JPS5934463A - Exhaust gas purifier for internal combustion engine - Google Patents

Exhaust gas purifier for internal combustion engine

Info

Publication number
JPS5934463A
JPS5934463A JP14480582A JP14480582A JPS5934463A JP S5934463 A JPS5934463 A JP S5934463A JP 14480582 A JP14480582 A JP 14480582A JP 14480582 A JP14480582 A JP 14480582A JP S5934463 A JPS5934463 A JP S5934463A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
amplitude
engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14480582A
Other languages
Japanese (ja)
Inventor
Takashi Kato
孝 加藤
Takaaki Ito
隆晟 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP14480582A priority Critical patent/JPS5934463A/en
Publication of JPS5934463A publication Critical patent/JPS5934463A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/12Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves
    • F02M7/14Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle
    • F02M7/16Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle operated automatically, e.g. dependent on exhaust-gas analysis
    • F02M7/17Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle operated automatically, e.g. dependent on exhaust-gas analysis by a pneumatically adjustable piston-like element, e.g. constant depression carburettors

Abstract

PURPOSE:To secure a high purification efficiency in the transient operation of an engine, by changing to a larger second value the amplitude of a drive signal for a solenoid valve for opening and closing an air bleed passage, in the transient operation. CONSTITUTION:When the negative pressure in an intake manifold 1 has sharply changed, namely, transient operation is performed, the movable contact 68 of a transient operation detector 60 comes into touch with one of fixed contacts 69, 70 to apply a voltage to turn off a first analogue switch 53 and turn on a second analogue switch 54. As a result, a saw-toothed voltage of larger amplitude is applied to a voltage-current converter 55 to increase the change width of the cross-sectional area of the opening of a valve port 37 to enlarge the fluctuation width of the air-fuel ratio of a mixture. Although the reference air fuel ratio of the mixture slightly differs from a theoretical air-fuel ratio due to the instantaneous evaporation of fuel clinging to the inside surface of the intake manifold 1 or due to the like in the transient operation, a high purification efficiency is attained by the enlargement of the fluctuation width of the air- fuel ratio.

Description

【発明の詳細な説明】 本発明は内燃機関の排気ガス浄化装置に関する。[Detailed description of the invention] The present invention relates to an exhaust gas purification device for an internal combustion engine.

排気ガス中の有害三成分HC,COおよびNOxを同時
に低減することのできる触媒として、三元触媒が知られ
ている。この三元触媒の浄化効率Rは第1(a)図に示
されるように空燃比A/Fがほぼ理論空燃比であるとき
に最も高くなり、例えば80パ一セント以上の浄化効率
Rを得ることのできる空燃比領域は空燃比が0.06程
度の狭い巾である。通常、このように80パ一セント以
上の浄化効率を得ることのできる空燃比領域をウィンド
ウWと称する。従って、三元触媒をm−て排気ガス中の
有害三成分を同時に低減するためには空燃比をこの狭い
ウィンドウW内に常時に維持しなけ(2) ればならない。このために従来の排気ガス浄化装置では
、空燃比が理論空燃比よりも大きいか小さいかを判別可
能な酸素濃度検出器を機関排気通路に取付け、この酸素
濃度検出器の出力信号に基いて空燃比がウィンドウW内
の空燃比となるように制御している。しかしながらこの
ような酸素濃度検出器を用いた排気ガス浄化装置では高
価な酸素濃度検出器および空燃比制御のための高価な電
子制御ユニッ[il−必要とするために排気ガス浄化装
置の製造コストが高騰するという問題がある。
A three-way catalyst is known as a catalyst that can simultaneously reduce the three harmful components HC, CO, and NOx in exhaust gas. The purification efficiency R of this three-way catalyst is highest when the air-fuel ratio A/F is approximately the stoichiometric air-fuel ratio, as shown in FIG. The air-fuel ratio range in which this can be done is narrow, with an air-fuel ratio of about 0.06. Usually, the air-fuel ratio region in which a purification efficiency of 80 percent or more can be obtained is called a window W. Therefore, in order to simultaneously reduce the three harmful components in exhaust gas using a three-way catalyst, the air-fuel ratio must be maintained within this narrow window W at all times (2). To this end, in conventional exhaust gas purification systems, an oxygen concentration detector that can determine whether the air-fuel ratio is greater or less than the stoichiometric air-fuel ratio is installed in the engine exhaust passage, and the output signal of the oxygen concentration detector is used to detect the air-fuel ratio. The fuel ratio is controlled to be within the air-fuel ratio within the window W. However, an exhaust gas purification device using such an oxygen concentration detector requires an expensive oxygen concentration detector and an expensive electronic control unit for air-fuel ratio control, which increases the manufacturing cost of the exhaust gas purification device. There is a problem with rising prices.

