JPS5996418A - Exhaust gas purifying device of internal-combustion engine - Google Patents

Exhaust gas purifying device of internal-combustion engine

Info

Publication number
JPS5996418A
JPS5996418A JP20448982A JP20448982A JPS5996418A JP S5996418 A JPS5996418 A JP S5996418A JP 20448982 A JP20448982 A JP 20448982A JP 20448982 A JP20448982 A JP 20448982A JP S5996418 A JPS5996418 A JP S5996418A
Authority
JP
Japan
Prior art keywords
air
negative pressure
fuel ratio
valve
secondary air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20448982A
Other languages
Japanese (ja)
Inventor
Takashi Kato
孝 加藤
Takaaki Ito
隆晟 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP20448982A priority Critical patent/JPS5996418A/en
Publication of JPS5996418A publication Critical patent/JPS5996418A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/222Control of additional air supply only, e.g. using by-passes or variable air pump drives using electric valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/227Control of additional air supply only, e.g. using by-passes or variable air pump drives using pneumatically operated valves, e.g. membrane valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To prevent the deterioration of a ternary catalyst by closing and opening a solenoid valve for supplying secondary air to the upper stream of the ternary catalyst at the frequency of 1-2Hz, periodically varying an air-fuel ratio within the range of + or -0.2-+ or -1.0, and closing the solenoid valve when an engine load exceeds a prescribed value over a prescribed period of time. CONSTITUTION:A secondary air supplying hole 60 is provided on an exhaust manifold 3, and secondary air is supplied to the upper stream of a ternary catalyst 5 via a control valve 50 and a check valve 59. Negative pressure is introduced into the negative pressure chamber 53 of the control valve 50 via a solenoid valve 51, and this solenoid valve 51 is closed and opened by means of a solenoid driving circuit 70 at the frequency of 1-2Hz, allowing an air-fuel ratio to be periodically varied via the control valve 50 taking a theoretical air-fuel ratio as a center. A negative pressure switch 72 for introducing the negative pressure via a negative pressure delay valve 80 is connected to the solenoid driving circuit 70, and when an engine load exceeds a prescribed value over a started period of time, the negative pressure in the negative pressure chamber 76 of the negative pressure switch 72 is reduced, and the negative pressure switch 72 is turned off, allowing the solenoid valve 51 to be closed via an AND gate 73.

Description

【発明の詳細な説明】 本発明は内燃機関の排気ガス浄化装置に関する。[Detailed description of the invention] The present invention relates to an exhaust gas purification device for an internal combustion engine.

排気ガス中の有害三成分HC,CobよびNOxを同時
に低減することのできる触媒として、三元触媒が知られ
ている。この三元触媒の浄化効率Rは第1(a)図に示
されるように空燃比A/Fがほぼ理論空燃比であるとき
に最も高くなり1例えば80パ一セント以上の浄化効率
Rを得ることのできる空燃比領域は空燃比が0.06程
度の狭い巾である。通常、このように80パ一セント以
上の浄化効率を得ることのできる空燃比領域をウィンド
ウWと称する。従って、三元触媒音用いて排気ガス中の
有害三成分を同時に低減するためには空燃比をこの狭い
ウィンドウW内に常時に維持しなけ゛ればならない。こ
のために従来の排気ガス浄化装置では2.空燃比が理論
空燃比よりも大きいか小さいか全判別可能な酸素濃度検
出器を機関排気通路に取付け、この酸素濃度検出器の出
力信号に基いて空燃比がウィンドウW内の空燃比となる
ように制御している。しかしながらこのような酸素濃度
検出器を用いた排気ガス浄化装置では高価な酸素濃度検
出器および空燃比制御のための高価な電子制御ユニット
を必要とするために排気ガス浄化装置の製造コストが高
騰するという問題がある。
A three-way catalyst is known as a catalyst that can simultaneously reduce the three harmful components HC, Cob, and NOx in exhaust gas. The purification efficiency R of this three-way catalyst is highest when the air-fuel ratio A/F is approximately the stoichiometric air-fuel ratio, as shown in FIG. The air-fuel ratio range in which this can be done is narrow, with an air-fuel ratio of about 0.06. Usually, the air-fuel ratio region in which a purification efficiency of 80 percent or more can be obtained is called a window W. Therefore, in order to simultaneously reduce the three harmful components in exhaust gas using three-way catalyst sound, the air-fuel ratio must be maintained within this narrow window W at all times. For this reason, conventional exhaust gas purification devices require 2. An oxygen concentration detector that can fully determine whether the air-fuel ratio is larger or smaller than the stoichiometric air-fuel ratio is installed in the engine exhaust passage, and based on the output signal of this oxygen concentration detector, the air-fuel ratio is set to the air-fuel ratio within the window W. is controlled. However, an exhaust gas purification device using such an oxygen concentration detector requires an expensive oxygen concentration detector and an expensive electronic control unit for air-fuel ratio control, which increases the manufacturing cost of the exhaust gas purification device. There is a problem.

ところが最近になって、  SAE paper A7
60201号、或いは特公昭56−4741号公報に記
載されているように三元触媒の機能が次第に解明され、
三元触媒が酸素保持機能を有することが判明したのであ
る。即ち、空燃比が理論空燃比に対してリーン側にある
ときには三元触媒がNOxから酸素を奪い取ってNOx
を還元させると共にこの奪い取った酸素を保持し、空燃
比が理論空燃比よシもリッチ側になると保持した酸素を
放出してCO,HCのは化を行なうのである。従って空
燃比を成る基準空燃比に対してリーン側とリッチ側に交
互に変動させると基準空燃比が理論空燃比からずれたと
しても上述の酸素保持機能により NOxの還元作用お
よびCO,HCの酸化作用が促進されて高い浄化効率を
得ることができる。第1図(b)は空燃比を周波数I 
Hzで基準空燃比に対して±1.0だけ変動させた場合
の基準空燃比A/、のウィンドウWoを示している。第
1(a)図および第1 (b)図がら空燃比を一定周波
数で変動させた場合にはウィンドウW。が広(なること
がわかる。このことは。
However, recently, SAE paper A7
As described in No. 60201 or Japanese Patent Publication No. 56-4741, the function of the three-way catalyst was gradually elucidated.
It was discovered that the three-way catalyst has an oxygen retention function. In other words, when the air-fuel ratio is on the lean side with respect to the stoichiometric air-fuel ratio, the three-way catalyst takes oxygen from NOx and
At the same time, this stolen oxygen is retained, and when the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio, the retained oxygen is released to convert CO and HC. Therefore, if the air-fuel ratio is alternately varied between the lean side and the rich side with respect to the standard air-fuel ratio, even if the standard air-fuel ratio deviates from the stoichiometric air-fuel ratio, the oxygen retention function described above will reduce NOx and oxidize CO and HC. The action is promoted and high purification efficiency can be obtained. Figure 1(b) shows the air-fuel ratio at frequency I
The window Wo of the reference air-fuel ratio A/ is shown when the reference air-fuel ratio is varied by ±1.0 with respect to the reference air-fuel ratio in Hz. Window W when the air-fuel ratio is varied at a constant frequency as shown in FIGS. 1(a) and 1(b). It turns out that this is wide.

