JPS59101529A - Exhaust gas purging device of internal-combustion engine - Google Patents

Exhaust gas purging device of internal-combustion engine

Info

Publication number
JPS59101529A
JPS59101529A JP21057782A JP21057782A JPS59101529A JP S59101529 A JPS59101529 A JP S59101529A JP 21057782 A JP21057782 A JP 21057782A JP 21057782 A JP21057782 A JP 21057782A JP S59101529 A JPS59101529 A JP S59101529A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
atmospheric pressure
secondary air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21057782A
Other languages
Japanese (ja)
Inventor
Takashi Kato
孝 加藤
Takaaki Ito
隆晟 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21057782A priority Critical patent/JPS59101529A/en
Publication of JPS59101529A publication Critical patent/JPS59101529A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/222Control of additional air supply only, e.g. using by-passes or variable air pump drives using electric valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/227Control of additional air supply only, e.g. using by-passes or variable air pump drives using pneumatically operated valves, e.g. membrane valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To improve purging of a large amount of unburnt gas, exhuasted when an atmospheric pressure therearound decreases, without using an expensive device, by a method wherein the air-fuel ratio of fuel-air mixture is maintained at a specified value, and a pressure sensitive switch is provided. CONSTITUTION:When an atmospheric pressure therearound is about a standard atmospheric pressure, a solenoid 67 is actuated and controlled by means of an output signal from a pulse generator 71 with 1-2HZ frequency, and secondary air is intermittently fed in an exhaust manifold 3 by a secondary air feed control valve 50. Since the air-fuel ratio of fuel-air mixture produced in a carbretter 2 is normally maintained at a specified value, the air-fuel ratio is vaired at 1- 2HZ frequency within a range of from + or -0.2 to + or -1.0 based on an approximately theoretical air-fuel ratio. Besides, the mean value thereof is maintained within a window W0, and thereby a high purging efficiency may be obtained through utilization of the oxygen holding function of a ternary monolith catalyst 5. When an atmospheric pressure decreases, a bellows 75 is expanded, a switch 76 is turned ON, the solenoid 67 is consecutively energized, secondary air continues to be fed, and this promotes the oxidizing reaction of unburnt HC, CO.

Description

【発明の詳細な説明】 本発明は内燃機関の排気ガス浄化装置に関する。[Detailed description of the invention] The present invention relates to an exhaust gas purification device for an internal combustion engine.

排気ガス中の有害三成分HC、COおよびNOxを同時
に低減することのできる触媒として、三元触媒が知られ
ている。この三元触媒の浄化効率Rは第1(a)図に示
されるように空燃比〜↑がほぼ理論空燃比であるときに
最も高くなり、例えは39 p七−セント以上の浄化効
率Rを得ることのできる空燃比領域は空燃比が0.06
程度の狭い幅である。通常、このように80パ一セント
以上の浄化効率を得ることのできる望燃比饋域をウィン
ドウWと称する。従って、三元触媒を用いて排気ガス中
の有害三成分を同時に低減するためには空燃比をこの狭
いウィンドウW内に宮時に維持しなければならない。こ
のために従来の排気ガス浄化装置では、空燃比が理論空
燃比よシも大きいが小さいが全判別可能な酸素濃度検出
器を機関排気通路に数個け、この酸素濃度検出器の出力
(g号に基いて空燃比がウィンドウW内の空燃比となる
ように制御している。しかしながらこのような酸素濃度
検出器を用いた排気ガス浄化装置では高価な酸素濃度検
出器および空燃比制御のための高価な電子制御ユニット
を必要とするために排気ガス浄化装置の製造コストか高
騰するという問題がある。
A three-way catalyst is known as a catalyst that can simultaneously reduce three harmful components HC, CO, and NOx in exhaust gas. The purification efficiency R of this three-way catalyst is highest when the air-fuel ratio ↑ is approximately the stoichiometric air-fuel ratio, as shown in Figure 1(a). The air-fuel ratio range that can be obtained is an air-fuel ratio of 0.06.
The width is narrow. Usually, the desired fuel-fuel ratio range in which a purification efficiency of 80 percent or more can be obtained is called a window W. Therefore, in order to simultaneously reduce the three harmful components in exhaust gas using a three-way catalyst, the air-fuel ratio must be maintained within this narrow window W. For this reason, in conventional exhaust gas purification systems, several small oxygen concentration detectors are installed in the engine exhaust passage, and the output of the oxygen concentration detectors (g The air-fuel ratio is controlled to be within the window W based on the above-mentioned No. There is a problem in that the manufacturing cost of the exhaust gas purification device increases because it requires an expensive electronic control unit.