ところが最近になって、S A F paper Nn
 760201号、或いは特公昭56−4741号公報
に記載されているように三元触媒の機能が次第に解明さ
れ、三元触媒が酸素保持機能を有することが判明したの
である。即ち、空燃比が理論空燃比に対してリーン側に
あるときには三元触媒がNOxから酸素を奪い取ってN
Oxを還元させると共にこの奪い取つ念酸素を保持し、
空燃比が理論空燃比よりもリッチ側になると保持した酸
素を放出してCo、HCの酸素を行なうのである。従っ
て空燃比を成る基準(3) 空燃比に対してリーン側とリッチ側に交互に変動させる
と基準空燃比が理論空燃比からずれたとしても上述の酸
素保持機能によりNOxの還元作用およびCo、Heの
酸化作用が促進されて高い浄化効率を得ることができる
。第1図(b)は空燃比を周波数IHzで基準空燃比に
対して±1.0だけ変動させた場合の基準空燃比A/F
のウィンドウW。を示している。第1(a)図および第
1(b)図から空燃比を一定周波数で変動させた場合に
はウィンドウW。が広くなることがわかる。このことは
、空燃比を一定周期で変動させれば基準空燃比が理論空
燃比から多少ずれていたとしても高い浄化効率が得られ
ることを意味している。一方、空燃比の変動周波数を低
くすると、即ち空燃比の変動周期全長くすると三元触媒
の酸素保持能力が飽和するために酸素保持機能に基づく
酸化還元能力が低下し、三元触媒の浄化効率が低下する
。第1(c)図はこのことを明瞭に示している。第1(
c)図において縦軸Rは浄化効率を示し、横軸Fは空燃
比の変動周波数を示す。また、空燃比の変動中を小さく
すると空燃比(4) をリッチ側とリーン側に交互に変動できなくなるのでウ
ィンドウの巾は狭くなる。従ってウィンドウの巾を広く
するには最適な空燃比の変動周期と変動中が存在するこ
とがわかる。
However, recently, S A F paper Nn
As described in No. 760201 or Japanese Patent Publication No. 56-4741, the function of the three-way catalyst was gradually elucidated, and it was discovered that the three-way catalyst had an oxygen retention function. In other words, when the air-fuel ratio is on the lean side with respect to the stoichiometric air-fuel ratio, the three-way catalyst takes oxygen from NOx and
While reducing Ox, it retains this stolen oxygen,
When the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio, the retained oxygen is released to oxygenate Co and HC. Therefore, if the air-fuel ratio is alternately varied between the lean side and the rich side (3), even if the standard air-fuel ratio deviates from the stoichiometric air-fuel ratio, the above-mentioned oxygen retention function will reduce NOx and Co, The oxidation effect of He is promoted and high purification efficiency can be obtained. Figure 1 (b) shows the standard air-fuel ratio A/F when the air-fuel ratio is varied by ±1.0 with respect to the standard air-fuel ratio at a frequency of IHz.
Window W. It shows. From FIG. 1(a) and FIG. 1(b), window W when the air-fuel ratio is varied at a constant frequency. It can be seen that the area becomes wider. This means that if the air-fuel ratio is varied at regular intervals, high purification efficiency can be obtained even if the reference air-fuel ratio deviates somewhat from the stoichiometric air-fuel ratio. On the other hand, when the air-fuel ratio fluctuation frequency is lowered, that is, when the air-fuel ratio fluctuation period is lengthened, the oxygen retention capacity of the three-way catalyst becomes saturated, and the oxidation-reduction ability based on the oxygen retention function decreases, resulting in the purification efficiency of the three-way catalyst. decreases. Figure 1(c) clearly shows this. 1st (
c) In the figure, the vertical axis R shows the purification efficiency, and the horizontal axis F shows the fluctuation frequency of the air-fuel ratio. Furthermore, if the air-fuel ratio fluctuation is made smaller, the air-fuel ratio (4) cannot be varied alternately between the rich side and the lean side, so the width of the window becomes narrower. Therefore, it can be seen that there are optimal air-fuel ratio fluctuation periods and fluctuation periods in order to widen the window width.

−F述のように基準空燃比に対する空燃比の変動中およ
び変動周波数を適切(C選定すればウィンドウが広くな
り、従って基準空燃比力;理論空燃比に対して多少変動
しても高い浄化効率を得ることができる。このことは、
基準空燃比の変動中の狭い燃料供給系を用いれば酸素濃
度検出器の出力信号によるフィードバック制御を用いな
くても高い浄化効率を得ることができることを意味して
いる。
- As mentioned in F, the air-fuel ratio changes and fluctuates appropriately with respect to the standard air-fuel ratio (if you select C, the window becomes wider, so the standard air-fuel ratio power; high purification efficiency even if there is some fluctuation from the stoichiometric air-fuel ratio) This means that
This means that by using a narrow fuel supply system during fluctuations in the reference air-fuel ratio, high purification efficiency can be obtained without using feedback control based on the output signal of the oxygen concentration detector.

熱論、燃料供給系として燃料噴射弁を用すれば基準空燃
比の変動中を狭くすることができるが燃料噴射装置は高
価であるために機関の製造コストが高くなってしまう0
従って機関の製造コストを低く抑えるためには気化器を
用いることが必要となる。しかしながら従来の固定ベン
チュリ型気化器では基準空燃比の変動中が広く、また従
来の可変ベンチ具す型気化器では加速時に、或いは機関
温度によって基準空燃比が大きく変動するのでこれらの
固定ベンチュリ型気化器、或いは可変ベンチエリ型気化
器を用いても高い浄化効率を得るのは困難である。
In theory, if a fuel injection valve is used as a fuel supply system, it is possible to narrow the range of fluctuations in the standard air-fuel ratio, but since fuel injection devices are expensive, the manufacturing cost of the engine increases.
Therefore, in order to keep the manufacturing cost of the engine low, it is necessary to use a carburetor. However, in conventional fixed venturi type carburetors, the reference air-fuel ratio fluctuates widely, and in conventional variable bench carburetors, the reference air-fuel ratio varies greatly during acceleration or depending on engine temperature. It is difficult to obtain high purification efficiency even by using a vaporizer or a variable venteri type vaporizer.

本発明は酸素濃度検出器を用いることなく、価格の低い
気化器を用いて高い排気ガス浄化効率を確保することの
できる排気ガス浄化装置を提供することにある。
An object of the present invention is to provide an exhaust gas purification device that can ensure high exhaust gas purification efficiency using an inexpensive carburetor without using an oxygen concentration detector.