空燃比を一定周期で変動させれば基準空燃比が理論空燃
比から多少ずれていたとしても高い浄化効率が得られる
ことを意味している。一方、空燃比の変動周波数を低く
すると、即ち空燃比の変動周期を長くすると三元触媒の
酸素保持能力が飽和するために酸素保持機能に基づく酸
化還元能力が低下し、三元触媒の浄化効率が低下する。
This means that if the air-fuel ratio is varied at regular intervals, high purification efficiency can be obtained even if the reference air-fuel ratio deviates somewhat from the stoichiometric air-fuel ratio. On the other hand, when the air-fuel ratio fluctuation frequency is lowered, that is, when the air-fuel ratio fluctuation period is lengthened, the oxygen retention capacity of the three-way catalyst becomes saturated, and the oxidation-reduction capacity based on the oxygen retention function decreases, resulting in the purification efficiency of the three-way catalyst. decreases.

第1 (c)図はこのことを明瞭に示している。第1(
c)図において縦軸Rは浄化効率を示し、横軸Fは空燃
比の変動周波数を示す。また、空燃比の変動中を小さく
すると空燃比fリッチ側とり一ン側に交互に変動できな
くなるのでウィンドウの巾は狭くなる。従ってウィンド
ウの巾を広くするには最適な空燃比の変動周期と変動中
が存在することがわかる。
Figure 1(c) clearly shows this. 1st (
c) In the figure, the vertical axis R shows the purification efficiency, and the horizontal axis F shows the fluctuation frequency of the air-fuel ratio. Furthermore, if the air-fuel ratio is made smaller, the air-fuel ratio f cannot change alternately between the rich side and the rich side, so the width of the window becomes narrower. Therefore, it can be seen that there are optimal air-fuel ratio fluctuation periods and fluctuation periods in order to widen the window width.

上述のように基準空燃比に対する空燃比の変動中および
変動周波数を適切に選定すればウィンドウが広くなり、
従りて基準空燃比が理論空燃比に対して多少変動しても
高い浄化効率を得ることができる。このことは、基準空
燃比の変動中の狭い燃料供給系を用いれば酸素濃度検出
器の出力信号によるフィードバンク制御を用いなくても
高い浄化効率を得ることができることを意味している。
As mentioned above, if the air-fuel ratio is fluctuating relative to the standard air-fuel ratio and the fluctuation frequency is appropriately selected, the window will become wider.
Therefore, even if the reference air-fuel ratio varies somewhat with respect to the stoichiometric air-fuel ratio, high purification efficiency can be obtained. This means that by using a narrow fuel supply system during fluctuations in the reference air-fuel ratio, high purification efficiency can be obtained without using feedbank control based on the output signal of the oxygen concentration detector.

熱論、燃料供給系として燃料噴射弁を用いれば基準空燃
比の変動中を狭くすることができるが燃料噴射装置は高
価であるために機関の製造コストが高くなってしまうと
いう問題があり、更にこのように機関シリンダ内に供給
される空燃比を変動せしめるとたとえ変動中が小さくて
も燃焼が周期的に変動し、斯くして車両運転性が悪化す
るという問題を生ずる。
In theory, if a fuel injection valve is used as a fuel supply system, it is possible to narrow the range of fluctuations in the reference air-fuel ratio, but since fuel injection devices are expensive, there is a problem that the manufacturing cost of the engine increases. If the air-fuel ratio supplied to the engine cylinders is varied in this way, combustion will fluctuate periodically even if the fluctuations are small, resulting in a problem that vehicle drivability will deteriorate.

本発明は酸素濃度検出器を用いることなく、シかも機関
シリンダ内に供給される空燃比を変動させることなく高
い排気ガス浄化効率を確保することのできる排気ガス浄
化装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an exhaust gas purification device that can ensure high exhaust gas purification efficiency without using an oxygen concentration detector or changing the air-fuel ratio supplied into the engine cylinder.

以下、添附図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第2図を参照すると、1は吸気マニホルド、2は吸気マ
ニホルド1上に取付けられた可変ベンチ、 リ型気化器
、3は排気マニホルド、4は触媒コンバータを夫々示し
、触媒コンバータ4の内部には三元モノリス触媒5が配
置される。可変ベンチエリ型気化器2は気化器ハウジン
グ6と、ハウジング6内を垂直方向に延びる吸気通路7
と、吸気通路7内を横方向に移動するサクションピスト
ン8と、サクションピストン8の先端面に取付けらレタ
二一ドル9と、サクションピストン8の先端面に対向し
て吸気通路7の内壁面上に固定されたスペーサ10と、
サクションピストン8下流の吸気通路7内に設けられた
スロットル弁11と、フロート室12とを具備し、サク
ションピストン8の先端面とスペーサ10間にはベンチ
、 IJ部13が形成される。気化器ハウジング6には
中空円筒状のケーシング14が固定され、このケーシン
グ14にはケーシング14の内部でケーシング14の軸
線方向に延びる案内スリーブ15が取付けられる。案内
スリーブ15内には多数のボール16全備えた軸受17
が挿入され、また案内スリーブ15の外端部は盲蓋18
によって閉鎖される。一方、サクションピストン8には
案内ロッド19が固着され、この案内ロッド19は軸受
17内に案内ロッド19の軸線方向に移動可能に挿入さ
れる。
Referring to FIG. 2, 1 is an intake manifold, 2 is a variable bench mounted on the intake manifold 1, a re-type carburetor, 3 is an exhaust manifold, and 4 is a catalytic converter. A ternary monolithic catalyst 5 is arranged. The variable bench eri type carburetor 2 includes a carburetor housing 6 and an intake passage 7 extending vertically within the housing 6.
, a suction piston 8 that moves laterally within the intake passage 7 , a letter plate 9 attached to the tip surface of the suction piston 8 , and a letter 9 attached to the tip surface of the suction piston 8 on the inner wall surface of the intake passage 7 . a spacer 10 fixed to;
It includes a throttle valve 11 provided in the intake passage 7 downstream of the suction piston 8 and a float chamber 12, and a bench or IJ section 13 is formed between the tip end surface of the suction piston 8 and the spacer 10. A hollow cylindrical casing 14 is fixed to the carburetor housing 6, and a guide sleeve 15 extending in the axial direction of the casing 14 inside the casing 14 is attached. Inside the guide sleeve 15 is a bearing 17 having a large number of balls 16.
is inserted, and the outer end of the guide sleeve 15 is fitted with a blind lid 18.
Closed by. On the other hand, a guide rod 19 is fixed to the suction piston 8, and this guide rod 19 is inserted into the bearing 17 so as to be movable in the axial direction of the guide rod 19.