ところが最近になつ1、SAE paper A 76
0201号、或いは特公昭56−4741号公報に記載
されているように三元触媒の機能が次第に解明され、三
元触媒が酸素保持機能を有することが判明したのである
。即ち、空燃比が理論空燃比に対してリーン側にあると
きには三元触媒がNOxから酸素を奪い取ってNOxを
還元させると共にこの奪い取った酸素を保持し、空燃比
が理論空燃比よりもリッチ側になると保持した酸素を放
出してCo 、HCの酸化を行なうのである。従って空
燃比を成る基準空燃比に対してリーン側とリッチ側に交
互に変動させると基準空燃比が理論空燃比からずれたと
しても上述の酸素保持機能によp NOxの還元作用お
よびCo、HCの酸化作用が促進されて高い浄化効率を
得ることができる。第1図(b)は空燃比を周波数IH
zで基準空燃比に対して±1.0だけ変動させた場合の
基準空燃比〜乍のウィンドウwoを示している。第1(
a)図および第1 (b)図がら空燃比を一定周波数で
変動させた場合にはウィンドウWoが広くなることがわ
かる。このことは、借燃比を一定周期で変動させれば基
準空燃比が理論空燃比から多少ずれていたとしても高い
浄化効率が得られることを意味している。一方、空燃比
の変動周波数を低くすると、即ち空燃比の変動周期全長
くすると三元触媒の酸素保持能力が飽和するために酸素
保持機能に基づく酸化還元能力が低下し、三元触媒の浄
化効率が低下する。第1(c)図はこのことを明瞭に示
している。第1(c)図において縦軸Rは浄化効率を示
し、横軸Fは空燃比の変動周波数を示す。また、空燃比
の変動幅を小さくすると空燃比をリッチ側とり一ン側に
交互に変動できなくなるのでウィンドウの幅は狭くなる
。従ってウィンドウの幅を広くするには最適な空燃比の
変動周期と変動幅が存在することがわかる。
However, recently, SAE paper A 76
As described in No. 0201 or Japanese Patent Publication No. 56-4741, the function of the three-way catalyst was gradually elucidated, and it was found that the three-way catalyst had an oxygen retention function. That is, when the air-fuel ratio is on the lean side with respect to the stoichiometric air-fuel ratio, the three-way catalyst takes oxygen from NOx and reduces the NOx, and at the same time retains this taken oxygen, so that the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio. Then, the retained oxygen is released to oxidize Co and HC. Therefore, if the air-fuel ratio is alternately varied between the lean side and the rich side with respect to the standard air-fuel ratio, even if the standard air-fuel ratio deviates from the stoichiometric air-fuel ratio, the above-mentioned oxygen retention function will reduce pNOx and Co, HC. The oxidation effect of the gas is promoted and high purification efficiency can be obtained. Figure 1(b) shows the air-fuel ratio at frequency IH.
The window wo from the reference air-fuel ratio is shown when z is varied by ±1.0 with respect to the reference air-fuel ratio. 1st (
It can be seen from FIG. a) and FIG. 1(b) that the window Wo becomes wider when the air-fuel ratio is varied at a constant frequency. This means that if the borrow-fuel ratio is varied at regular intervals, high purification efficiency can be obtained even if the reference air-fuel ratio deviates somewhat from the stoichiometric air-fuel ratio. On the other hand, when the air-fuel ratio fluctuation frequency is lowered, that is, when the air-fuel ratio fluctuation period is lengthened, the oxygen retention capacity of the three-way catalyst becomes saturated, and the oxidation-reduction ability based on the oxygen retention function decreases, resulting in the purification efficiency of the three-way catalyst. decreases. Figure 1(c) clearly shows this. In FIG. 1(c), the vertical axis R shows the purification efficiency, and the horizontal axis F shows the fluctuation frequency of the air-fuel ratio. Furthermore, if the range of variation in the air-fuel ratio is made smaller, the air-fuel ratio cannot be varied alternately between the rich side and the rich side, so the width of the window becomes narrower. Therefore, it can be seen that there is an optimum air-fuel ratio fluctuation period and fluctuation width in order to widen the window width.

上述のように基準空燃比に対する空燃比の変動幅および
変動周波数を適切に選定すればウィンドウが広くなり、
従って基準空燃比が理論空燃比に対して多少変動しても
高い浄化効率を得ることができる。このことは、基準空
燃比の変動幅の狭い燃料供給系を用いれば酸素濃度検出
器の出力信号によるフィードバック制御を用いなくても
高い浄化効率を得ることができることを意味している。
As mentioned above, if the fluctuation range and fluctuation frequency of the air-fuel ratio relative to the reference air-fuel ratio are appropriately selected, the window will become wider.
Therefore, high purification efficiency can be obtained even if the reference air-fuel ratio varies somewhat with respect to the stoichiometric air-fuel ratio. This means that if a fuel supply system with a narrow reference air-fuel ratio fluctuation range is used, high purification efficiency can be obtained without using feedback control based on the output signal of the oxygen concentration detector.

熱論、燃料供給系として燃料噴射弁を用いれば基準空燃
比の変動幅を狭くすることができるが燃料噴射装置は高
価であるために機関の製造コストが高くなってしまうと
いう問題があり、更にこのように機関シリンダ内に供帽
される空燃比を変動せしめるたとえ変動幅が小さくても
燃焼が周期的に変動し、斯くして車両運転性か悪化する
という問題を生ずる。
In theory, if a fuel injection valve is used as a fuel supply system, it is possible to narrow the fluctuation range of the standard air-fuel ratio, but since fuel injection devices are expensive, there is a problem that the manufacturing cost of the engine increases. Thus, even if the air-fuel ratio supplied to the engine cylinder is varied, even if the range of variation is small, combustion will fluctuate periodically, resulting in a problem that vehicle drivability will deteriorate.

本発明は敵素鋲度検出器を用いることなく、しかも機関
シリンダ内に供給される空燃比を変動させることなく萬
い排気ガス浄化効率を確保することのできる排気ガス浄
化装置を提供することにある。
An object of the present invention is to provide an exhaust gas purification device that can ensure exhaust gas purification efficiency without using an enemy rivet level detector and without changing the air-fuel ratio supplied into the engine cylinder. be.

