JPS5928013A - Purifier for exhaust gas of internal combustion engine - Google Patents

Purifier for exhaust gas of internal combustion engine

Info

Publication number
JPS5928013A
JPS5928013A JP13738082A JP13738082A JPS5928013A JP S5928013 A JPS5928013 A JP S5928013A JP 13738082 A JP13738082 A JP 13738082A JP 13738082 A JP13738082 A JP 13738082A JP S5928013 A JPS5928013 A JP S5928013A
Authority
JP
Japan
Prior art keywords
fuel
air
fuel ratio
duct
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13738082A
Other languages
Japanese (ja)
Inventor
Takaaki Ito
隆晟 伊藤
Takashi Kato
孝 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP13738082A priority Critical patent/JPS5928013A/en
Publication of JPS5928013A publication Critical patent/JPS5928013A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/12Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves
    • F02M7/14Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle
    • F02M7/16Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle operated automatically, e.g. dependent on exhaust-gas analysis
    • F02M7/17Other installations, with moving parts, for influencing fuel/air ratio, e.g. having valves with means for controlling cross-sectional area of fuel spray nozzle operated automatically, e.g. dependent on exhaust-gas analysis by a pneumatically adjustable piston-like element, e.g. constant depression carburettors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Abstract

PURPOSE:To obtain high purification efficiency for exhaust gas with a simple structure, by providing a solenoid valve opening and closing at given frequency in an auxiliary fuel duct connected with a bypass duct connecting parts of a fuel duct upstream and downstream a metering jet of a variable venturi type carburetor. CONSTITUTION:A needle 9 is pulled out of a metering jet 26 as a suction piston 8 is moved to the left in proportion to an increase of a suction air quantity, and with this construction, increased fuel is spouted into a suction duct 7 from a nozzle 28. A bypass duct 30 detouring around the metering jet 26 is provided and is connected with the suction duct 7 through an air bleed duct 35, in a carburetor like this. An auxiliary fuel duct 34 is made to diverge from the bypass duct 30 and connected with an inflow opening 38 of fuel opening within a fuel duct 25. A solenoid valve 40 which is opened and closed at given frequency of about 1-2Hz is provided in the duct 34, and an opening area of the valve 40 is fixed so that an air-fuel ratio is varied through the opening and closing of the valve 40 periodically within a range of about + or -0.2-+ or -1.0 to a mean value.

Description

【発明の詳細な説明】 本発明は内燃機関のIJl’気ガス浄rヒ装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an IJl' gas purification device for an internal combustion engine.

排気ガス中の有害三成分J−IC,COおよびNOxを
同時に低減することのできる触媒として、五元理論空燃
比であるときに最も高くなり、例えば80パ一セント以
上の浄化効率Rを得ることのできる空燃比領域は空燃比
が0.06程度の狭い巾である。通常、このように80
パ一セント以上の浄化効率をイGることのできる空燃比
領域をウィンドウWと称する7従って、三元触媒をnJ
いて排気ガス中の有害三成分を同時に低減するためには
空燃比をこの狭いウィンドウW内に常時に維持(、なけ
ればならない。このために従来のUl・気ガスa)化装
置では、空燃比が、L!11116空燃比よりも入きい
か小さいかを↑(別可能な酸素濃度検出器を機関すJト
気通路に取付け、lこの酸素濃度検出器の出方信号に基
いて空燃比がウィンドウW内の空燃比となるように制御
している。しかしながらこのような酸素一度検出器を用
いた排気ガス浄化装置では高価な酸素濃度検出器および
空燃比制御のための高価な電子制御ユニットを必要とす
るために排気ガス浄化装置の製造コストが高騰するとい
う問題がある。
As a catalyst that can simultaneously reduce the three harmful components J-IC, CO and NOx in exhaust gas, the purification efficiency R is highest at a five-dimensional stoichiometric air-fuel ratio, for example, 80% or more. The air-fuel ratio range in which this is possible is narrow, with an air-fuel ratio of about 0.06. Usually 80 like this
The air-fuel ratio range in which the purification efficiency can be increased by more than 1% is called window W7. Therefore, the three-way catalyst is
In order to simultaneously reduce the three harmful components in exhaust gas, the air-fuel ratio must be maintained within this narrow window W at all times. But, L! 11116 Check whether the air-fuel ratio is higher or lower than the air-fuel ratio ↑ (A separate oxygen concentration detector is installed in the engine air passage, and based on the output signal of this oxygen concentration detector, the air-fuel ratio is within the window W. However, such an exhaust gas purification device using an oxygen detector requires an expensive oxygen concentration detector and an expensive electronic control unit to control the air-fuel ratio. Another problem is that the manufacturing cost of exhaust gas purification devices is rising.