このようにサクションピストン8は軸受17を介シテケ
ーシング14により支持されるのでサクシ・ヨンピスト
ン8はその軸線方向に滑らかに移動することができる。
Since the suction piston 8 is thus supported by the casing 14 via the bearing 17, the suction piston 8 can move smoothly in its axial direction.

ケーシング14の内部はサクシジンピストン8によって
負圧室2oと大気圧室21とに分割され、負王室20内
にはサクションピストン8を常時ベンチュリ部13に向
けて押圧する圧縮ばね22が挿入される。負圧室2oは
サクションヒストン8に形成されたサクション孔23を
介してベンチュリ部13に連結され、大気圧室21は気
化器ハウジング6に形成された空気孔24を介してサク
ションピストン8上流の吸気通路7内に連結される。
The interior of the casing 14 is divided into a negative pressure chamber 2o and an atmospheric pressure chamber 21 by the suction piston 8, and a compression spring 22 is inserted into the negative chamber 20 to constantly press the suction piston 8 toward the venturi portion 13. . The negative pressure chamber 2o is connected to the venturi section 13 through a suction hole 23 formed in the suction histone 8, and the atmospheric pressure chamber 21 is connected to the intake air upstream of the suction piston 8 through an air hole 24 formed in the carburetor housing 6. It is connected within the passage 7.

一方、気化器ハウジング6内にはニードル9が侵入可能
なようにニードル9の軸線方向に延びる燃料通路25が
形成され、この燃料通路25内には計量ジェット26が
設けられる。計量ジェット26上流の燃料通路25は下
方に延びる燃料パイプ27を介してフロート室12に連
結され、フロート室12内の燃料はこの燃料パイプ27
を介して燃料通路25内に送り込まれる。更に、スペー
サ10には燃料通路25と共軸的に配置された中空円筒
状のノズル28が固定される。このノズル28はスペー
サ10の内壁面がらベンチュリ部13内に突出し、しか
もノズル28の先端部の上半分は下半分から更にサクシ
ョンピストン8に向けて突出している。ニードル9はノ
ズル28および計量ジェット26内を貫通して延び、燃
料はニードル9と計量ジェット26間に形成される環状
間隙によシ計量された後にノズル28から吸気通路7内
に供給される。
On the other hand, a fuel passage 25 extending in the axial direction of the needle 9 is formed in the carburetor housing 6 so that the needle 9 can enter therein, and a metering jet 26 is provided in the fuel passage 25. The fuel passage 25 upstream of the metering jet 26 is connected to the float chamber 12 via a downwardly extending fuel pipe 27, and the fuel in the float chamber 12 is transferred through this fuel pipe 27.
The fuel is sent into the fuel passage 25 through the fuel passageway 25. Furthermore, a hollow cylindrical nozzle 28 arranged coaxially with the fuel passage 25 is fixed to the spacer 10 . This nozzle 28 protrudes into the venturi portion 13 from the inner wall surface of the spacer 10, and the upper half of the tip of the nozzle 28 further protrudes from the lower half toward the suction piston 8. The needle 9 extends through the nozzle 28 and the metering jet 26 , and the fuel is metered into the annular gap formed between the needle 9 and the metering jet 26 from the nozzle 28 into the intake passage 7 .

第2図に示されるようにスペーサ1oの上端部には吸気
通路7内に向けて水平方向に突出する隆起壁29が形成
され、隆起壁29とサクションピストン8の先端部間に
おいて流量制御が行なわれる。機関運転が開始されると
空気は吸気通路7内を下方に向けて流れる。このとき空
気流はサクションピストン8と隆起壁29間において絞
られるためにベンチ、 リ部13には負圧が発生し、こ
の負圧がサクション孔23を介して負圧室20内に導か
れる。サクションピストン8は負圧室20と大気圧室2
1との圧力差が圧縮ばね22のばね力によシ定まるほぼ
一定圧となるように、即ちベンチエリ部13内の負圧が
ほぼ一定となるように移動する。
As shown in FIG. 2, a raised wall 29 that projects horizontally into the intake passage 7 is formed at the upper end of the spacer 1o, and the flow rate is controlled between the raised wall 29 and the tip of the suction piston 8. It will be done. When engine operation is started, air flows downward in the intake passage 7. At this time, since the air flow is restricted between the suction piston 8 and the raised wall 29, negative pressure is generated in the bench recess 13, and this negative pressure is guided into the negative pressure chamber 20 through the suction hole 23. The suction piston 8 has a negative pressure chamber 20 and an atmospheric pressure chamber 2.
1, the pressure difference between the bench area 13 and the bench area 13 becomes a substantially constant pressure determined by the spring force of the compression spring 22, that is, the negative pressure inside the bench area 13 becomes substantially constant.