以下、添附図面を参照し1本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第2図を参照すると、lは吸気マニホルド、2は吸気マ
ニホルドl上に取付けられた可変ペンチエリ型気化器、
3は排気マニホルド、4は触媒コンバータを夫々示し、
触媒コンバータ4の内部には三元モノリス触媒5が配置
される。可変ペンチーリ型気化器2は気化器ノ・ウジン
グ6と、ノ・ウジフグ6内を垂直方向に延びる吸気通路
7と、吸気通路7内を横方向に移動するサクションピス
トン8と、サクションピストン8の先端面に取付けられ
たニードル9と、サクションピストン3の先i面に対向
して吸気通路7の内壁面上に固定されたスペーサ10と
、サクションピストン8下流の吸気通路7内に設けられ
たスロットル弁11と、フロート室12とを具備し、サ
クションピストン8の先端面とスペーサ10間にはペン
テーリ部13が形成される。気化器ハウジング6には中
空円間抜のケーシング14が固定され、このケーシング
14にはケーシング14の内部でケーシング14の軸線
方向に延びる案内スリーブ15が取付けられる。案内ス
リーブ15内には多数のが−ル16を備えた軸受17が
挿入され、また案内スリーブ15の外端部は盲蓋18に
よって閉鎖される。一方、サクションピストン8には案
内ロッド19−1)1固定され、この案内ロッド19は
軸受17内に案内ロッド19の軸線方向に移動可能に挿
入される。
Referring to FIG. 2, 1 is an intake manifold, 2 is a variable Pentieri carburetor mounted on the intake manifold 1,
3 indicates an exhaust manifold, 4 indicates a catalytic converter,
A three-way monolith catalyst 5 is arranged inside the catalytic converter 4 . The variable pencil type carburetor 2 includes a carburetor nozzle 6, an intake passage 7 extending vertically within the nozzle 6, a suction piston 8 that moves laterally within the intake passage 7, and a tip of the suction piston 8. A needle 9 attached to the surface, a spacer 10 fixed on the inner wall surface of the intake passage 7 facing the tip i-plane of the suction piston 3, and a throttle valve provided in the intake passage 7 downstream of the suction piston 8. 11 and a float chamber 12, and a pentagonal portion 13 is formed between the distal end surface of the suction piston 8 and the spacer 10. A hollow circular casing 14 is fixed to the carburetor housing 6, and a guide sleeve 15 extending in the axial direction of the casing 14 inside the casing 14 is attached. A bearing 17 with a number of holes 16 is inserted into the guide sleeve 15, and the outer end of the guide sleeve 15 is closed by a blind cover 18. On the other hand, a guide rod 19-1) 1 is fixed to the suction piston 8, and the guide rod 19 is inserted into the bearing 17 so as to be movable in the axial direction of the guide rod 19.

このようにサクションピストン8は軸受17を介してケ
ーシング14により支持されるのでサクションピストン
8はその軸線方向に滑らかに移動することができる。ケ
ーシング14の内部はサクションピストン8によりて負
圧室20と大気圧室21とに分割され、負圧室20内に
はサクションピストン8を常時ベンチュリ部13に向け
て押圧する圧縮はね22が挿入される。負圧室20はサ
クションピストン8に形成された・す゛クシ目ン孔23
を介してペンチーリ部13に連結され、大気圧室21は
気化器ハウジング6に形成された空気孔24を介してサ
クシロンピストン8上流の吸気通路7内に連結される。
Since the suction piston 8 is thus supported by the casing 14 via the bearing 17, the suction piston 8 can move smoothly in its axial direction. The interior of the casing 14 is divided into a negative pressure chamber 20 and an atmospheric pressure chamber 21 by the suction piston 8, and a compression spring 22 is inserted into the negative pressure chamber 20 to constantly press the suction piston 8 toward the venturi portion 13. be done. The negative pressure chamber 20 has a comb hole 23 formed in the suction piston 8.
The atmospheric pressure chamber 21 is connected to the intake passage 7 upstream of the succilon piston 8 through an air hole 24 formed in the carburetor housing 6 .

一方、気化器ハウジング6内にはニードル9が侵入可能
なようにニードル9の軸線方向に延びる燃料通路25が
形成され、この燃料通路25内には計量ジェット26が
設けられる。計量ジェット26上流の燃料通路25は下
方に延びる燃料パイプ27を介してフロート室12に連
結され、フロート室12内の燃料はこの燃料パイプ27
を介して燃料通路25内に送り込まれる。更に、スペー
サ10には燃料通路25と共軸的に配置された中空円筒
状のノズル28が固定される。このノズル28はスペー
サ10の内壁面からベンチエリ部13内に突出し、しか
もノズル28の先端部の上半分は下半分から更にサクシ
ョンピストン8に向けて突出している。ニードル9はノ
ズル28および計量ジェット26内を貫通して延び、燃
料はニードル9と計量ジェット26間に形成される環状
間隙によシ計量された後にノズル28から吸気通路7内
に供給される。
On the other hand, a fuel passage 25 extending in the axial direction of the needle 9 is formed in the carburetor housing 6 so that the needle 9 can enter therein, and a metering jet 26 is provided in the fuel passage 25. The fuel passage 25 upstream of the metering jet 26 is connected to the float chamber 12 via a downwardly extending fuel pipe 27, and the fuel in the float chamber 12 is transferred through this fuel pipe 27.
The fuel is sent into the fuel passage 25 through the fuel passageway 25. Furthermore, a hollow cylindrical nozzle 28 arranged coaxially with the fuel passage 25 is fixed to the spacer 10 . This nozzle 28 protrudes into the bench area 13 from the inner wall surface of the spacer 10, and the upper half of the tip of the nozzle 28 further protrudes from the lower half toward the suction piston 8. The needle 9 extends through the nozzle 28 and the metering jet 26 , and the fuel is metered into the annular gap formed between the needle 9 and the metering jet 26 from the nozzle 28 into the intake passage 7 .

