of intake air. Furthermore,
As can be seen from FIG. 3, when the amount of intake air is small, the intake air is made to flow through the center of the intake passage 7, and as a result, the fuel supplied from the nozzle 28 is immediately supplied into the engine cylinder together with the intake air flow. Therefore, even when the amount of intake air is small, the fuel supplied from the nozzle 28 is immediately supplied into the engine cylinder. Therefore, even if the amount of intake air increases rapidly as during accelerated driving, the amount of fuel supplied from the nozzle 28 is proportional to the amount of intake air as described above, and moreover, the amount of fuel supplied from the nozzle 28 is immediately increased. Since the air-fuel mixture is supplied into the engine cylinder, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder is maintained substantially constant even if the amount of intake air changes rapidly. In addition, the suction piston 8 has a bearing 1
7, the engine temperature does not affect the movement of the suction piston 8, and thus the suction piston 8 can move responsively to changes in the amount of intake air regardless of the engine temperature. . Thus,
When the variable Penchili type carburetor 2 shown in FIG. 2 is used, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders can be maintained at a substantially constant value, for example, at approximately the stoichiometric air-fuel ratio, regardless of the engine temperature and engine operating state. be able to.

第2図を参照すると、計量ジェット26の周囲には環状
空気室33が形成され、この環状空気室33に通ずる複
数個のエアブリード孔34が創量ジェット26の内周壁
面上に形成される。環状空気室33はエアブリード通路
35およびエアブリードジェット36を介して隆起壁2
9上流の吸気通路7内に連結され、このエアブリード通
路35内にはりニアソレノイド弁40によって開口面積
が制御される弁ポート37が形成される。
Referring to FIG. 2, an annular air chamber 33 is formed around the metering jet 26, and a plurality of air bleed holes 34 communicating with the annular air chamber 33 are formed on the inner peripheral wall surface of the volumetric jet 26. . The annular air chamber 33 is connected to the raised wall 2 via an air bleed passage 35 and an air bleed jet 36.
A valve port 37 is connected to the intake passage 7 upstream of the air bleed passage 35 and has an opening area controlled by a solenoid valve 40 formed within the air bleed passage 35 .

リニアソレノイド弁40は弁!−)37の開口面積を制
御する弁体41と、弁体41に連結された可動シランジ
ャ42と、可動グランジャ42全吸引するためのソレノ
イド43とを具備し、ソレノイド43はソレノイド駆動
回路50に接続される。このリニアソレノイド弁40で
はソレノイド43を流れる電流に比例した距離だけ可動
ノランジャ42が移動し、ソレノイド43を流れる電流
が増大するにつれて弁体41が右方に移動する。
The linear solenoid valve 40 is a valve! -) comprises a valve body 41 for controlling the opening area of the 37, a movable sylanger 42 connected to the valve body 41, and a solenoid 43 for completely suctioning the movable granger 42, and the solenoid 43 is connected to a solenoid drive circuit 50. be done. In this linear solenoid valve 40, the movable no-lunger 42 moves by a distance proportional to the current flowing through the solenoid 43, and as the current flowing through the solenoid 43 increases, the valve body 41 moves to the right.

従って、弁ポート37の開口面積はソレノイド43を流
れる電流に比例して変化することになる。
Therefore, the opening area of the valve port 37 changes in proportion to the current flowing through the solenoid 43.

ソレノイド駆動回路50は第6図(−)に示すような例
えば5)11zから10Hzの周波数の鋸歯状電圧を発
生する第1の鋸歯発生器51と、第5図(&)に示すよ
うなIHzから2Hzの周波数の鋸歯状電圧を発生する
第2の鋸歯発生器52と、第1鋸歯発生器51の出力端
子に接続された第1のアナログスイッチ53と、第2の
鋸歯発生器52の出力端子に接続された第2のアナログ
スイッチ54と、第1アナログスイ、チ53と第2アナ
ログスイツチ54の出力端子に接続された電圧電流変換
器55とを具備し、この電流電圧変換器55の出力端子
はソレノイド43に接続される。
The solenoid drive circuit 50 includes, for example, a first sawtooth generator 51 that generates a sawtooth voltage with a frequency of 11z to 10Hz as shown in FIG. 6(-), and an IHz voltage generator as shown in FIG. a first analog switch 53 connected to the output terminal of the first sawtooth generator 51 and an output of the second sawtooth generator 52; A second analog switch 54 is connected to the terminal, and a voltage-current converter 55 is connected to the output terminals of the first analog switch 53 and the second analog switch 54. The output terminal is connected to the solenoid 43.