第3図および第4図を参照すると、ニードル9の上流側
に位置するサクションピストン先端面部分はその全体が
ニードル9の取付端面30からニードル9の先端部に向
けて隆起しており、このサクションピストン先端面部分
上には吸気通路7の軸線方向に延びる凹溝31が形成さ
れる。この凹溝31の上流側端部31aはU字形断面形
状をなすと共にニードル取付端面30よシもニードル9
の先端部に近い側に位置しておシ、残シの凹溝部分31
bは上流側端部31aからニードル取付端面30までほ
ぼまっすぐに延びる。更に、ニードル9よりも上流側に
位置するサクションピストン先端面部分の断面形状は凹
溝31からベンチュリ部13に向けて拡開するV字形を
なしておシ、従ってこのサクションピストン先端面部分
は凹溝31に向けて傾斜する一対の傾斜壁面部32 a
、 32 bを有する。
Referring to FIGS. 3 and 4, the entire tip surface of the suction piston located on the upstream side of the needle 9 is raised from the mounting end surface 30 of the needle 9 toward the tip of the needle 9. A groove 31 extending in the axial direction of the intake passage 7 is formed on the tip end surface of the piston. The upstream end 31a of this concave groove 31 has a U-shaped cross section, and the needle 9 also has a U-shaped cross section.
There is a concave groove part 31 located on the side near the tip of the
b extends substantially straight from the upstream end 31a to the needle attachment end surface 30. Furthermore, the cross-sectional shape of the suction piston tip surface located upstream of the needle 9 is V-shaped, expanding from the concave groove 31 toward the venturi portion 13. Therefore, the suction piston tip surface portion is concave. A pair of inclined wall portions 32 a inclined toward the groove 31
, 32b.

第3図かられかるように吸入空気量が少ないときには隆
起壁29.傾斜壁部分32a、32b、  および凹溝
上流側端部31aによってほぼ二等辺三角形状の吸入空
気制御絞り部Kが形成される。このように吸入空気制御
絞り部Kを形成することによってサクションピストン8
のリフト量が吸入空気制御絞り部にの開口面積に比例す
るようになり。
As shown in Fig. 3, when the amount of intake air is small, the raised wall 29. The inclined wall portions 32a, 32b and the upstream end portion 31a of the concave groove form an intake air control constriction portion K having a substantially isosceles triangular shape. By forming the intake air control throttle part K in this way, the suction piston 8
The amount of lift becomes proportional to the opening area of the intake air control throttle section.

従ってサクションピストン8のリフト量は吸入空気量の
増大に応じて滑らかに増大するようになる。
Therefore, the amount of lift of the suction piston 8 smoothly increases as the amount of intake air increases.

更に、サクションピストン8は軸受17によって支持さ
れているので吸入空気量の変化に対して応答性よく移動
し、斯くしてサクションピストン8は吸入空気量が増大
したときに吸入空気量の増大に応答性よくかつ滑らかに
移動する。その結果。
Furthermore, since the suction piston 8 is supported by the bearing 17, it moves with good response to changes in the amount of intake air, and thus the suction piston 8 responds to increases in the amount of intake air when the amount of intake air increases. Moves smoothly and smoothly. the result.

加速運転時のように吸入空気量が急激に変化する場合で
あってもサクションピストン8のり7トが吸入空気量の
増大に比例して増大rるためにノズル28から供給され
る燃料の量は吸入空気量に常時比例することになる。更
に、第3図かられかるように吸入空気量が少ないときに
は吸入空気が吸気通路7の中央部を流通せしめられ、そ
の結果ノズル28から供給された燃料は吸入空気流と共
に即座に機関シリンダ内に供給されるので吸入空気量が
少ないときであってもノズル28から供給された燃料は
即座に機関シリンダ内に供給される。
Even when the amount of intake air changes rapidly, such as during acceleration, the amount of fuel supplied from the nozzle 28 increases because the suction piston 8 increases in proportion to the increase in the amount of intake air. It is always proportional to the amount of intake air. Furthermore, as can be seen from FIG. 3, when the amount of intake air is small, the intake air is made to flow through the center of the intake passage 7, and as a result, the fuel supplied from the nozzle 28 immediately flows into the engine cylinder together with the intake air flow. Therefore, even when the amount of intake air is small, the fuel supplied from the nozzle 28 is immediately supplied into the engine cylinder.

従って、加速運転時のように吸入空気量が急激に増大し
ても上述したようにノズル28から供給される燃料の量
が吸入空気量に比例し、しかもノズル28から供給され
た燃料が即座に機関シリンダ内に供給されるので機関シ
リンダ内に供給される混合気の空燃比は吸入空気量が急
激に変化してもほぼ一定に維持される。また、サクシ璽
ンピストン8は軸受17によって支持されているので機
関温度がサクションピストン8の移動に影響を与えルコ
トカなく、斯くしてサクションピストン8は機関温度と
は無関係に吸入空気量の変化に応答性よく移動すること
ができる。斯くして、第2図に示す可変ベンチュリ型気
化器2を用いると9機関温度および機関運転状態にかか
わらずに機関シリンダ内に供給される混合気の空燃比を
ほぼ一定値。
Therefore, even if the amount of intake air increases rapidly as during accelerated driving, the amount of fuel supplied from the nozzle 28 is proportional to the amount of intake air as described above, and moreover, the amount of fuel supplied from the nozzle 28 is immediately increased. Since the air-fuel mixture is supplied into the engine cylinder, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder is maintained substantially constant even if the amount of intake air changes rapidly. In addition, since the suction piston 8 is supported by the bearing 17, the engine temperature does not affect the movement of the suction piston 8, and thus the suction piston 8 responds to changes in the amount of intake air regardless of the engine temperature. can move easily. In this way, when the variable venturi type carburetor 2 shown in FIG. 2 is used, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders is kept at a substantially constant value regardless of the engine temperature and engine operating conditions.

例えば14.0程度に維持することができる。従って機
関シリンダ内には空燃比が14.0程度の過濃混合気が
常時供給されることになる。
For example, it can be maintained at about 14.0. Therefore, a rich air-fuel mixture with an air-fuel ratio of about 14.0 is constantly supplied into the engine cylinders.