第2図に示されるようにスペーサ10の上端部には吸気
通路7内に向けて水平方向に突出する隆起壁29が形成
され、この隆起壁29とサクションピストン8の先端部
間において流量制御が行なわれる。機関運転が開始され
ると空気は吸気通路7内を下方に向けて流れる。このと
き空気流はサクションピストン8と隆起壁29間におい
て絞られるためにペンテーリ部13には負圧が発生し、
この負圧がサクション孔23を介して負圧室20内に導
びかれる。サクションピストン8は負圧室20と大気圧
室21との圧力差が圧縮ばね22のばね力により定まる
ほぼ一定圧となるように、即ちベンチュリ部13内の負
圧がほぼ一定となるように移動する。
As shown in FIG. 2, a raised wall 29 is formed at the upper end of the spacer 10 and projects horizontally into the intake passage 7, and the flow rate is controlled between this raised wall 29 and the tip of the suction piston 8. It is done. When engine operation is started, air flows downward in the intake passage 7. At this time, since the airflow is restricted between the suction piston 8 and the raised wall 29, negative pressure is generated in the pentagonal portion 13.
This negative pressure is guided into the negative pressure chamber 20 through the suction hole 23. The suction piston 8 moves so that the pressure difference between the negative pressure chamber 20 and the atmospheric pressure chamber 21 becomes a substantially constant pressure determined by the spring force of the compression spring 22, that is, the negative pressure inside the venturi portion 13 becomes substantially constant. do.

第3図および第4図を参照すると、ニードル9の上流側
に位置するサクションピストン先端面部分はその全体が
ニードル9の取付端向30からニードル9の先端部に向
けて隆起しておシ、このサクションピストン先端面部分
上には吸気通路7の軸線方向に延びる凹溝31が形成ち
れる。この凹溝31の上流側端部31aはU字形断面形
状をなすと共にニードル取付端面30よシもニードル9
の先端部に近い側に位置しておシ、残υの凹溝部分31
bは上流側端部31aからニードル数句端面30″!、
でほぼまっすぐに延びる。更に、ニードル9よシも上流
側に位置するサクションピストン先端面部分の断面形状
は凹溝31からベンチュリ部13に向けて拡開するV字
形をなしておシ、従ってこのサクションピストン先端面
部分は凹溝3】に向けて傾斜する一対の傾斜壁面部32
a。
Referring to FIGS. 3 and 4, the entire tip surface of the suction piston located on the upstream side of the needle 9 is raised from the mounting end direction 30 of the needle 9 toward the tip of the needle 9. A groove 31 extending in the axial direction of the intake passage 7 is formed on the tip end surface of the suction piston. The upstream end 31a of this concave groove 31 has a U-shaped cross section, and the needle 9 also has a U-shaped cross section.
The concave groove part 31 of the remaining υ is located on the side near the tip of the
b is from the upstream end 31a to the needle end face 30″!,
It extends almost straight. Furthermore, the cross-sectional shape of the suction piston tip surface located on the upstream side of the needle 9 is V-shaped, expanding from the concave groove 31 toward the venturi portion 13. Therefore, the suction piston tip surface portion is A pair of inclined wall portions 32 that are inclined toward the concave groove 3
a.

32bを有する。32b.

第す図かられかるように吸入空気量が少ないときには隆
起壁29、傾斜壁部分32a、32b。
As can be seen from FIG. 2, when the amount of intake air is small, the raised wall 29 and the inclined wall portions 32a and 32b.

および凹溝上流側端部31aによってほぼ二等辺三角形
状の吸入空気制御絞シ部Kが形成される。
The upstream end portion 31a of the concave groove forms an intake air control restrictor K having a substantially isosceles triangular shape.

このように吸入空気制御絞り部Kを形成することによっ
てサクションピストン8のリフトtが吸入空気制御絞シ
部にの開口面積に比例するようになシ、従りてサクショ
ンピストン8のリフト−it h 吸入空気量の増大に
応じて滑らかに増大するようになる。更に、サクション
ピストン8は軸受17によって支持されているので吸入
空気量の液化に対して応答性よく移動し、斯くしてサク
ションビストン8は吸入空気量が増大したときに吸入空
気量の増大に応答性よくかっ滑らかに移動する。その結
果、加速運転時のように吸入空気量が急激に変化する場
合であってもザクジョンピストン8のリフトが吸入空気
量の増大に比例して増大するためにノズル28から供給
される燃料の忙は吸入空気量に常時比例することになる
。更に、第3図かられかるように吸入空気量が少ないと
きには吸入空気が吸気通路7の中央部を流通せしめられ
、その結果ノズル28から供給された燃料は吸入空気流
と共に即座に機関シリンダ内に供給されるので吸入空気
量が少ないときであってもノズル28から供給された燃
料は即座に機関シリンダ内に供給される。従って、加速
運転時のように吸入空気量が急激に増大しても上述した
ようにノズル28がら供給される燃料の量が吸入空気量
に比例し、しかもノズル28から供給された燃料が即座
に機関シリンダ内に供給されるので機関シリンダ内に供
給される混合気の望燃比は吸入空気量が急激に変化して
もほぼ一定に維持される。また、サクションピストン8
は軸受17によって支持されているので機関温度がサク
ションピストン8の移動に影響を与えることがなく、斯
くしてサクションピストン8は機関温度とは無関係に吸
入空気セj゛の変化に応答性よく移動することができる
。斯くして、第2図に示す可変ペンチーリ型気化器2を
用いると、機関温度および機関運転状態にかかわらずに
機関シリンダ内に供給される混合気の空燃比をほぼ一定
値、例えば14.0程度に維持することができる。従っ
て機関シリンダ内には望燃比か14.0程度の過濃混合
気が常時供超されることになる。
By forming the intake air control throttle part K in this way, the lift t of the suction piston 8 is made proportional to the opening area of the intake air control throttle part, so that the lift of the suction piston 8 -it h It increases smoothly as the amount of intake air increases. Furthermore, since the suction piston 8 is supported by the bearing 17, it moves with good response to the liquefaction of the intake air amount, and thus the suction piston 8 responds to the increase in the intake air amount when the intake air amount increases. Moves smoothly and smoothly. As a result, even when the amount of intake air changes rapidly, such as during acceleration, the lift of the suction piston 8 increases in proportion to the increase in the amount of intake air, so that the amount of fuel supplied from the nozzle 28 increases. Busyness is always proportional to the amount of intake air. Furthermore, as can be seen from FIG. 3, when the amount of intake air is small, the intake air is made to flow through the center of the intake passage 7, and as a result, the fuel supplied from the nozzle 28 immediately flows into the engine cylinder together with the intake air flow. Therefore, even when the amount of intake air is small, the fuel supplied from the nozzle 28 is immediately supplied into the engine cylinder. Therefore, even if the amount of intake air increases rapidly as during acceleration, the amount of fuel supplied from the nozzle 28 is proportional to the amount of intake air as described above, and moreover, the amount of fuel supplied from the nozzle 28 is immediately increased. Since the air-fuel mixture is supplied into the engine cylinder, the desired fuel-fuel ratio of the air-fuel mixture supplied into the engine cylinder is maintained substantially constant even if the amount of intake air changes rapidly. In addition, the suction piston 8
Since it is supported by the bearing 17, the engine temperature does not affect the movement of the suction piston 8, and thus the suction piston 8 moves responsively to changes in the intake air pressure regardless of the engine temperature. can do. In this way, when the variable Pencil carburetor 2 shown in FIG. 2 is used, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders is kept at a substantially constant value, for example 14.0, regardless of the engine temperature and engine operating conditions. can be maintained to a certain extent. Therefore, a rich air-fuel mixture with a desirable fuel-fuel ratio of about 14.0 is always supplied to the engine cylinders.