以下、添附図面全参照して本発明の詳細な説明する0 第2図を参照すると、1は吸気マニホルド、2は吸気マ
ニホルドl上に取付けられた可変ベンチュリ型気化器、
3は排気マニホルド、4は触媒コンバータを夫々示し、
触媒コンバータ4の内部には三元七ノゲス触媒5が配置
される。可変ベンチュリ型気化器2は気化器ハウジング
6と、ハウジング6内企画直方向に延びる吸気通路7と
、吸気通路7内を横方向に移動するサクションピストン
8と、サクションピストン8の先端面に取付けられたニ
ードル9と、サクシ廖ンピストン3の先端面に対向して
吸気通路7の内壁面上に固定されたスペーサ10と、サ
クションピストン8下流の吸気通路7内に設けられたメ
ロlトル弁11と、フロート室12とを具備し、サクシ
ョンピストン8の先端面とスペーサ10間にはベンチュ
リ部13が形成される。気化器ハウジング6には中空円
筒状のケーシング14が固定され、このケーシング14
にはケーシング14の内部でケーシング14の軸線方向
に延びる案内スリーブ15が取付けられる。案内スリー
ブ15内には多数のボール16を備えた軸受17が挿入
され、また案内スリーブ15の外端部は盲蓋18によっ
て閉鎖される。一方、サクションビントン8には案内ロ
ッド19が固定され、この案内ロッド19は軸受17内
に案内ロッド19の軸線方向に移動可能に挿入される。
Hereinafter, the present invention will be described in detail with reference to all the accompanying drawings. Referring to FIG. 2, 1 is an intake manifold, 2 is a variable venturi carburetor mounted on the intake manifold l,
3 indicates an exhaust manifold, 4 indicates a catalytic converter,
A ternary seven-gas catalyst 5 is arranged inside the catalytic converter 4 . The variable venturi carburetor 2 includes a carburetor housing 6, an intake passage 7 extending perpendicularly to the inside of the housing 6, a suction piston 8 that moves laterally within the intake passage 7, and a suction piston 8 that is attached to the distal end surface of the suction piston 8. a spacer 10 fixed on the inner wall surface of the intake passage 7 facing the front end surface of the suction piston 3; and a melotor valve 11 provided in the intake passage 7 downstream of the suction piston 8. , and a float chamber 12, and a venturi portion 13 is formed between the distal end surface of the suction piston 8 and the spacer 10. A hollow cylindrical casing 14 is fixed to the carburetor housing 6.
A guide sleeve 15 is mounted inside the casing 14 and extends in the axial direction of the casing 14 . A bearing 17 with a number of balls 16 is inserted into the guide sleeve 15 , and the outer end of the guide sleeve 15 is closed by a blind cover 18 . On the other hand, a guide rod 19 is fixed to the suction belt 8, and the guide rod 19 is inserted into the bearing 17 so as to be movable in the axial direction of the guide rod 19.

コノx ’5にサクションピストン8は軸受17を介し
てケーシング14により支持されるのでサクションピス
トン8はその軸線方向に清らかに移動することができる
。ケーシング14の内部はサクシ四ンピストン8によっ
て負王室20と大気圧室(7) 21とに分割され、負圧室20内にはサクションピスト
ン8を常時ベンチュリ部13に向けて押圧する圧縮ばね
22が挿入される。負圧室2oはサクションピストン8
に形成されたサクシラン孔23′t−介してベンチ−り
部13に連結され、大気圧室21は気化器ハウジング6
に形成された空気孔24を介してザクジョンピストン8
上流の吸気通路7内に連結される。
Since the suction piston 8 is supported by the casing 14 via the bearing 17, the suction piston 8 can move smoothly in its axial direction. The interior of the casing 14 is divided by the suction piston 8 into a negative pressure chamber 20 and an atmospheric pressure chamber (7) 21, and within the negative pressure chamber 20 is a compression spring 22 that constantly presses the suction piston 8 toward the venturi section 13. inserted. The negative pressure chamber 2o has a suction piston 8
The atmospheric pressure chamber 21 is connected to the bench portion 13 through a suction hole 23' formed in the carburetor housing 6.
The Zakujo piston 8 is inserted through the air hole 24 formed in the
It is connected to the upstream intake passage 7.

一方、気化器ハウジング6内にはニードル9が侵入可能
なようにニードル9の軸線方向に延びる燃料通路25が
形成され、この燃料通路25内には計量ジェット26が
設けられる。計量ジエ〜ト26上流の燃料通路25は下
方に延びる燃料パイプ27を介してフロート室12に連
結され、フロート室12内の燃料はこの燃料パイプ27
を介して燃料通路25内に送り込まれる。更に、スペー
サ10には燃料通路25と共軸的に配置された中空円筒
状のノズル28が固定される。このノズル28はスペー
サ10の内壁面からベンチュリ部13内に突出し、しか
もノズル28の先端部の上(8) 半分は下半分から更にサクションピストン8に向けて突
出している。ニードル9はノズル28および計量ジェッ
ト26内を貫通して延び、燃料はニードル9と計量ジェ
ット26間に形成される環状間隙により計量された後に
ノズル28から吸気通路7内に供給される。
On the other hand, a fuel passage 25 extending in the axial direction of the needle 9 is formed in the carburetor housing 6 so that the needle 9 can enter therein, and a metering jet 26 is provided in the fuel passage 25. The fuel passage 25 upstream of the metering jet 26 is connected to the float chamber 12 via a fuel pipe 27 extending downward, and the fuel in the float chamber 12 is transferred through this fuel pipe 27.
The fuel is sent into the fuel passage 25 through the fuel passageway 25. Furthermore, a hollow cylindrical nozzle 28 arranged coaxially with the fuel passage 25 is fixed to the spacer 10 . This nozzle 28 protrudes into the venturi portion 13 from the inner wall surface of the spacer 10, and the upper (8) half of the tip of the nozzle 28 further protrudes from the lower half toward the suction piston 8. The needle 9 extends through the nozzle 28 and the metering jet 26 , and the fuel is metered by the annular gap formed between the needle 9 and the metering jet 26 from the nozzle 28 into the intake passage 7 .