第2図を参照すると、計量ジェット26の周囲には環状
空気室33が形成され、この環状空気室33に通ずる複
数個のエアブリード孔34が計量ジェット26の内周壁
面上に形成される。環状空気室33はエアブリード通路
35.36およびエアブリードジェット37を介して隆
起壁29上流の吸気通路7内に連結され、これらエアブ
リード通路35.36の連結部にはワックス弁38によ
って駆動される弁体39が配置される。ワックス弁38
の感温部38aの周囲には冷却水循環室39が形成され
、この冷却水循環室39内には冷却水流入口40から冷
却水が導入され、この冷却水は冷却水流出口41から排
出される。機関冷却水温が上昇すると弁体39が左方に
移動し、それによってエアブリード通路の流れ面積が増
大するためにエアブリード量が増大する。暖機運転が完
了すると弁体39がエアブリード通路を全開し、このと
き機関シリンダ内に供給される混合気は空燃比が14.
0程度の濃混合気となる。
Referring to FIG. 2, an annular air chamber 33 is formed around the metering jet 26, and a plurality of air bleed holes 34 communicating with the annular air chamber 33 are formed on the inner peripheral wall surface of the metering jet 26. The annular air chamber 33 is connected into the intake passage 7 upstream of the raised wall 29 via an air bleed passage 35.36 and an air bleed jet 37, the connection of which is actuated by a wax valve 38. A valve body 39 is arranged. wax valve 38
A cooling water circulation chamber 39 is formed around the temperature sensing portion 38a, and cooling water is introduced into the cooling water circulation chamber 39 from a cooling water inlet 40, and is discharged from a cooling water outlet 41. When the engine cooling water temperature rises, the valve body 39 moves to the left, thereby increasing the flow area of the air bleed passage, thereby increasing the amount of air bleed. When the warm-up operation is completed, the valve body 39 fully opens the air bleed passage, and at this time, the air-fuel mixture supplied into the engine cylinder has an air-fuel ratio of 14.
The mixture becomes a rich mixture of about 0.

一方2機関排気マニホルド3には2次空気の供給制御を
する2次空気供給制御弁50が取付けられ、吸気マニホ
ルド1には2次空気供給制御弁50の作動を制御する電
磁弁51が取付けられる。
On the other hand, a secondary air supply control valve 50 that controls the supply of secondary air is attached to the two-engine exhaust manifold 3, and a solenoid valve 51 that controls the operation of the secondary air supply control valve 50 is attached to the intake manifold 1. .

2次空気制御弁50はダイアフラム52によって隔離さ
れた負圧室53と大気圧室54とを有し。
The secondary air control valve 50 has a negative pressure chamber 53 and an atmospheric pressure chamber 54 separated by a diaphragm 52.

負圧室53内にはダイアフラム押圧用圧縮ばね55が挿
入される。大気圧室54内にはダイアフラム52に向け
て突出する中空管56が固定配置され、この中空管56
の先端部にはダイアフラム52に固着された弁体58に
よって開閉制御される弁ボート57が形成される。この
弁ボート57は弁ボート57から排気マニホルド3内に
向けてのみ流通可能な逆止弁59および2次空気供給孔
60を介して排気マニホルド3内に連結される。
A compression spring 55 for pressing the diaphragm is inserted into the negative pressure chamber 53 . A hollow tube 56 protruding toward the diaphragm 52 is fixedly disposed within the atmospheric pressure chamber 54.
A valve boat 57 whose opening and closing are controlled by a valve body 58 fixed to the diaphragm 52 is formed at the tip of the diaphragm 52 . This valve boat 57 is connected to the inside of the exhaust manifold 3 via a check valve 59 and a secondary air supply hole 60 that allow flow only from the valve boat 57 into the exhaust manifold 3 .

従って弁ボート57および2次空気供給孔60が2次空
気供給通路を形成する。一方、電磁弁51は弁室62と
、弁室62内に配置された弁体63と、弁室62内に開
口しかつ吸気マニホルド1内に連結された負圧ボート6
4と、弁室62内に開口しかつ大気に連通ずる大気ボー
ト65と、弁体63に連結された可動プランジャ66と
、可動プランジャ66を吸引するだめのソレノイド67
を具備し、負圧ボート64および大気ボート65は弁体
63によって開閉制御される。弁室62は導管68を介
して2次空気供給制御弁50の負圧室53に連結され、
ソレノイド67はソレノイド駆動回路70に接続される
。ソレノイド駆動回路70は第5図(a)に示すような
I Hzから2 Hz  の周波数の矩形パルスを発生
するパルス発生器71と、パルス発生器71の出力を一
方の入力とじ負圧スイッチ72の出力を他方の入力とす
るアンドゲート73と、アンドゲート73の出力端子に
接続された電力増幅器74とを具備し、電力増幅器74
の出力端子はソレノイド67に接続される。
Therefore, the valve boat 57 and the secondary air supply hole 60 form a secondary air supply passage. On the other hand, the solenoid valve 51 includes a valve chamber 62, a valve body 63 disposed within the valve chamber 62, and a negative pressure boat 6 that opens into the valve chamber 62 and is connected to the intake manifold 1.
4, an atmospheric boat 65 opening into the valve chamber 62 and communicating with the atmosphere, a movable plunger 66 connected to the valve body 63, and a solenoid 67 for suctioning the movable plunger 66.
A negative pressure boat 64 and an atmospheric boat 65 are controlled to open and close by a valve body 63. The valve chamber 62 is connected to the negative pressure chamber 53 of the secondary air supply control valve 50 via a conduit 68;
Solenoid 67 is connected to solenoid drive circuit 70. The solenoid drive circuit 70 includes a pulse generator 71 that generates a rectangular pulse with a frequency of I Hz to 2 Hz as shown in FIG. It includes an AND gate 73 whose output is the other input, and a power amplifier 74 connected to the output terminal of the AND gate 73.
The output terminal of is connected to the solenoid 67.

負圧スイッチ72はダイアフラム75によって隔離され
た負王室76と大気圧室77とを具備し。
The negative pressure switch 72 includes a negative pressure chamber 76 and an atmospheric pressure chamber 77 separated by a diaphragm 75.

大気圧室77内にはアンドゲート73に接続された固定
接点78と、ダイアフラム75に固定されかつ電源(図
示せず)に接続された可動接点79が配置される。一方
、負圧室76は負圧遅延弁80および負圧導管81を介
して吸気マニホルド1内に連結される。この負圧遅延弁
80は負圧室76から吸気マニホルド1内に向けてのみ
流通可能な逆止弁81と絞シ82とを具備し、これら逆
止弁81と絞り82とは並列配置される。
A fixed contact 78 connected to the AND gate 73 and a movable contact 79 fixed to the diaphragm 75 and connected to a power source (not shown) are arranged in the atmospheric pressure chamber 77. On the other hand, the negative pressure chamber 76 is connected to the intake manifold 1 via a negative pressure delay valve 80 and a negative pressure conduit 81. This negative pressure delay valve 80 is equipped with a check valve 81 and a throttle 82 that can flow only from the negative pressure chamber 76 into the intake manifold 1, and the check valve 81 and the throttle 82 are arranged in parallel. .