第2図を参照すると、計量ノエノト26の周囲には環状
を気室33が形成され、この環状梁気室33に通ずる複
数個のエアブリード孔34が計量ジェット26の内周壁
面上に形成される。環状空気室33はエアブリード通路
35.36およびエアブリードジェット37を介して隆
起壁29上流の吸気通路7内に連結され、これらエアブ
リード通路35.36の連結部にはワックス弁38によ
って駆動される弁体39が配置される。ワックス弁38
の感温部38aの周囲には冷却水循環室39が形成され
、この冷却水循環室39内には冷却水流入口40から冷
却水が導入され、この冷却水は冷却水流出口41から排
出される。機関冷却水温が上昇すると弁体39が左方に
移動し、それによってエアブリード通路の流れ面積が増
大するためにエアブリード量が増大する。暖機運転が完
了すると弁体39がエアブリード通路を全開し、このと
き機関シリンダ内に供給される混合気は空燃比が14.
0程要の濃混合気となる。
Referring to FIG. 2, an annular air chamber 33 is formed around the metering jet 26, and a plurality of air bleed holes 34 communicating with the annular beam air chamber 33 are formed on the inner peripheral wall surface of the metering jet 26. Ru. The annular air chamber 33 is connected into the intake passage 7 upstream of the raised wall 29 via an air bleed passage 35.36 and an air bleed jet 37, the connection of which is actuated by a wax valve 38. A valve body 39 is arranged. wax valve 38
A cooling water circulation chamber 39 is formed around the temperature sensing portion 38a, and cooling water is introduced into the cooling water circulation chamber 39 from a cooling water inlet 40, and is discharged from a cooling water outlet 41. When the engine cooling water temperature rises, the valve body 39 moves to the left, thereby increasing the flow area of the air bleed passage, thereby increasing the amount of air bleed. When the warm-up operation is completed, the valve body 39 fully opens the air bleed passage, and at this time, the air-fuel mixture supplied into the engine cylinder has an air-fuel ratio of 14.
The mixture will be as rich as 0.

−力、機関排気マニホルド3には2次空気の供給制御を
する2次空気供給制御弁50が取付けられ、吸気マニホ
ルド1には2次空気供給制御弁50の作動を制(ロ)1
する電磁弁51が数句けられる。
- The engine exhaust manifold 3 is equipped with a secondary air supply control valve 50 that controls the supply of secondary air, and the intake manifold 1 is equipped with a secondary air supply control valve 50 that controls the operation of the secondary air supply control valve 50.
Several solenoid valves 51 are activated.

2次空気供給制御弁50はダイアフラム52によって陽
画された負圧室53と大気圧室54を有し、負圧室53
内にはダイアフラム押圧用圧縮ばね55が挿入される。
The secondary air supply control valve 50 has a negative pressure chamber 53 and an atmospheric pressure chamber 54 defined by a diaphragm 52.
A compression spring 55 for pressing the diaphragm is inserted inside.