一方、スロットル弁11近傍の吸気通路7の内壁面上に
は負圧ポート60が形成される。この負圧ポー)60は
スロットル弁11の開度が予め定められた一定開度以下
のときには第2図に示すようにスロットル弁11上流の
吸気通路7内に開口し、スロットル弁11が一定開度以
上になるとスロットル弁11下流の吸気通路7内に開口
する。
On the other hand, a negative pressure port 60 is formed on the inner wall surface of the intake passage 7 near the throttle valve 11. When the opening degree of the throttle valve 11 is below a predetermined opening degree, this negative pressure port 60 opens into the intake passage 7 upstream of the throttle valve 11 as shown in FIG. When the temperature exceeds 50°C, it opens into the intake passage 7 downstream of the throttle valve 11.

この負圧ポート60は負圧導管61および遅延弁62を
介して負圧ダイアフラム装置63に連結される。遅延弁
62は隔壁64にょシ分離された第1室65と第2室6
6とを具備し、第1室65は負圧ポート60に連結され
る。また、隔壁64上には第1室65から第2室66内
に向けてのみ流通可能な逆止弁67と、絞シロ8が設け
られる。
This vacuum port 60 is connected to a vacuum diaphragm device 63 via a vacuum conduit 61 and a delay valve 62 . The delay valve 62 has a first chamber 65 and a second chamber 6 separated by a partition wall 64.
6, and the first chamber 65 is connected to the negative pressure port 60. Further, on the partition wall 64, a check valve 67 that allows flow only from the first chamber 65 into the second chamber 66, and a restrictor 8 are provided.

一方、負圧ダイアフラム装置63はダイア7ラム69に
よって分離された負圧室70と大気圧室71とを具備す
る。負圧室70内にはダイアフラム押圧用圧縮ばね72
が挿入され、この負圧室70は遅延弁62の第2室66
に連結される。一方、大気圧室7】内にはダイアフラム
69に固定された可動接点73と、この可動接点73に
対向配置された固定接点74が設けられる。固定接点7
◆4は電源75に接続され、可動接点73はソレノイド
駆動回路500Å力端子に接続される。第2アナログス
イツチ52は可動接点73に加わる電圧によってインバ
ータ57を介して制御され、第1アナログスイツチ53
は可動接点73に加わる電圧によって直接制御される。
On the other hand, the negative pressure diaphragm device 63 includes a negative pressure chamber 70 and an atmospheric pressure chamber 71 separated by a diaphragm 69. A compression spring 72 for pressing the diaphragm is provided in the negative pressure chamber 70.
is inserted, and this negative pressure chamber 70 is connected to the second chamber 66 of the delay valve 62.
connected to. On the other hand, a movable contact 73 fixed to the diaphragm 69 and a fixed contact 74 arranged opposite to the movable contact 73 are provided in the atmospheric pressure chamber 7. Fixed contact 7
◆4 is connected to the power source 75, and the movable contact 73 is connected to the 500 Å power terminal of the solenoid drive circuit. The second analog switch 52 is controlled via the inverter 57 by the voltage applied to the movable contact 73, and the first analog switch 53
is directly controlled by the voltage applied to the movable contact 73.