スロットル弁11の開度が小さな低負荷運転時には負圧
スイッチ72の負王室76内に大きな負圧が発生してお
シ、従ってこのときダイアフラム75が左方に移動する
ために可動接点79と固定接点78とが互に接触する。
During low-load operation with a small opening of the throttle valve 11, a large negative pressure is generated within the negative pressure ring 76 of the negative pressure switch 72, and therefore, at this time, the diaphragm 75 moves to the left and is fixed to the movable contact 79. The contacts 78 are in contact with each other.

斯くしてこのときアンドゲート73の出力電圧はパルス
発生器71がパルスを発生する毎に高レベルとなシ、従
ってソレノイド67には第5図(a)に示すような連続
パルスが印加される。次いで加速すべくスロットル弁1
1が全開近くまで開弁せしめられると吸気マニホルドl
内の負圧が小さくなるが、このとき逆止弁81は閉弁状
態に保持されるので負圧スイッチ72の負王室76内に
は依然として大きな負圧が作用しておシ、斯くして可動
接点79と固定接点78とは互に接触し続けるのでソレ
ノイド67には第5図(a)に示すような連続パルスが
供給され続ける。次いで暫くすると負圧室76内の負圧
が小さくなるためにダイアフラム75は右方に移動し。
Thus, at this time, the output voltage of the AND gate 73 becomes a high level every time the pulse generator 71 generates a pulse, so that continuous pulses as shown in FIG. 5(a) are applied to the solenoid 67. . Next, throttle valve 1 is pressed to accelerate.
When valve 1 is opened nearly to full open, the intake manifold l
However, at this time, the check valve 81 is kept closed, so a large negative pressure still acts within the negative ring 76 of the negative pressure switch 72, and the switch 72 is movable. Since the contact 79 and the fixed contact 78 continue to be in contact with each other, continuous pulses as shown in FIG. 5(a) continue to be supplied to the solenoid 67. Then, after a while, the negative pressure in the negative pressure chamber 76 becomes smaller, so the diaphragm 75 moves to the right.

斯くして可動接点79と固定接点78とは非接触状態と
なる。その結果、アンドゲート73の出力電圧は低レベ
ルに維持されるのでソレノイド67が消勢される。この
ように本発明では高負荷運転が開始された後暫くの間は
ソレノイド67に連続パルスが印加され1次いでソレノ
イド67は消勢される。なお、スロットル弁11が開弁
された後。
In this way, the movable contact 79 and the fixed contact 78 are in a non-contact state. As a result, the output voltage of AND gate 73 is maintained at a low level and solenoid 67 is deenergized. As described above, in the present invention, continuous pulses are applied to the solenoid 67 for a while after high-load operation is started, and then the solenoid 67 is deenergized. Note that after the throttle valve 11 is opened.

短時間のうちにスロットル弁11が再び閉弁せしめられ
ると逆止弁81が即座に開弁して負王室76内には大き
な負圧が加わる。従ってこの場合にはソレノイド67が
消勢されることなく、ソレノイド67に連続パルスが印
加され続けることになる。
When the throttle valve 11 is closed again within a short period of time, the check valve 81 is immediately opened and a large negative pressure is applied to the negative royal chamber 76. Therefore, in this case, the solenoid 67 is not deenergized and continuous pulses continue to be applied to the solenoid 67.

上述したように機関低負荷運転時および高負荷運転に移
行してから暫くの間はソレノイド67に第5図(a)に
示すような連続パルスが印加される。
As described above, continuous pulses as shown in FIG. 5(a) are applied to the solenoid 67 during low load operation of the engine and for a while after transition to high load operation.

弁体63は通常負圧ボート64を閉鎖すると共に大気ボ
ート65を開口しておシ、パルス発生器71がパルスを
発生するとソレノイド67が付勢されて弁体64が右方
に移動し、それによって弁体63が負圧ボート64を開
口すると共に大気ボート65を閉鎖する。従って負圧ボ
ート64および大気ボート65はI Hzから2 Hz
の周波数でもりて開閉動作が繰返され、斯くして2次空
気供給制御弁50の負圧室53にはI Hzから2 H
zノ周波数でもって負圧、又は大気圧が夜互に導かれる
。負王室53内に負圧が加わると弁体58が弁ポート5
7を開口し、このとき排気脈動により排気マニホルド3
内に発生する負圧によって空気が2次空気供給孔60か
ら排気マニホルド3内に吸入される。従って上述のよう
に負圧室53内がIHzから21(zの周波数でもって
交互に大気圧。
The valve body 63 normally closes the negative pressure boat 64 and opens the atmospheric boat 65. When the pulse generator 71 generates a pulse, the solenoid 67 is energized and the valve body 64 moves to the right. Accordingly, the valve body 63 opens the negative pressure boat 64 and closes the atmospheric boat 65. Therefore, the negative pressure boat 64 and the atmospheric boat 65 have a frequency of I Hz to 2 Hz.
The opening and closing operations are repeated at a frequency of IHz to 2H.
Negative pressure or atmospheric pressure is introduced at the z frequency. When negative pressure is applied inside the negative royal chamber 53, the valve body 58 closes to the valve port 5.
7 is opened, and at this time, the exhaust pulsation causes the exhaust manifold 3 to open.
Air is drawn into the exhaust manifold 3 from the secondary air supply hole 60 by the negative pressure generated within. Therefore, as mentioned above, the inside of the negative pressure chamber 53 is alternately atmospheric pressure at a frequency of IHz to 21 (z).