ところが最近になって、S AE paper Nn7
60201号、或いは特公昭56−4741号公報に記
載されているように三元触媒の機能が次第に解明され、
三元触媒が酸素保持機能を有することが判明したのであ
る。即ち、空燃比が理論空燃比に対してリーン側にある
ときには三元触媒がNOxから酸素を奪い取ってNOx
を還元させると共にこの奪い取った酸素を保持し、空燃
比が理論空燃比よりもリッチ側になると保持した酸素を
放出してCO,HCの酸化を行なうのである。従って空
燃比を成る基準空燃比に対してリーン側とリッチ側に交
互に変動させると基準空燃比が理論空燃比からずれたと
しても一ヒ述の酸素保持機能によりNOxの還元作用お
よびCo、HCの酸化作用が促進されて高い浄化効率を
得ることができる。第1図(b)は空燃比を周波数I 
Hzで基準空燃比に対して±1.0だけ変動させた場合
の基準空燃比A/FのウィンドウW。
However, recently, SAE paper Nn7
As described in No. 60201 or Japanese Patent Publication No. 56-4741, the function of the three-way catalyst was gradually elucidated.
It was discovered that the three-way catalyst has an oxygen retention function. In other words, when the air-fuel ratio is on the lean side with respect to the stoichiometric air-fuel ratio, the three-way catalyst takes oxygen from NOx and
At the same time, this stolen oxygen is retained, and when the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio, the retained oxygen is released to oxidize CO and HC. Therefore, if the air-fuel ratio is alternately varied between the lean side and the rich side with respect to the standard air-fuel ratio, even if the standard air-fuel ratio deviates from the stoichiometric air-fuel ratio, the oxygen retention function described above will reduce NOx and Co, HC. The oxidation effect of the gas is promoted and high purification efficiency can be obtained. Figure 1(b) shows the air-fuel ratio at frequency I
Window W of the standard air-fuel ratio A/F when the standard air-fuel ratio is varied by ±1.0 in Hz.

を示している。第1(a)図および第1(b)図がら空
燃比を一定周波数で変動させた場合にはウィンドウWo
が広くなることがわかる。このことは、空燃比を一定周
期で変動させれば基準空燃比が理論空燃比から多少ずれ
ていたとしても高い浄化効率が得られることを意味して
いる。一方、空燃比の変動周波数を短かくすると、即ち
空燃比の変動周期を長くすると三元触媒の酸素保持能力
が飽和するために酸素保持機能に基づく酸化還元能力が
低下し、三元触媒の浄化効率が低下する。第1(c)図
はこのことを明瞭に示している。IN 1 (C)図に
おいて縦軸Rは浄化効率を示し、横軸Fは空燃比の変動
周波数を示す。また、空燃比の変動中を小さくすると空
燃比をリッチ側とり一ン側に交互に変動で4なくなるの
でウィンドウのiJは狭くなる。従ってウィンドウの巾
を広くするには最適な空燃比の変動周期と変動中が存在
することがわかる。
It shows. 1(a) and 1(b), when the air-fuel ratio is varied at a constant frequency, the window Wo
It can be seen that the area becomes wider. This means that if the air-fuel ratio is varied at regular intervals, high purification efficiency can be obtained even if the reference air-fuel ratio deviates somewhat from the stoichiometric air-fuel ratio. On the other hand, when the air-fuel ratio fluctuation frequency is shortened, that is, when the air-fuel ratio fluctuation period is lengthened, the oxygen retention capacity of the three-way catalyst becomes saturated, and the oxidation-reduction ability based on the oxygen retention function decreases, resulting in purification of the three-way catalyst. Efficiency decreases. Figure 1(c) clearly shows this. In the IN 1 (C) diagram, the vertical axis R shows the purification efficiency, and the horizontal axis F shows the fluctuation frequency of the air-fuel ratio. Furthermore, if the air-fuel ratio is changed to a smaller value, the air-fuel ratio alternately changes from the rich side to the rich side and becomes less than 4, so that the window iJ becomes narrower. Therefore, it can be seen that there are optimal air-fuel ratio fluctuation periods and fluctuation periods in order to widen the window width.