第2図に示すようにスロットル弁11の開度が小さなと
きには負圧ポート60に加わる負圧が小さなためにダイ
アフラム69は圧縮ばね72のばね力により右方に移動
している。従ってこのときには第2図に示すように可動
接点73が固定接点74から離れている。斯くして第1
アナログスイツチ53が非導通状態となり、第2アナロ
グスイツチ54が導通状態となっているので第5図(、
)に示すようなI Hzから211zの周波数を有する
鋸歯状電圧が電圧電流変換器55に印加される。次いで
加速すべくスロットル弁11が開弁せしめられて負圧ポ
ート60がスロットル弁11後流の吸気通路7内に開口
すると負圧ポート60には大きな負圧が加わるために遅
延弁62の第1室65内の負圧も大きく々る。しかしな
がらこのとき逆止弁67が閉弁するので負圧室70内の
負圧は依然として小さく、斯くして可動接点73は固定
接点74から離れた状態に維持される。次いで暫らくす
ると負圧室70内の空気が絞シロ8を介して第1室65
内に流入して負圧室70内の負圧が大きくなるためにダ
イアフラム69が左方に移動して可動接点73が固定接
点74に接触する。その結果、第1アナログスイツチ5
3が導通状態となり、第2アナログスイツチ54が非導
通状態となるので第6図(、)に示すような周波数の高
い鋸歯状電圧が電圧電流変換器55に印加される。
As shown in FIG. 2, when the opening degree of the throttle valve 11 is small, the negative pressure applied to the negative pressure port 60 is small, so the diaphragm 69 is moved to the right by the spring force of the compression spring 72. Therefore, at this time, the movable contact 73 is separated from the fixed contact 74 as shown in FIG. Thus the first
Since the analog switch 53 is in a non-conducting state and the second analog switch 54 is in a conducting state, FIG.
) is applied to the voltage-current converter 55 with a frequency from I Hz to 211 z. Next, when the throttle valve 11 is opened to accelerate and the negative pressure port 60 opens into the intake passage 7 downstream of the throttle valve 11, a large negative pressure is applied to the negative pressure port 60, so that the first The negative pressure inside the chamber 65 also increases significantly. However, since the check valve 67 is closed at this time, the negative pressure in the negative pressure chamber 70 is still small, and thus the movable contact 73 is maintained apart from the fixed contact 74. Then, after a while, the air in the negative pressure chamber 70 flows through the restrictor 8 into the first chamber 65.
As the negative pressure in the negative pressure chamber 70 increases, the diaphragm 69 moves to the left and the movable contact 73 contacts the fixed contact 74. As a result, the first analog switch 5
3 becomes conductive, and the second analog switch 54 becomes non-conductive, so that a sawtooth voltage with a high frequency as shown in FIG.

上述したようにスロットル弁11の開度が小さなとき、
およびスロットル弁11が開弁せしめられた後型らくの
間はIHzから2Hzの周波数の鋸歯状電圧が電圧変流
変換器55に印加され、次いで電圧電流変換器55にお
いて対応する電流に変換されてソレノイド43に供給さ
れる。前述したように弁ポート37の開口面積はソレノ
イド43を流れる電流に比例して変化し、ソレノイド4
3には第5(a)図に示すよう表電流が供給されるので
弁ポート37の開口面積は鋸歯状に変化することがわか
る。このように弁ポート37の開口面積が鋸歯状に変化
するとエアブリード孔34から燃料通路25内に供給さ
れる空気量も鋸歯状に変化するので機関シリンダ内に供
給される混合気の空燃比AIFは第5(b)図に示され
るように波状に滑らかに変化することになる。エアブリ
ードジェット36および弁ポート37の寸法はりニアソ
レノイド弁40の弁体41が弁ポート37の流れ面積を
繰返し増大減少したときに機関シリンダ内に供給される
混合気の空燃比の平均値が第5(b)図に示されるよう
にほぼ理論空燃比となシ、空燃比の変動中が理論空燃比
に対してほぼ±0.2から±1.0となるように定めら
れる。従って機関温度および機関運転状態にかかわらず
に機関シリンダ内に供給される混合気の空燃比はI H
zから2H2の周波数でもってほぼ理論空燃比に対して
±0.2から±1.0の範囲で変動せしめられ、しかも
との空燃比の平均値は第1(b)図のウィンドウWo内
に維持されるので三元モノリス触媒5の酸素保持機能を
利用して高い浄化効率を得ることができる。更に、第5
(b)図に示されるように空燃比が滑らかに変動するの
で燃焼状態が急激に変化することがなく、斯くして機関
の運転状態にかかわらずに常時安定した燃焼を確保する
ことができる。
As mentioned above, when the opening degree of the throttle valve 11 is small,
After the throttle valve 11 is opened, a sawtooth voltage with a frequency of IHz to 2Hz is applied to the voltage-current converter 55, and then converted into a corresponding current in the voltage-current converter 55. It is supplied to the solenoid 43. As mentioned above, the opening area of the valve port 37 changes in proportion to the current flowing through the solenoid 43.
3 is supplied with a surface current as shown in FIG. 5(a), it can be seen that the opening area of the valve port 37 changes in a sawtooth shape. When the opening area of the valve port 37 changes in a sawtooth pattern as described above, the amount of air supplied from the air bleed hole 34 into the fuel passage 25 also changes in a sawtooth pattern, so that the air-fuel ratio AIF of the air-fuel mixture supplied into the engine cylinder changes smoothly in a wave-like manner as shown in FIG. 5(b). Dimensions of air bleed jet 36 and valve port 37 When the valve body 41 of the near solenoid valve 40 repeatedly increases and decreases the flow area of the valve port 37, the average value of the air-fuel ratio of the mixture supplied into the engine cylinder is As shown in FIG. 5(b), the air-fuel ratio is set so that it is approximately at the stoichiometric air-fuel ratio, and the fluctuation of the air-fuel ratio is approximately from ±0.2 to ±1.0 with respect to the stoichiometric air-fuel ratio. Therefore, regardless of engine temperature and engine operating conditions, the air-fuel ratio of the mixture supplied into the engine cylinders is IH
With the frequency from z to 2H2, the stoichiometric air-fuel ratio is varied within the range of ±0.2 to ±1.0, and the average value of the original air-fuel ratio is within the window Wo in Figure 1(b). Therefore, high purification efficiency can be obtained by utilizing the oxygen retention function of the three-way monolith catalyst 5. Furthermore, the fifth
(b) As shown in the figure, since the air-fuel ratio fluctuates smoothly, the combustion state does not change suddenly, and thus stable combustion can be ensured at all times regardless of the operating state of the engine.