大気圧室54内にはダイアフラム52に向けて突出する
中空管56が固定配置され、この中空管56の先端部に
はダイアフラム52に固着された弁体58によって開閉
制御される弁ポート57が形成される。この弁ポート5
7は弁7−ト57から排気マニホルド3内に向けてのみ
流通可能な逆止弁59および2次空気供給孔60を介し
て排気マニホルド3内に連結される。従って弁ポート5
7および2次空気供給孔60が2次空気供給通路を形成
づ−る。一方、電磁弁51は弁室62と、弁室62内に
配置されたヲP体63と、弁室62内に開口しかつ吸気
マニホルド1内に連結された負圧ボート64と、弁室6
2内に開口しかつ大気に連辿する大気ポート65と、弁
体63に連結された可動グランジ166と、可動グラン
ジャ66を吸引するためのソレノイド67とを具備し、
負圧ポート64および大気ボート65は弁体63によっ
て回目」制御される。弁室62は導管68を介して2次
空気供給制御弁50の負圧室53に連結され、ソレノイ
ド67はソレノイド駆動回路70に接続される。ソレノ
イド駆動回路70は第5図(、)に示すような]Hzか
ら2Hzの周波数の矩形ノ?ルスを発生する・マルス元
生器71と、パルス発生器71の出力を一方の入力とし
て感圧スイッチ装置72の出力を他方の入力とするオア
ダート73と、オアゲート73の出力端子に接続された
電力増幅器74とにより構成され、電力増幅器74の出
力端子はソレノイド67に接続される。感圧スイッチ装
置72はベローズ75と、ベローズ75によって作動せ
しめられるスイッチ76からなり、オアダート73の入
力端子はスイッチ76を介して電源77に接続される。
A hollow tube 56 protruding toward the diaphragm 52 is fixedly disposed within the atmospheric pressure chamber 54, and a valve port 57 is provided at the tip of the hollow tube 56 and is opened and closed by a valve body 58 fixed to the diaphragm 52. is formed. This valve port 5
7 is connected to the inside of the exhaust manifold 3 via a check valve 59 and a secondary air supply hole 60, which allow flow only from the valve 7-to-57 into the exhaust manifold 3. Therefore valve port 5
7 and the secondary air supply hole 60 form a secondary air supply passage. On the other hand, the solenoid valve 51 includes a valve chamber 62, a pressure body 63 disposed in the valve chamber 62, a negative pressure boat 64 that opens in the valve chamber 62 and is connected to the intake manifold 1, and a valve chamber 62.
2, a movable grunge 166 connected to the valve body 63, and a solenoid 67 for suctioning the movable grunge 66.
The negative pressure port 64 and the atmospheric boat 65 are controlled by the valve body 63. The valve chamber 62 is connected to the negative pressure chamber 53 of the secondary air supply control valve 50 via a conduit 68, and the solenoid 67 is connected to a solenoid drive circuit 70. The solenoid drive circuit 70 has a rectangular shape with a frequency of 1Hz to 2Hz as shown in FIG. A power source connected to the output terminal of the or gate 73 includes a malus generator 71 that generates pulses, an or dirt 73 that uses the output of the pulse generator 71 as one input and the output of the pressure-sensitive switch device 72 as the other input. The output terminal of the power amplifier 74 is connected to the solenoid 67. The pressure-sensitive switch device 72 includes a bellows 75 and a switch 76 actuated by the bellows 75, and the input terminal of the ordart 73 is connected to a power source 77 via the switch 76.

大気圧が標準大気圧程度であるときにはベローズ75は
第2図に示されるように状綿位置にあシ、このときスイ
ッチ76はオフとなっている。従ってこのときオアゲー
ト73の出力電圧はパルス発生器71がパルス発生する
毎に高レベルとなシ、斯くしてソレノイド67はパルス
発生器71の出力信号によって駆動制御される。一方、
車両が高地で運転された場合のように周囲の大気圧が低
くなるとベローズ75が伸長し、その結果スイッチ76
がオンとなる。斯くしてこのときオアゲート73の出力
電圧は高レベルになシ続けるのでソレノイド67は付勢
され続ける。
When the atmospheric pressure is about the standard atmospheric pressure, the bellows 75 is in the vertical position as shown in FIG. 2, and at this time the switch 76 is off. Therefore, at this time, the output voltage of the OR gate 73 becomes a high level every time the pulse generator 71 generates a pulse, and thus the solenoid 67 is driven and controlled by the output signal of the pulse generator 71. on the other hand,
When the ambient atmospheric pressure is low, such as when the vehicle is driven at high altitude, bellows 75 expands, resulting in switch 76
turns on. Thus, at this time, the output voltage of OR gate 73 continues to be at a high level, so solenoid 67 continues to be energized.

上述したように車両が低地で運転され、従って周囲の大
気圧が標準大気圧程度であるときにはソレノイド67は
パルス発生器7】の出力信号によって駆動制御される。
As mentioned above, when the vehicle is driven at a low altitude and the surrounding atmospheric pressure is approximately standard atmospheric pressure, the solenoid 67 is driven and controlled by the output signal of the pulse generator 7.