第2図に示されるようにスペーサ10の上端部には吸気
通路7内に向けて水平方向に突出する隆起壁29が形成
され、この隆起壁29とサクションピストン8の先端部
間において流量制御が行なわれる。機関運転が開始され
ると空気は吸気通路7内を下方に向けて流れる。このと
き空気流はサクシ瑳ンピストン8と隆起壁29間におい
て絞られるためにベンチュリ部13には負圧が発生し、
この負圧がサクション孔23を介して負圧室20内に導
びかれる0サクシ1ンピストン8は負圧室20と大気圧
室21との圧力差が圧縮ばね22のばね力により定まる
ほぼ一定圧となるように、即ちベンチエリ部13内の負
圧がほぼ一定となるように移動する。
As shown in FIG. 2, a raised wall 29 is formed at the upper end of the spacer 10 and projects horizontally into the intake passage 7, and the flow rate is controlled between this raised wall 29 and the tip of the suction piston 8. It is done. When engine operation is started, air flows downward in the intake passage 7. At this time, since the airflow is restricted between the piston 8 and the raised wall 29, negative pressure is generated in the venturi section 13.
This negative pressure is guided into the negative pressure chamber 20 through the suction hole 23. The pressure difference between the negative pressure chamber 20 and the atmospheric pressure chamber 21 is determined by the spring force of the compression spring 22, and the pressure is approximately constant. In other words, the negative pressure inside the bench area 13 is moved to be approximately constant.

第3図および第4図を参照すると、ニードル9の上流側
に位置するサクションピストン先端面部分はその全体が
ニードル9の取付端面30からニードル9の先端部に向
けて隆起しており、このサクシ、ンピストン先端面部分
上には吸気通路7の軸線方向に延びる凹溝31が形成さ
れる。この凹溝31の上流側端部31aはU字形断面形
状をなすと共にニードル取付端面30よりもニードル9
の先端部に近い側に位置しており、残りの凹溝部分31
bは上流側端部31mからニードル取付端面30までほ
ぼまっすぐに延びる。更に、ニードル9よりも上流側に
位置するサクションピストン先端面部分の断面形状は凹
溝31からベンチュリ部13に向けて拡開するV字形を
なしており、従ってこのサクションピストン先端面部分
は凹溝31に向けて傾斜する一対の傾斜壁面部32a。
Referring to FIGS. 3 and 4, the entire tip surface of the suction piston located upstream of the needle 9 is raised from the mounting end surface 30 of the needle 9 toward the tip of the needle 9. A concave groove 31 extending in the axial direction of the intake passage 7 is formed on the tip end surface of the piston. The upstream end 31a of this concave groove 31 has a U-shaped cross section and is closer to the needle 9 than the needle mounting end surface 30.
The remaining concave groove portion 31
b extends almost straight from the upstream end 31m to the needle attachment end surface 30. Furthermore, the cross-sectional shape of the suction piston tip surface located upstream of the needle 9 is V-shaped, expanding from the groove 31 toward the venturi portion 13. A pair of inclined wall surface parts 32a which are inclined toward 31.

32b合有する。32b combined.

第3図かられかるように吸入空気量が少ないときには隆
起壁29.傾斜壁部分32 a * 32 b −およ
び凹溝上流側端部31aによってほぼ二等辺三角形状の
吸入空気制御絞り部Kが形成される。
As shown in Fig. 3, when the amount of intake air is small, the raised wall 29. The inclined wall portions 32a*32b- and the groove upstream end portion 31a form an intake air control constriction portion K having a substantially isosceles triangular shape.

このように吸入空気制御絞り部Kを形成することによっ
てサクシ曹ンピストン8のリフト量が吸入空気制御絞り
部にの開口面積に比例するようになり、従ってサクショ
ンピストン8のリフト量ハ吸入空気量の増大に応じて滑
らかに増大するようになる。更に、サクションピストン
8は軸受17によって支持されているので吸入空気量の
変化に対して応答性よく移動し、斯くしてサクションピ
ストンlt吸入空気量が増大したときに吸入空気量の増
大に応答性よくかつ滑らかに移動する。その結果、加速
運転時のように吸入空気量が急激に変化する場合であっ
てもサクシ1ンピストン8のリフトが吸入空気量の増大
に比例して増大するためにノズル28から供給される燃
料の量は吸入空気量に常時比例することになる。更に、
第3図かられかるように吸入空気量が少ないときには吸
入空気が吸気通路7の中央部を流通せしめられ、その結
果ノズル28から供給された燃料は吸入空気流と共に即
座に機関シリンダ内に供給されるので吸(11) 大空気量が少ないときであってもノズル28から供給さ
れた燃料は即座に機関シリンダ内に供給される。従って
、加速運転時のように吸入空気量が急激に増大しても上
述したようにノズル28から供給される燃料の量が吸入
空気量に比例し、しかもノズル28から供給された燃料
が即座に機関シリンダ内に供給されるので機関シリンダ
内に供給される混合気の空燃比は吸入空気量が急激に変
化してもほぼ一定に維持される0また、サクシ1ンピス
トン8は軸受17t/Cよって支持されているので機関
温度がサクションピストン8の移動に影響を与えること
がなく、斯くしてサクシ璽ンピストン8は機関温度とは
無関係に吸入空気量の変化に応答性よく移動することが
できる。斯くして、第2図に示す可変ベンチュリ型気化
器2を用いると、機関温度および機関運転状態にかかわ
らずに機関シリンダ内に供給される混合気の空燃比をほ
ぼ一定値、例えばほぼ理論空燃比に維持することができ
る0 第2図を参照すると、計量ジェーIト26の周囲(12
) には環状空気室33が形成され、この環状空気室33に
通ずる複数個のエアブリード孔34が計量ジェット26
の内周壁面上に形成される。環状空気室33はエアブリ
ード通路35およびエアブリードジヱツト36を介して
隆起壁29上流の吸気通路7内に連結され、このエアブ
リード通路35内にはりニアソレノイド弁40によって
開口面積が制御される弁ボート37が形成される。
By forming the intake air control throttle part K in this way, the lift amount of the suction piston 8 becomes proportional to the opening area of the intake air control throttle part, and therefore the lift amount of the suction piston 8 is proportional to the intake air amount. It will increase smoothly as it increases. Furthermore, since the suction piston 8 is supported by the bearing 17, it moves with good response to changes in the amount of intake air, and thus, when the amount of intake air increases, the suction piston lt moves with good response to the increase in the amount of intake air. Move well and smoothly. As a result, even when the amount of intake air changes rapidly, such as during acceleration, the lift of the piston 8 increases in proportion to the increase in the amount of intake air, so that the amount of fuel supplied from the nozzle 28 increases. The amount will always be proportional to the intake air amount. Furthermore,
As can be seen from FIG. 3, when the amount of intake air is small, the intake air is made to flow through the center of the intake passage 7, and as a result, the fuel supplied from the nozzle 28 is immediately supplied into the engine cylinder together with the intake air flow. Even when the amount of air is small, the fuel supplied from the nozzle 28 is immediately supplied into the engine cylinder. Therefore, even if the amount of intake air increases rapidly as during accelerated driving, the amount of fuel supplied from the nozzle 28 is proportional to the amount of intake air as described above, and moreover, the amount of fuel supplied from the nozzle 28 is immediately increased. Since the air-fuel ratio of the air-fuel mixture supplied to the engine cylinder is maintained almost constant even if the amount of intake air changes rapidly, the piston 8 has a bearing 17t/C. Since the suction piston 8 is supported, the engine temperature does not affect the movement of the suction piston 8, and thus the suction piston 8 can move responsively to changes in the amount of intake air regardless of the engine temperature. In this way, when the variable venturi type carburetor 2 shown in FIG. 2 is used, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders is kept at a substantially constant value, for example, approximately stoichiometric, regardless of the engine temperature and engine operating state. Referring to FIG. 2, the area around the metering jet 26 (12
) is formed with an annular air chamber 33, and a plurality of air bleed holes 34 communicating with the annular air chamber 33 are connected to the metering jet 26.
is formed on the inner peripheral wall surface of the The annular air chamber 33 is connected to the intake passage 7 upstream of the raised wall 29 via an air bleed passage 35 and an air bleed jet 36, and the opening area of the air bleed passage 35 is controlled by a solenoid valve 40. A valve boat 37 is formed.