一方、スロットル弁11が閉弁されて暫らくたつと、即
ち加速運転が完了した後型らくして定常走行状態になる
と前述したように第6図(&)に示すような周波数の高
い鋸歯状電圧が電圧電流変換器55に印加され、斯くし
てこのとき第6図(b)に示すように空燃比A/Fは短
かい周期で変動することになる。このように空燃比の変
動周期が短かくなると空燃比の変動に伴なって燃焼変動
が生じても出力トルクの変動が小さくなシ、斯くして滑
らかな定常運転を確保することができる。
On the other hand, when the throttle valve 11 is closed for a while, that is, after the acceleration operation is completed, and the steady running state is reached, a high frequency sawtooth pattern as shown in FIG. A voltage is applied to the voltage-current converter 55, and thus the air-fuel ratio A/F changes in short cycles as shown in FIG. 6(b). When the air-fuel ratio fluctuation period is shortened in this way, even if combustion fluctuations occur due to air-fuel ratio fluctuations, fluctuations in the output torque are small, thus ensuring smooth steady operation.

このように本発明によれば高価な酸素濃度検出器および
高価な空燃比制御用の電子制御ユニットを用いることな
く、価格の低い気化器を用いて排気ガスを良好に浄化で
きるので排気ガス浄化装置の製造コストを大巾に低減す
ることができる。更に、エアプリー1通路に電磁弁を設
けるだけなので構造は極めて簡単であり、従って排気ガ
ス浄化装置の信頼性を向上することができる。また、定
常走行時におけるトルク変動を抑制できるので滑らかな
定常運転を確保することができる。
As described above, according to the present invention, exhaust gas can be effectively purified using an inexpensive carburetor without using an expensive oxygen concentration detector or an expensive electronic control unit for air-fuel ratio control. The manufacturing cost can be reduced significantly. Furthermore, since only a solenoid valve is provided in one air pull passage, the structure is extremely simple, and therefore the reliability of the exhaust gas purification device can be improved. Furthermore, since torque fluctuations during steady running can be suppressed, smooth steady running can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は排気ガス浄化効率を示す線図、第2図は機関吸
排気系の側面断面図、第3図は第2図の矢印■に沿って
みた平面図、第4図はサクションピストンの側面断面図
、第5図は空燃比の変動を示す線図、第6図は空燃比の
変動を示す線図である。 2・・・気化器、8・・・サクションピストン、9・・
・ニードル、25・・・燃料通路、28・・・ノズル、
35・・・−r−−rrv−ド通路、40・・・リニア
ソレノイド弁。 特許出願人 トヨタ自動車株式会社 特許出願代理人           −弁理士 青 
木   朗 弁理士西舘和之 弁理土中山恭介 弁理士 山 口 昭 之
Figure 1 is a diagram showing exhaust gas purification efficiency, Figure 2 is a side sectional view of the engine intake and exhaust system, Figure 3 is a plan view taken along the arrow ■ in Figure 2, and Figure 4 is a diagram of the suction piston. A side cross-sectional view, FIG. 5 is a diagram showing fluctuations in the air-fuel ratio, and FIG. 6 is a diagram showing fluctuations in the air-fuel ratio. 2... Carburetor, 8... Suction piston, 9...
・Needle, 25...Fuel passage, 28...Nozzle,
35...-r--rrv-do passage, 40... Linear solenoid valve. Patent applicant Toyota Motor Corporation Patent application agent - Patent attorney Ao
Akira Ki, Patent Attorney, Kazuyuki Nishitate, Patent Attorney, Kyosuke Tsuchinakayama, Patent Attorney, Akira Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] 機関吸気通路に気化器を取付けると共に機関排気通路に
三元触媒コンバータを取付け、該気化器の燃料通路にエ
アブリード通路を連結して該エアブリード通路から燃料
通路内に空気を供給するようにした内燃機関において、
はぼ1llzから211zの第1の一定周波数の駆動信
号および該第1の一定周波数よシも周波数の高い第2の
周波数の駆動信号を発生可能な駆動信号発生回路を具備
し、上記エアブリード通路内に上記駆動信号に応動して
エアブリード通路を上記一定周波数で開閉する電磁弁を
配置し、該エアブリード通路を開閉した際に空燃比が平
均値に対してほぼ±0.2から±1.0の間で周期的に
変動すると共に該空燃比の平均値がほぼ理論空燃比とな
るように上記エアブリード通路の流路面積を定め、更に
機関負荷が所定負荷以上の定常走行運転を検出可能な定
常運転検出器を上記駆動信号発生回路に接続して上記定
常運転時に上記第2の一定周波数の駆動信号を発生させ
ると共に上記定常運転時でないときには上記第1の一定
周波数の駆動信号を発生せしめるようにした内燃機関の
排気ガス浄化装置。
A carburetor is installed in the engine intake passage, a three-way catalytic converter is installed in the engine exhaust passage, and an air bleed passage is connected to the fuel passage of the carburetor, so that air is supplied from the air bleed passage into the fuel passage. In internal combustion engines,