弁体63は通常負圧ポート64を閉鎖すると共に大気ポ
ート65を開口しておシ、パルス発生器71がパルスを
発生ずるとソレノイド67が付勢されて弁体64が右方
に移動し、それによりて弁体63が負圧ポート64を開
口すると共に大気ポート65を閉鎖する。従って負圧ポ
ート64および大気ポート65はIHzから2Hzの周
波数でもって開閉動作が繰返され、斯くして2次空気供
給制御弁5oの負圧室53にはlHzから2 Hzの周
波数でもって負圧、又は大気圧が交互に導びかれる。負
圧室53内に負圧が加わると弁体58が弁ポート57を
開口し、このとき排気脈動によシ排気マニホルド3内に
発生する負圧によって空気が2次空気供給孔6oから排
気マニホルド3内に吸入される。梃って上述のように負
圧室53内がl Hzから2 Hzの周波数でもって交
互に大気圧、又は負圧になると弁体58が弁ポート57
 f、 I Hzから2Hzの周波数でもって開口し、
斯くして2次空気が排気マニホルド3内にI Hzから
2Hzの周波数でもって間欠的に供給されることになる
。2次空気が排気マニホルド3内に間欠的に供給される
と排気マニホルド3内の排気ガス中の酸素濃度が周期的
に変動し、斯くして空燃比が変動することになる。なお
、ここで空燃比という用語は通常用いられる意味とは多
少違った意味  、で使用されてお9、この空燃比は三
元触媒コンバータ4上流の作動ガス通路内に供給された
全空気量(吸入空気と2次空気の和)と全燃料量との比
を19゜三元触媒5は排気ガス中に存在する過剰な酸素
に対して前述したような酸素保持機能を有しておシ、こ
の過剰酸素が吸気系に供給された吸入空気によるものか
、又は排気系に供給された2次空気によるものかは関係
ない。従って排気マニホルド3内に供給される2次空気
の量を変動させることによって空燃比を周期的に変動さ
せた場合にこの空燃比の平均値が第1(b)図のウィン
ドウWo内に維持されれば高い浄化効率を得ることがで
きる。第2図に示す実施例において弁ボート57および
2次空気供給孔6oの寸法はダイアフラム52の弁体5
8が弁ポート57の開閉を繰返し行なったときに空燃比
〜乍の平均値が第5(b)図に示されるようにほぼ理論
空燃比となシ、空燃比の変動幅が理論空燃比に対してほ
ぼ±0.2から±1.0となるように定められる。この
ように弁体58の単純な開閉動作の繰返しによって空燃
比〜乍の平均値をほぼ理論空燃比に維持できるのは気化
器2において形成される混合気の空燃比が一定に維持さ
れているからである。従って機関の運転状態にかかわら
ずに空燃比はlHzから2Hzの周波数でもってほぼ理
論空燃比に対して±0.2から±1.0の範囲で変動せ
しめられ、しかもこの空燃比の平均値は第1(b)図の
ウィンドウWo内に維持されるので三元モノリス触媒5
の酸素保持機能を利用して高い浄化効率を得ることがで
きる。
The valve body 63 normally closes the negative pressure port 64 and opens the atmospheric port 65. When the pulse generator 71 generates a pulse, the solenoid 67 is energized and the valve body 64 moves to the right. Thereby, the valve body 63 opens the negative pressure port 64 and closes the atmospheric port 65. Therefore, the negative pressure port 64 and the atmosphere port 65 are repeatedly opened and closed at a frequency of IHz to 2Hz, and thus negative pressure is generated in the negative pressure chamber 53 of the secondary air supply control valve 5o at a frequency of 1Hz to 2Hz. , or atmospheric pressure is introduced alternately. When negative pressure is applied in the negative pressure chamber 53, the valve body 58 opens the valve port 57, and at this time, the negative pressure generated in the exhaust manifold 3 due to exhaust pulsation causes air to flow from the secondary air supply hole 6o to the exhaust manifold. Inhaled within 3 days. As a result, as described above, when the inside of the negative pressure chamber 53 becomes atmospheric pressure or negative pressure alternately at a frequency of 1 Hz to 2 Hz, the valve element 58 closes the valve port 57.
f, open with a frequency of I Hz to 2 Hz,
In this way, secondary air is intermittently supplied into the exhaust manifold 3 at a frequency of IHz to 2Hz. When secondary air is intermittently supplied into the exhaust manifold 3, the oxygen concentration in the exhaust gas within the exhaust manifold 3 changes periodically, and thus the air-fuel ratio changes. Note that the term air-fuel ratio is used here in a slightly different meaning from the usual meaning9, and this air-fuel ratio is defined as the total amount of air supplied into the working gas passage upstream of the three-way catalytic converter 4 ( The ratio of the sum of intake air and secondary air) to the total amount of fuel is 19°. It does not matter whether this excess oxygen is due to intake air supplied to the intake system or secondary air supplied to the exhaust system. Therefore, when the air-fuel ratio is periodically varied by varying the amount of secondary air supplied into the exhaust manifold 3, the average value of the air-fuel ratio is maintained within the window Wo in FIG. 1(b). High purification efficiency can be obtained. In the embodiment shown in FIG. 2, the dimensions of the valve boat 57 and the secondary air supply hole 6o are as follows:
8 repeatedly opens and closes the valve port 57, the average value of the air-fuel ratio ~ 5 becomes almost the stoichiometric air-fuel ratio as shown in FIG. It is determined to be approximately ±0.2 to ±1.0. The reason why the average value of the air-fuel ratio ~ 5 can be maintained at approximately the stoichiometric air-fuel ratio by repeating the simple opening and closing operations of the valve body 58 is that the air-fuel ratio of the air-fuel mixture formed in the carburetor 2 is maintained constant. It is from. Therefore, regardless of the operating state of the engine, the air-fuel ratio is made to vary within the range of approximately ±0.2 to ±1.0 with respect to the stoichiometric air-fuel ratio at a frequency of 1Hz to 2Hz, and the average value of this air-fuel ratio is The three-way monolithic catalyst 5 is maintained within the window Wo in FIG. 1(b).
High purification efficiency can be obtained by utilizing the oxygen retention function of

一方、車両が高地で運転さ才した場合のように周囲の大
気圧が低くなると吸入空気の密度が低くなるために機関
シリンダ内に供給される混合気が一層過濃となシ、斯く
して多量の未燃HC,coが排気マニホルド3内に排出
される。ところが本発明では周囲の大気圧が低くなると
前述したようにソレノイド67が継続的に付勢さ扛、そ
れによって2次空気供給判断弁50の弁ボート57が開
口し続けられるために2次空気が供給さル続ける。その
結果、多量の未燃HC,COが排出されても未燃kIc
 、 COの酸化反応を促進することができ、斯くして
周囲の大気圧が低下した場合であっても高い浄化効率を
得ることができる。
On the other hand, when the surrounding atmospheric pressure is low, such as when a vehicle is driven at high altitudes, the density of the intake air decreases, making the air-fuel mixture supplied to the engine cylinders even richer. A large amount of unburned HC and co is discharged into the exhaust manifold 3. However, in the present invention, when the surrounding atmospheric pressure becomes low, the solenoid 67 is continuously energized as described above, which causes the valve boat 57 of the secondary air supply judgment valve 50 to continue to open, so that the secondary air is not supplied. Continue to be supplied. As a result, even if large amounts of unburned HC and CO are emitted, unburned kIc
, can promote the oxidation reaction of CO, thus achieving high purification efficiency even when the surrounding atmospheric pressure decreases.