リニアソレノイド弁40は弁ボート37の開口面積を制
御する弁体41と、弁体41に連結された可動プランジ
ャ42と、可動プランジャ42を吸引するためのソレノ
イド43とを具備し、ソレノイド43はソレノイド駆動
回路50に接続される。このリニアソレノイド弁40で
はソレノイド43を流れる電流に比例した距離だけ可動
プランジャ42が移動し、ソレノイド43を流れる電流
が増大するにつれて弁体41が右方に移動する。
The linear solenoid valve 40 includes a valve body 41 that controls the opening area of the valve boat 37, a movable plunger 42 connected to the valve body 41, and a solenoid 43 that sucks the movable plunger 42. It is connected to the drive circuit 50. In this linear solenoid valve 40, the movable plunger 42 moves by a distance proportional to the current flowing through the solenoid 43, and as the current flowing through the solenoid 43 increases, the valve body 41 moves to the right.

従って、弁ボート37の開口面積はソレノイド43を流
れる電流に比例して変化することになる1ソレノイド駆
動回路50は第6図(a) Ic示すようなIT(zか
ら2Hzの周波数の鋸歯状電圧全発生する第1の鋸歯発
生器51と、同様に第5図(a)に示すようなI Hz
から2Hzの周波数の鋸歯状電圧全発生する第2の鋸歯
発生器52と、第1鋸歯発生器51の出力端子に接続さ
れた第1のアナログスイッチ53と、第2鋸歯発生器5
2の出力端子に接続された第2のアナログスイッチ54
と、第1アナログスイツチ53と第2アナログスイツチ
54の出力端子に接続された電圧電流変換器55とを具
備し、この電流電圧変換器55の出力漏子はソレノイド
43に接続される。上述したように第1鋸歯発生器51
と第2鋸歯発生器52とはほぼ同じ周波数I Hzから
2Hzの鋸歯状電圧を発生するが第5図(a)および第
6図(a)かられかるように第1鋸歯発生器51の鋸波
の振幅のほうが第2鋸歯発生器52の鋸歯の振幅よりも
小さい。前述したように弁ボート37の開口面積はソレ
ノイド43を流れる電流に比例し、ソレノイド43に供
給される電流は鋸歯発生器51.52の出力電圧に比例
するので弁ボート37の開口面積の増減中は鋸歯発生器
51.52が発生する鋸歯の振幅に比例することがわか
る。
Therefore, the opening area of the valve boat 37 changes in proportion to the current flowing through the solenoid 43.1 The solenoid drive circuit 50 is configured to operate as shown in FIG. The first sawtooth generator 51 that generates a full I Hz signal as shown in FIG. 5(a)
a second sawtooth generator 52 that generates a sawtooth voltage with a frequency of 2Hz to 2Hz; a first analog switch 53 connected to the output terminal of the first sawtooth generator 51;
A second analog switch 54 connected to the output terminal of
and a voltage-current converter 55 connected to the output terminals of the first analog switch 53 and the second analog switch 54, and the output leakage of the current-voltage converter 55 is connected to the solenoid 43. As mentioned above, the first sawtooth generator 51
The sawtooth generator 52 and the second sawtooth generator 52 generate a sawtooth voltage of approximately the same frequency IHz to 2Hz, but as can be seen from FIGS. 5(a) and 6(a), the sawtooth generator 51 The amplitude of the wave is smaller than the amplitude of the sawtooth of the second sawtooth generator 52. As mentioned above, the opening area of the valve boat 37 is proportional to the current flowing through the solenoid 43, and the current supplied to the solenoid 43 is proportional to the output voltage of the sawtooth generator 51, 52, so that the opening area of the valve boat 37 is increased or decreased. It can be seen that is proportional to the amplitude of the sawtooth generated by the sawtooth generator 51,52.