The air bleed passage includes a drive signal generation circuit capable of generating a drive signal of a first constant frequency from 1llz to 211z and a drive signal of a second frequency higher in frequency than the first constant frequency. A solenoid valve that opens and closes the air bleed passage at the above-mentioned constant frequency in response to the above-mentioned drive signal is disposed within the air-bleed passage, and when the air-bleed passage is opened and closed, the air-fuel ratio is approximately ±0.2 to ±1 relative to the average value. The flow area of the air bleed passage is determined so that the air-fuel ratio periodically fluctuates between . A capable steady-state operation detector is connected to the drive signal generation circuit to generate the second constant-frequency drive signal during the steady-state operation, and to generate the first constant-frequency drive signal when the steady-state operation is not in progress. An exhaust gas purification device for an internal combustion engine.
JP14480782A 1982-08-23 1982-08-23 Exhaust gas purifier for internal combustion engine Pending JPS5934465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14480782A JPS5934465A (en) 1982-08-23 1982-08-23 Exhaust gas purifier for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14480782A JPS5934465A (en) 1982-08-23 1982-08-23 Exhaust gas purifier for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS5934465A true JPS5934465A (en) 1984-02-24

Family

ID=15370914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14480782A Pending JPS5934465A (en) 1982-08-23 1982-08-23 Exhaust gas purifier for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5934465A (en)

Similar Documents

Publication Publication Date Title
US3942493A (en) Fuel metering system
JPS6114327B2 (en)
JPS5934465A (en) Exhaust gas purifier for internal combustion engine
US4450684A (en) Exhaust gas cleaning system for internal combustion engine
JPS5934456A (en) Exhaust gas purifier for internal combustion engine
JPS5934468A (en) Exhaust gas purifier for internal combustion engine
JPS6213510B2 (en)
US4506644A (en) Exhaust gas-purifying device of an internal combustion engine
JPS5910724A (en) Exhaust emission control device for internal-combustion engine
JPS5934463A (en) Exhaust gas purifier for internal combustion engine
JPS5934455A (en) Exhaust gas purifier for internal combustion engine
JPS5934467A (en) Exhaust gas purifier for internal combustion engine
JPS5934464A (en) Exhaust gas purifier for internal combustion engine
JPS5934457A (en) Exhaust gas purifier for internal combustion engine
JPS5934466A (en) Exhaust gas purifier for internal combustion engine
JPS5934460A (en) Exhaust gas purifier for internal combustion engine
JPS5934458A (en) Exhaust gas purifier for internal combustion engine
JPS5934461A (en) Exhaust gas purifier for internal combustion engine
JPS5912114A (en) Exhaust gas purifying device of internal combustion engine
JPS5993950A (en) Exhaust-gas purifier for internal-combustion engine
JPS5934462A (en) Exhaust gas purifier for internal combustion engine
JPS5934452A (en) Exhaust gas purifier for internal combustion engine
JPS5934459A (en) Exhaust gas purifier for internal combustion engine
JPS5993951A (en) Exhaust-gas purifier for internal-combustion engine
JPS5996418A (en) Exhaust gas purifying device of internal-combustion engine