このように本発明によれば高価な酸素濃度検出器および
高価な空燃比制御用の電子制御ユニットを用いることな
く、価格の低い気化器を用いて排気ガスを良好に浄化で
きるので排気ガス浄化装置の製造コストを大幅に低減す
ることができる。更に、機関シリンダ内に供給される混
合気の空燃比は一定に維持されるので燃焼変動が生ずる
こともなく、斯くして滑らかな機関の運転を確保するこ
とができる。また、周囲の大気圧が低くなって機関シリ
ンダ内に供給される混合気が過度に過誤になった、とき
には2次空気を排気マニホルド内に継続的に供給するこ
とによって多量に排出される未燃HC、CO’!l−良
好に浄化することができる。
As described above, according to the present invention, exhaust gas can be effectively purified using an inexpensive carburetor without using an expensive oxygen concentration detector or an expensive electronic control unit for air-fuel ratio control. can significantly reduce manufacturing costs. Furthermore, since the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders is maintained constant, combustion fluctuations do not occur, thus ensuring smooth engine operation. Also, when the ambient atmospheric pressure is low and the air-fuel mixture supplied into the engine cylinders is excessively incorrect, sometimes a large amount of unburned air is discharged by continuously supplying secondary air into the exhaust manifold. HC, CO'! l-Can be purified well.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は排気ガス浄化効率を示す線図、第2図は機関吸
排気系の側面断面図、W、3図は第2図の矢印■に沿っ
てみた平面図、第4図はサクションピストンの側面断面
図、第5図は空燃比の変動を示す線図である。 2・・・気化器、8・・・サクションピストン、9 ニ
ードル、25・・・燃料通路、28・・ノズル、50・
・・2次空気供給制御弁、51・・・電磁弁、60・・
・2次空気供給孔、72・・・感圧スイッチ装置。
Figure 1 is a diagram showing exhaust gas purification efficiency, Figure 2 is a side sectional view of the engine intake and exhaust system, W, Figure 3 is a plan view taken along the arrow ■ in Figure 2, and Figure 4 is the suction piston. FIG. 5 is a diagram showing variations in air-fuel ratio. 2... Carburetor, 8... Suction piston, 9 Needle, 25... Fuel passage, 28... Nozzle, 50...
...Secondary air supply control valve, 51...Solenoid valve, 60...
- Secondary air supply hole, 72...pressure-sensitive switch device.

Claims (1)

【特許請求の範囲】[Claims] 機関シリンダ内に過濃な混合気を供給するための燃料供
給装置を具備すると共に機関排気通路に三元触媒コンバ
ータを取付けた内燃機関において、三元触媒コンバータ
上流の排気通路内に2次空気供給通路を連結し、該2次
空気供給通路内にほぼI Hzから2Hzの一定周波数
で開閉する電磁弁を配置し、該2次空気供給通路を開閉
した際に空燃比が平均価、に対してほぼ±0.2から±
1.0の間で周期的に変動すると共に該空燃比の平均値
がほぼ理論空燃比となるように上記2次空気供給通路の
流路面積を定め、更に大気圧変化に応動する感圧スイッ
チを上記電磁弁に接続して大気圧が予め定められた気圧
以下になったときに上記2次空気供給通路を全開し続け
るようにした内燃機関の排気ガス浄化装置。
In an internal combustion engine equipped with a fuel supply device for supplying a rich mixture into the engine cylinders and a three-way catalytic converter installed in the engine exhaust passage, secondary air is supplied into the exhaust passage upstream of the three-way catalytic converter. A solenoid valve that opens and closes at a constant frequency of about I Hz to 2 Hz is arranged in the secondary air supply passage, and when the secondary air supply passage is opened and closed, the air-fuel ratio is equal to the average value. Approximately ±0.2 to ±
The flow area of the secondary air supply passage is determined so that the air-fuel ratio periodically fluctuates between 1.0 and the average value of the air-fuel ratio becomes approximately the stoichiometric air-fuel ratio, and the pressure-sensitive switch responds to changes in atmospheric pressure. is connected to the electromagnetic valve to keep the secondary air supply passage fully open when atmospheric pressure falls below a predetermined pressure.
JP21057782A 1982-12-02 1982-12-02 Exhaust gas purging device of internal-combustion engine Pending JPS59101529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21057782A JPS59101529A (en) 1982-12-02 1982-12-02 Exhaust gas purging device of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21057782A JPS59101529A (en) 1982-12-02 1982-12-02 Exhaust gas purging device of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS59101529A true JPS59101529A (en) 1984-06-12

Family

ID=16591611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21057782A Pending JPS59101529A (en) 1982-12-02 1982-12-02 Exhaust gas purging device of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59101529A (en)

Similar Documents

Publication Publication Date Title
US3942493A (en) Fuel metering system
US4111170A (en) Air-fuel ratio control system
US4174690A (en) Air-fuel ratio control device
US4450684A (en) Exhaust gas cleaning system for internal combustion engine
JPS6218741B2 (en)
JPS59101529A (en) Exhaust gas purging device of internal-combustion engine
US4506644A (en) Exhaust gas-purifying device of an internal combustion engine
JPS5910724A (en) Exhaust emission control device for internal-combustion engine
JPS5934468A (en) Exhaust gas purifier for internal combustion engine
JPS5934456A (en) Exhaust gas purifier for internal combustion engine
US4512312A (en) Variable venturi-type carburetor
JPS5934452A (en) Exhaust gas purifier for internal combustion engine
JPS5996418A (en) Exhaust gas purifying device of internal-combustion engine
JPS5996420A (en) Exhaust gas purifying device of internal-combustion engine
JPS5996425A (en) Exhaust gas purifying device of internal-combustion engine
JPS5996424A (en) Exhaust gas purifying device of internal-combustion engine
JPS59101527A (en) Exhaust gas purging device of internal-combustion engine
JPS5912113A (en) Exhaust gas purifying device of internal combustion engine
JPS5993951A (en) Exhaust-gas purifier for internal-combustion engine
JPS5993949A (en) Exhaust-gas purifier for internal-combustion engine
JPS5993950A (en) Exhaust-gas purifier for internal-combustion engine
JPS5928014A (en) Purifier for exhaust gas of internal combustion engine
JPS5934460A (en) Exhaust gas purifier for internal combustion engine
JPS5934461A (en) Exhaust gas purifier for internal combustion engine
JPS5996421A (en) Exhaust gas purifying device of internal-combustion engine