一方、第2図に示されるように吸気マニホルド1には過
渡運転検出器60が取付けられ、この過渡運転検出器6
0はダイアフラム装置61とスイッチ62とにより構成
される。ダイアンラム装置60はダイアフラム63によ
って分離された作動圧室64と蓄圧室65とを有し、こ
の作動圧室64は吸気マニホルド2内に連結される。ま
た、作動圧室64内にはダイアフラム押圧用圧縮ばね6
6が挿入され、更にダイアフラム63には絞り67が形
成される。一方、スイッチ62はダイアフラム63によ
り作動せしめられる可動切点68と、可動接点68の両
側に配置された一対の固定接点69.70から々る。可
動接点68は電源71に接続され、固定接点69.70
はソレノイド駆動回路50の入力端子に接続される。第
1アナログスイツチ53は固定接点69.70に印加さ
れる電圧によりインバータ72を介して制御され、第2
アナログスイツチ54は固定接点69゜(15) 70に印加される電圧により直接制御される。ダイアフ
ラム装置61の作動圧室64内の負圧が大きくなるとダ
イアフラム63が左方に移動するために可動接点68が
固定接点69に接触する。次いで暫らくすると蓄圧室6
5内の負圧も大きくなるために今度はダイアフラム63
が右方に移動し、斯くして可動接点68が固定接点69
から離れる。
On the other hand, as shown in FIG. 2, a transient operation detector 60 is attached to the intake manifold 1.
0 is composed of a diaphragm device 61 and a switch 62. The dianram device 60 has a working pressure chamber 64 and a pressure accumulating chamber 65 separated by a diaphragm 63 , and the working pressure chamber 64 is connected within the intake manifold 2 . In addition, a compression spring 6 for pressing the diaphragm is provided in the operating pressure chamber 64.
6 is inserted, and a diaphragm 67 is further formed in the diaphragm 63. On the other hand, the switch 62 includes a movable switching point 68 actuated by a diaphragm 63 and a pair of fixed contacts 69 and 70 disposed on both sides of the movable contact 68. The movable contact 68 is connected to the power supply 71, and the fixed contact 69.70
is connected to the input terminal of the solenoid drive circuit 50. The first analog switch 53 is controlled via the inverter 72 by the voltage applied to the fixed contacts 69 and 70, and the second
Analog switch 54 is directly controlled by a voltage applied to fixed contacts 69° (15) 70. When the negative pressure in the working pressure chamber 64 of the diaphragm device 61 increases, the diaphragm 63 moves to the left, so that the movable contact 68 comes into contact with the fixed contact 69. Then, after a while, the pressure accumulation chamber 6
Since the negative pressure inside 5 also increases, the diaphragm 63
moves to the right, thus moving the movable contact 68 to the fixed contact 69.
move away from

一方、ダイアフラム装置61の作動圧室64内の負圧が
小さくなるとダイアフラム63が暫らくの間右方に移動
するために可動接点68が暫らくの間固定接点70に接
触する。従って、吸気マニホルド1内の負圧が急変した
とき、即ち過渡運転時には可動接点68がいずれか一方
の固定接点69゜70に接触し、過渡運転時でないとき
、即ち定常走行時VCは可動接点68が固定接点69.
70から離れている。従って定常運転時には固定接点6
9.70に電圧が印加されないために第1アナログスイ
・ソチ53が導通状態となり、第2アナログスイヴチ5
4が非導通状態となるので第6図(a)に示すような振
幅の小さな鋸歯状電圧が電圧電流(16) 変換器55に印加される。一方、過渡運転時には固定接
点69.70に電圧が印加されるので第1アナログスイ
ツチ53が非導通状態となり、第2アナログスイツチ5
4が導通状態となる。従って、このとき第5図(a)に
示すような振幅の大きな鋸歯状電圧が電圧電流変換器5
5に印加される。
On the other hand, when the negative pressure in the working pressure chamber 64 of the diaphragm device 61 becomes smaller, the diaphragm 63 moves to the right for a while, so that the movable contact 68 comes into contact with the fixed contact 70 for a while. Therefore, when the negative pressure inside the intake manifold 1 suddenly changes, that is, during transient operation, the movable contact 68 contacts one of the fixed contacts 69 and 70, and when not during transient operation, that is, during steady running, VC contacts the movable contact 68. is the fixed contact 69.
Far from 70. Therefore, during steady operation, the fixed contact 6
Since no voltage is applied to 9.70, the first analog switch 53 becomes conductive, and the second analog switch 5
4 becomes non-conductive, a sawtooth voltage with a small amplitude as shown in FIG. 6(a) is applied to the voltage/current converter 55. On the other hand, during transient operation, voltage is applied to the fixed contacts 69 and 70, so the first analog switch 53 becomes non-conductive, and the second analog switch 5
4 becomes conductive. Therefore, at this time, a sawtooth voltage with a large amplitude as shown in FIG.
5.

上述したように定常走行時には第6図(a)に示すよう
な振幅の小さな銹波状電圧が電圧電流変換器55に印加
され、このとき弁体41は弁ボート37の開口面積を鋸
歯状に変化せしめる。このように弁ボート開口面積が鋸
歯状に変化するとエアブリード孔34から燃料通路25
内に供給される空気量も鋸歯状に変化するので機関シリ
ンダ内に供給される混合気の空燃比A/Fは第6(b)
図に示されるように波状に滑らかに変化することになる
As described above, during steady running, a small-amplitude ripple-like voltage as shown in FIG. urge When the valve boat opening area changes in a sawtooth pattern in this way, the air bleed hole 34 is connected to the fuel passage 25.
Since the amount of air supplied into the engine cylinder also changes in a sawtooth pattern, the air-fuel ratio A/F of the mixture supplied into the engine cylinder is 6(b).
As shown in the figure, it changes smoothly in a wave-like manner.