又は負圧になると弁体58が弁ボート57をIHzから
2 Hzの周波数でもって開口し、斯くして2次空気が
排気マニホルド3内にI Hzから2Hzの周波数でも
って間欠的に供給されることになる。2次空気が排気マ
ニホルド3内に間欠的に供給されると排気マニホルド3
内の排気ガス中の酸素濃度が周期的に変動し、斯くして
空燃比が変動することになる。なお、ここで空燃比とい
う用語は通常用いられる意味とは多少違った意味で使用
されており、この空燃比は三元触媒コンバータ4上流の
作動ガス通路内に供給された全空気量(吸入空気と2次
空気の和)と全燃料量との比を言う。三元触媒5は排気
ガス中に存在する過剰な酸素に対して前述したような酸
素保持機能を有しておシ、この過剰酸素が吸気系に供給
された吸入空気によるものか、又は排気系に供給された
2次空気によるものかは関係ない。従って排気マニホル
ド3内に供給される2次空気の量を変動させることによ
って空燃比を周期的に変動させた場合にこの空燃比の平
均値が第1缶)図のウィンドウW0内に維持されれば高
い浄化効率を得ることができる。第2図に示す実施例に
おいて弁ボート57および2次空気供給孔600寸法は
ダイアフラム52の弁体58が弁ボート57の開閉を繰
返し行なったときに空燃比A/、の平均直が第5(b)
図に示されるようにほぼ理論空燃比となシ、空燃比の変
動中が理論空燃比に対してほぼ±0.2から±1.0と
なるように定められる。このように弁体58の単純な開
閉動作の繰返しによって空燃比〜争の半均値をほぼ理論
空燃比に維持できるのは気化器2において形成される混
合気の空燃比が一定に維持されているからである。従っ
て機関の運転状態にかかわらず空燃比はI Hzから2
 Hzの周波数でもってほぼ理論空燃比に対して±0.
2から±1.0の範囲で変動せしめられ、しかもこの空
燃比の平均値は第1(b)図のウィンドウW0内に維持
されるので三元モノリス触媒5の酸素保持機能を利用し
て高い浄化効率を得ることができる。
Or when the pressure becomes negative, the valve body 58 opens the valve boat 57 at a frequency of IHz to 2 Hz, and thus secondary air is intermittently supplied into the exhaust manifold 3 at a frequency of I Hz to 2 Hz. It turns out. When secondary air is intermittently supplied into the exhaust manifold 3, the exhaust manifold 3
The oxygen concentration in the exhaust gas within the engine fluctuates periodically, thus causing the air-fuel ratio to fluctuate. Note that the term air-fuel ratio is used here in a slightly different meaning from its usual meaning, and this air-fuel ratio is defined as the total amount of air (intake air) supplied into the working gas passage upstream of the three-way catalytic converter 4. and secondary air) and the total amount of fuel. The three-way catalyst 5 has the above-mentioned oxygen retention function for excess oxygen present in the exhaust gas. It does not matter whether it is due to the secondary air supplied to the Therefore, when the air-fuel ratio is periodically varied by varying the amount of secondary air supplied into the exhaust manifold 3, the average value of this air-fuel ratio is maintained within the window W0 in the first can). High purification efficiency can be obtained. In the embodiment shown in FIG. 2, the dimensions of the valve boat 57 and the secondary air supply hole 600 are such that when the valve body 58 of the diaphragm 52 repeatedly opens and closes the valve boat 57, the average directivity of the air-fuel ratio A/, b)
As shown in the figure, the air-fuel ratio is approximately at the stoichiometric air-fuel ratio, and the fluctuation of the air-fuel ratio is determined to be approximately ±0.2 to ±1.0 with respect to the stoichiometric air-fuel ratio. The reason why the air-fuel ratio can be maintained at approximately the stoichiometric air-fuel ratio by repeating the simple opening and closing operations of the valve body 58 is that the air-fuel ratio of the air-fuel mixture formed in the carburetor 2 is maintained constant. Because there is. Therefore, regardless of the operating state of the engine, the air-fuel ratio will vary from IHz to 2
At a frequency of Hz, the air-fuel ratio is approximately ±0.
2 to ±1.0, and the average value of this air-fuel ratio is maintained within the window W0 shown in FIG. Purification efficiency can be obtained.

一方、スロットル弁11の開度が全開に近い高負荷運転
状態では排気ガス量が増大し、斯くして高負荷運転が継
続しているときに2次空気を供給すると酸化反応による
発熱作用によって三元触媒5が過熱し、斯くして三元触
媒5が劣化するという問題を生ずる。これに対してスロ
ットル弁11が一時的に全開近くまで開弁せしめられる
ような場合には三元触媒5が過熱されることもなく、こ
の場合にはむしろ排気ガスの浄化の面から2次空気を間
欠的に供給することが好ましい。ところで本発明では高
負荷運転が一定時間以上継続すると負圧スイッチ72が
オフとなってソレノイド67が消勢され、その結果2次
空気供給制御弁50の弁ボート57が弁体58によって
閉鎖されるために2次空気の供給が停止される。従って
スロットル弁11が一時的に開弁せしめられたときの良
好な浄化作用を維持しつつ三元触媒の劣化を阻止するこ
とかできる。
On the other hand, in a high-load operating state where the opening degree of the throttle valve 11 is close to fully open, the amount of exhaust gas increases, and if secondary air is supplied while such high-load operating continues, the third A problem arises in that the primary catalyst 5 overheats and the three-way catalyst 5 deteriorates. On the other hand, when the throttle valve 11 is temporarily opened to nearly full opening, the three-way catalyst 5 will not be overheated, and in this case, the secondary air It is preferable to supply it intermittently. However, in the present invention, when high-load operation continues for a certain period of time or more, the negative pressure switch 72 is turned off and the solenoid 67 is deenergized, and as a result, the valve boat 57 of the secondary air supply control valve 50 is closed by the valve body 58. Therefore, the supply of secondary air is stopped. Therefore, deterioration of the three-way catalyst can be prevented while maintaining a good purifying effect when the throttle valve 11 is temporarily opened.