エアブリードジェット36および弁ボート37の寸法は
りニアソレノイド弁4oの弁体41が弁ボート37の流
れ面積を繰返し増大減少したときに機関シリンダ内に供
給される混合気の空燃比の平均値が第6(b)図に示さ
れるようにほぼ理論空燃比となり、空燃比の変動巾が理
論空燃比に対してほぼ±0.2から±1.0となるよう
に定められる。従って機関温度および機関運転状態にか
かわらずに機関シリンダ内に供給される混合気の空燃比
FiIHzから2Hzの周波数でもってほぼ理論空燃比
に対して十〇、2から±1.0の範囲で変動せしめられ
、しかもこの空燃比の平均値は第1(b)図のウィンド
ウW。内に維持されるので三元モノリス触媒5の酸素保
持機能を利用して高上浄化効率を得るととができる。更
に、第6(b)図に示されるように空燃比が滑らかに変
動するので燃焼状態が急激に変化することがなく、斯く
して機関の運転状態にかかわらずに常時安定した燃焼を
確保することができる。
Dimensions of air bleed jet 36 and valve boat 37 When the valve element 41 of the near solenoid valve 4o repeatedly increases and decreases the flow area of the valve boat 37, the average value of the air-fuel ratio of the mixture supplied into the engine cylinder is As shown in FIG. 6(b), the air-fuel ratio is approximately the stoichiometric air-fuel ratio, and the fluctuation range of the air-fuel ratio is determined to be approximately ±0.2 to ±1.0 with respect to the stoichiometric air-fuel ratio. Therefore, regardless of engine temperature and engine operating conditions, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders varies within a range of approximately 10.2 to ±1.0 with respect to the stoichiometric air-fuel ratio at a frequency of 2Hz from FiIHz. Moreover, the average value of this air-fuel ratio is window W in FIG. 1(b). Therefore, the oxygen retention function of the three-way monolithic catalyst 5 can be utilized to obtain high purification efficiency. Furthermore, as shown in Figure 6(b), since the air-fuel ratio fluctuates smoothly, the combustion state does not change suddenly, thus ensuring stable combustion at all times regardless of the operating state of the engine. be able to.

一方、過渡運転時には前述したように第5図(a)に示
すような振幅の大きな鋸歯状電工が電圧電流変換器55
に印加される。従ってこのときには弁ボート37の開口
面積の増減中が大きくなるために第5図(I))に示さ
れるように空燃比A/F’の変動巾が大きくなる。即ち
、加速および減速のような過渡運転時には吸気マニホル
ド1の内壁面に付着した燃料の瞬時的な蒸発等によって
機関シリンダ内に供給される混合気の基準を燃比が理論
空燃比から若干ずれるがこのような場合に空燃比の変動
中を増大せしめることによって空燃比をリーン側とリッ
チ側にダ互に振らせることができ、斯くして三元モノリ
ス触媒5の酸素保持機能を利用して高い浄化効率を得る
ことができる。また、定常走行時には高い浄化効率が得
られる範囲内においCできるだけ空燃比の変動中を小さ
くし、それによって機関出力トルクの変動を抑制して安
定した定常運転を得るようにしている。
On the other hand, during transient operation, as described above, the sawtooth electric wire with a large amplitude as shown in FIG.
is applied to Therefore, at this time, since the opening area of the valve boat 37 increases and decreases, the fluctuation range of the air-fuel ratio A/F' increases as shown in FIG. 5(I). That is, during transient operations such as acceleration and deceleration, the reference fuel ratio of the air-fuel mixture supplied into the engine cylinders may deviate slightly from the stoichiometric air-fuel ratio due to instantaneous evaporation of fuel adhering to the inner wall surface of the intake manifold 1. In such a case, by increasing the fluctuation period of the air-fuel ratio, the air-fuel ratio can be made to swing back and forth between the lean side and the rich side, thereby achieving high purification by utilizing the oxygen retention function of the three-way monolith catalyst 5. You can gain efficiency. Furthermore, during steady running, the fluctuations in the air-fuel ratio are made as small as possible within the range in which high purification efficiency can be obtained, thereby suppressing fluctuations in the engine output torque to obtain stable steady running.

このように本発明によれば高価な酸系濃度検出器および
高価なを燃比制御用の電子制御ユニット金剛いることな
く、価格の低い気化器を用いて排気ガスを良好に浄化で
きるので排気ガス浄化装置の製造コス)k大巾に低減す
ることができる。更に、エアブリード通路に電磁弁を設
けるだけなので構造は極めて簡単であり、従って排気ガ
ス浄化装置の信頼性を向上することができる。更に、機
関運転状態に応じて空燃比の変動中を変化させる(19
) ことによって過渡運転時における高い浄化効率を確保し
つつトルク変動のない安定した定常運転と確保すること
ができる。
As described above, according to the present invention, exhaust gas can be purified well using an inexpensive carburetor without the need for an expensive acid-based concentration detector or an expensive electronic control unit for fuel ratio control. The manufacturing cost of the device can be reduced by a large amount. Furthermore, since only a solenoid valve is provided in the air bleed passage, the structure is extremely simple, and therefore the reliability of the exhaust gas purification device can be improved. Furthermore, the air-fuel ratio is changed depending on the engine operating state (19
) By doing so, it is possible to ensure stable steady operation without torque fluctuation while ensuring high purification efficiency during transient operation.

【図面の簡単な説明】 第1図は排気ガス浄化効率を示す線図、第2図は機関吸
排気系の側面断面図、第3図は第2図の矢印1こ沿って
みた平面図、第4図はザクジョンピストンの側面断面図
、第5図は空燃比の変動を示す線図、第6図は空燃比の
変動を示す線図である。 2・・・・・・気化器、8・・・・・・ザクジョンピス
トン、9−・・・・ニー ドル、25・・・・・・燃料
通路、28・・・・・・ノズル、35・・・・・エアブ
リード通路、40・・・・・・リニアソレノイド升、6
0・・・・・・過渡運転検出器。 特杵出願人 トヨタ自動車株式会社 特許出願代理人 弁理士 青 木    朗 弁理士 西 舘 和 之 弁理士 中 山 恭 介 弁理士 山 口 昭 之 (20)
[Brief explanation of the drawings] Figure 1 is a diagram showing exhaust gas purification efficiency, Figure 2 is a side sectional view of the engine intake and exhaust system, Figure 3 is a plan view taken along the arrow 1 in Figure 2, FIG. 4 is a side sectional view of the Zakujo piston, FIG. 5 is a diagram showing fluctuations in the air-fuel ratio, and FIG. 6 is a diagram showing fluctuations in the air-fuel ratio. 2... Carburetor, 8... Zakujo piston, 9-... Needle, 25... Fuel passage, 28... Nozzle, 35 ...Air bleed passage, 40...Linear solenoid square, 6
0...Transient operation detector. Special Pestle Applicant Toyota Motor Corporation Patent Attorney Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney Takashi Nakayama Patent Attorney Akira Yamaguchi (20)

Claims (1)

【特許請求の範囲】[Claims] 機関吸気通路に気化器を取付けると共に機関排気通路に
三元触媒コンバータ1[付け、該気化器の燃料通路にエ
アブリード通路を連結して該エアブリード通路から燃料
通路内に空気を供給するようにした内燃機関において、
はぼI Hzから2Hzの一定周波数で変動しかつ互に
異なる少くとも2つの振幅を有する駆動信号を発生可能
な駆動信号発生回路を具備し、該エアブリード通路内に
該駆動信号に応動してI Hzから2Hzの一定周波数
でエアブリード通路の開口面積を増大減少せしめると共
に該開口面積の増大減少中が上記振幅に比例した電磁弁
を設け、上記駆動信号が第1の振幅を有するときは空燃
比が平均値に対してほぼ±0.2から±1.0の間で周
期的に変動しかつ空燃比の平均値がほぼ理論空燃比とな
るようにエアブリード通路の流路面積を定め、災に機関
過渡運転状態を(1)               
   リ□「検出可能な過渡運転検出器を上記駆動信号
発生回路に接続して機関過渡運転時には上記駆動信号の
封幅を上記第1振幅から第1振幅よりも振幅の大きな第
2の振幅に切換えると共に機関過渡運転時でないときに
は上記第1振幅の駆vJ信号を発生せしめるようにした
内燃機関の排気ガス浄化装置。
A carburetor is attached to the engine intake passage, a three-way catalytic converter 1 is attached to the engine exhaust passage, and an air bleed passage is connected to the fuel passage of the carburetor so that air is supplied from the air bleed passage into the fuel passage. In an internal combustion engine,
The air bleed passage includes a drive signal generating circuit capable of generating a drive signal that varies at a constant frequency of 1 Hz to 2 Hz and has at least two mutually different amplitudes; A solenoid valve is provided that increases or decreases the opening area of the air bleed passage at a constant frequency from I Hz to 2 Hz, and is proportional to the amplitude while the opening area is increasing or decreasing, and when the drive signal has a first amplitude, the air bleed passage increases or decreases. The flow area of the air bleed passage is determined so that the fuel ratio periodically varies between approximately ±0.2 and ±1.0 with respect to the average value, and the average value of the air-fuel ratio is approximately the stoichiometric air-fuel ratio, Emergency engine transient operating condition (1)
□ Connect a detectable transient operation detector to the drive signal generation circuit to switch the amplitude of the drive signal from the first amplitude to a second amplitude larger than the first amplitude during engine transient operation. An exhaust gas purification device for an internal combustion engine, wherein the drive vJ signal having the first amplitude is generated when the engine is not in transient operation.
JP14480582A 1982-08-23 1982-08-23 Exhaust gas purifier for internal combustion engine Pending JPS5934463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14480582A JPS5934463A (en) 1982-08-23 1982-08-23 Exhaust gas purifier for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14480582A JPS5934463A (en) 1982-08-23 1982-08-23 Exhaust gas purifier for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS5934463A true JPS5934463A (en) 1984-02-24

Family

ID=15370870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14480582A Pending JPS5934463A (en) 1982-08-23 1982-08-23 Exhaust gas purifier for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5934463A (en)

Similar Documents

Publication Publication Date Title
US4199938A (en) Method of operating a three-way catalyst for internal combustion engines
JPS6114327B2 (en)
JPS5934463A (en) Exhaust gas purifier for internal combustion engine
JPS5934468A (en) Exhaust gas purifier for internal combustion engine
JPS5934465A (en) Exhaust gas purifier for internal combustion engine
US4450684A (en) Exhaust gas cleaning system for internal combustion engine
JPS5934457A (en) Exhaust gas purifier for internal combustion engine
JPS5934456A (en) Exhaust gas purifier for internal combustion engine
US4224911A (en) Apparatus for controlling the amount of secondary air fed into an internal combustion engine
US4506644A (en) Exhaust gas-purifying device of an internal combustion engine
JPS5934467A (en) Exhaust gas purifier for internal combustion engine
JPS5934464A (en) Exhaust gas purifier for internal combustion engine
JPS6213510B2 (en)
JPS5910724A (en) Exhaust emission control device for internal-combustion engine
JPS5934461A (en) Exhaust gas purifier for internal combustion engine
JPS5934466A (en) Exhaust gas purifier for internal combustion engine
JPS5912114A (en) Exhaust gas purifying device of internal combustion engine
JPS5993950A (en) Exhaust-gas purifier for internal-combustion engine
JPS5934455A (en) Exhaust gas purifier for internal combustion engine
JPS5934460A (en) Exhaust gas purifier for internal combustion engine
JPS5934459A (en) Exhaust gas purifier for internal combustion engine
JPS5934458A (en) Exhaust gas purifier for internal combustion engine
JPS5993949A (en) Exhaust-gas purifier for internal-combustion engine
JPS5934454A (en) Exhaust gas purifier for internal combustion engine
JPS5934462A (en) Exhaust gas purifier for internal combustion engine