このように本発明によれば高価な酸素濃度検出器および
高価な空燃比制御用の電子制御ユニットを用いることな
く1価格の低い気化器を用いて排気ガスを良好に浄化で
きるので排気ガス浄化装置の製造コストを大巾に低減す
ることができる。更に1機関シリンダ内に供給される混
合気の空燃比は一定に維持されるので燃焼変動が生ずる
こともなく、斯くして滑らかな機関の運転を確保するこ
とができる。また9通常しばしば行なわれるスロットル
弁の一時的な開弁動作時における良好な浄化作用を維持
しつつ、触媒の過熱による劣化を阻止することができる
As described above, according to the present invention, exhaust gas can be effectively purified using an inexpensive carburetor without using an expensive oxygen concentration detector or an expensive electronic control unit for air-fuel ratio control. The manufacturing cost can be reduced significantly. Furthermore, since the air-fuel ratio of the air-fuel mixture supplied into one engine cylinder is maintained constant, combustion fluctuations do not occur, thus ensuring smooth engine operation. In addition, it is possible to prevent the catalyst from deteriorating due to overheating while maintaining a good purifying effect during the temporary opening operation of the throttle valve, which is normally often performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は排気ガス浄化効率を示す線図、第2図は機関吸
排気系の側面断面図、第3図は第2図の矢印■に沿って
みた平面図、第4図はサクシ褒ンピストンの側面断面図
、第5図は空燃比の変動を示す線図である。 2・・・気化器、  8・・・サクシ諺ンピストン。 9・・・ニードル、25・・・燃料通路。 28・・・ノズル、  50・・・2次空気供給制御弁
。 51・・・電磁弁、   60・・・2次空気供給孔。 72・・・負圧スイッチ、  80・・・負圧遅延弁。 特許出願人 トヨタ自動車株式会社 特肝出願代理人 弁理士 青 木   朗 弁理士西舘和之 弁理土中山恭介 弁理士 山 口 昭 之 +          女 く                    く−10
5=
Figure 1 is a diagram showing exhaust gas purification efficiency, Figure 2 is a side sectional view of the engine intake and exhaust system, Figure 3 is a plan view taken along the arrow ■ in Figure 2, and Figure 4 is a piston. FIG. 5 is a diagram showing variations in air-fuel ratio. 2... Carburetor, 8... Sakushi proverbial piston. 9... Needle, 25... Fuel passage. 28... Nozzle, 50... Secondary air supply control valve. 51... Solenoid valve, 60... Secondary air supply hole. 72... Negative pressure switch, 80... Negative pressure delay valve. Patent applicant Toyota Motor Corporation Patent attorney Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney Kyosuke Tsuchinakayama Patent attorney Akira Yamaguchi + Onnaku-10
5 =

Claims (1)

【特許請求の範囲】 機関シリンダ内に過濃な混合気を供給するための燃料供
給装置を具備すると共に機関排気通路に三元触媒コンバ
ータを取付けた内燃機関において。 三元触媒コンバータ上流の排気通路内に2次空気供給通
路を連結し、該2次空気供給通路内にほぼI Hzから
2 Hzの一定周波数で開閉する電磁弁を配置し、該2
次空気供給通路を開閉した際に空燃比が平均値に対して
ほぼ主0゜2から主1゜0の間で周期的に変動すると共
に該空燃比の平均値がほぼ理論空燃比となるように上記
2次空気供給通路の流路面積を定め、更に機関負荷変化
に遅延して応動する負荷検出器を上記電磁弁に接続して
機関負荷が予め定められた負荷を越えた後一定時間を経
過したときに上記2次空気供給通路を閉鎖するようにし
た内燃機関の排気ガス浄化装置。
[Scope of Claims] An internal combustion engine that is equipped with a fuel supply device for supplying a rich air-fuel mixture into engine cylinders and that is equipped with a three-way catalytic converter in an engine exhaust passage. A secondary air supply passage is connected to the exhaust passage upstream of the three-way catalytic converter, and a solenoid valve that opens and closes at a constant frequency of about I Hz to 2 Hz is arranged in the secondary air supply passage.
When the secondary air supply passage is opened and closed, the air-fuel ratio periodically fluctuates between approximately 0°2 and 1°0 relative to the average value, and the average value of the air-fuel ratio becomes approximately the stoichiometric air-fuel ratio. The flow area of the secondary air supply passage is determined, and a load detector that responds to engine load changes with a delay is connected to the solenoid valve to detect a certain period of time after the engine load exceeds a predetermined load. An exhaust gas purification device for an internal combustion engine, which closes the secondary air supply passage when the time has elapsed.
JP20448982A 1982-11-24 1982-11-24 Exhaust gas purifying device of internal-combustion engine Pending JPS5996418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20448982A JPS5996418A (en) 1982-11-24 1982-11-24 Exhaust gas purifying device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20448982A JPS5996418A (en) 1982-11-24 1982-11-24 Exhaust gas purifying device of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS5996418A true JPS5996418A (en) 1984-06-02

Family

ID=16491368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20448982A Pending JPS5996418A (en) 1982-11-24 1982-11-24 Exhaust gas purifying device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5996418A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939693B2 (en) 2010-03-10 2015-01-27 Kaoru Taneichi Wood screw

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8939693B2 (en) 2010-03-10 2015-01-27 Kaoru Taneichi Wood screw

Similar Documents

Publication Publication Date Title
JPH09256825A (en) Internal combustion engine, and head structure of internal combustion engine
US4289103A (en) Altitude compensating device of an internal combustion engine
US4450684A (en) Exhaust gas cleaning system for internal combustion engine
JPS5996418A (en) Exhaust gas purifying device of internal-combustion engine
US4506644A (en) Exhaust gas-purifying device of an internal combustion engine
US4250706A (en) Apparatus for controlling the amount of secondary air fed into an internal combustion engine
JPS5934456A (en) Exhaust gas purifier for internal combustion engine
US4191013A (en) Device for purifying exhaust gases from internal combustion engine
JPS5910724A (en) Exhaust emission control device for internal-combustion engine
JPS5934468A (en) Exhaust gas purifier for internal combustion engine
JPS5996420A (en) Exhaust gas purifying device of internal-combustion engine
JPS5996424A (en) Exhaust gas purifying device of internal-combustion engine
JPS5996421A (en) Exhaust gas purifying device of internal-combustion engine
JPS59101529A (en) Exhaust gas purging device of internal-combustion engine
JPS5934452A (en) Exhaust gas purifier for internal combustion engine
JPS5996425A (en) Exhaust gas purifying device of internal-combustion engine
JPS5934461A (en) Exhaust gas purifier for internal combustion engine
JPS5912113A (en) Exhaust gas purifying device of internal combustion engine
JPS5934460A (en) Exhaust gas purifier for internal combustion engine
JPS59101528A (en) Exhaust gas purging device of internal-combustion engine
JPS5993950A (en) Exhaust-gas purifier for internal-combustion engine
JPS5996422A (en) Exhaust gas purifying device of internal-combustion engine
JPS59101527A (en) Exhaust gas purging device of internal-combustion engine
JPS5934464A (en) Exhaust gas purifier for internal combustion engine
JPS5934466A (en) Exhaust gas purifier for internal combustion engine