上述のように基準空燃比に対する空燃比の変動中および
変動周波数を適切に選定すればウィンドウが広くなり、
従って基準空燃比が理論空燃比に対して多少変動しても
高い浄化効率を得ることができる。このことは、基準空
燃比の変動中の狭い燃料供給系を用いれば酸素濃度検出
器の出力信号によるフィードバック制御を用いなくても
高い浄化効率を得ることができることを意味している0
無論、燃料供給系として燃料噴射弁を用いれば基準空燃
比の変動中を狭くすることができるが燃料噴射装置は高
師であるために機関の製造コストが高くなってしまう。
As mentioned above, if the air-fuel ratio is fluctuating relative to the standard air-fuel ratio and the fluctuation frequency is appropriately selected, the window will become wider.
Therefore, high purification efficiency can be obtained even if the reference air-fuel ratio varies somewhat with respect to the stoichiometric air-fuel ratio. This means that by using a narrow fuel supply system during fluctuations in the reference air-fuel ratio, high purification efficiency can be obtained without using feedback control based on the output signal of the oxygen concentration detector.
Of course, if a fuel injection valve is used as a fuel supply system, it is possible to narrow the fluctuation period of the reference air-fuel ratio, but since the fuel injection device is expensive, the manufacturing cost of the engine increases.

従って機関の製造コストを低く抑えるためには気化器を
用いることが必要となる。しかしながら従来の固定ペン
テ−り型気化器では基j−空燃比の変動中が広く、−ま
た従来の可変ベンチュリ型気化器では加速時に、或いは
機関温度によって基準空燃比が大きく変動するのでこれ
らの固定べ/テユリ型気化器、或いは可変ベンチュリ型
気化器を用いても高い浄化効率を得るのは国難でめる。
Therefore, in order to keep the manufacturing cost of the engine low, it is necessary to use a carburetor. However, in conventional fixed venturi type carburetors, the base air-fuel ratio fluctuates widely, and in conventional variable venturi type carburetors, the reference air-fuel ratio fluctuates greatly during acceleration or depending on engine temperature, so these fixed It is a national problem to obtain high purification efficiency even if a Be/Teuri type vaporizer or a variable venturi type vaporizer is used.

本発明は酸′JAm度検出度検出−ることなく、画格の
低い気化器を用いて高い排気ガス浄化効率を確保するこ
とのできる排気ガス浄化装置を提供するととKある。
The purpose of the present invention is to provide an exhaust gas purification device that can ensure high exhaust gas purification efficiency using a low-grade carburetor without detecting acidity.

以下、添附図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第2図を参照すると、1は吸気マニホルド、2は吸気マ
ニホルド1上に取付けられた可変ベンチュリ型気化器、
3は排気マニホルド、4は触媒コンバークを夫々示し、
触媒コンバータ4の内部には三元モノリス触媒5が配置
される。可変ペンテ具り型気化器2は気化器ノ1ウジン
グ6と、ノ)ウジフグ6内を垂直方向に延びる吸気通路
7と、吸気通路7内を横方向に移動するサクシフンピス
トン8と、サクションピストン8の先端面に取付けられ
たニードル9と、サクションピストン3の先端面に対向
して吸気通路7の内壁面上に固定されたスペーサ10と
、サクションピストン8下流の吸気通路7内に設けられ
たスロットル弁11と、フ四−ト室12とを具備し、サ
クシ曹ンピストン8の先端面とスペーサ10間にはベン
チュリ部13が形成される。気化器ハウジング6には中
窒円筒状のケーシング14が固定され、このケーシング
14にはケーシング14の内部でケーシング14の軸線
方向に延びる案内スリーブ15が取付けられる。案内ス
リーブ15内には多数のボール16を備えた軸受17が
挿入され、また案内スリーブ15の外端部は盲蓋18に
よって閉鎖される。一方、サクションピストン8には案
内ロッド19が固定され、この案内ロッド19は軸受1
7内に案内ロッド19の軸線方向に移動可能に挿入され
る。
Referring to FIG. 2, 1 is an intake manifold, 2 is a variable venturi carburetor installed on the intake manifold 1,
3 indicates the exhaust manifold, 4 indicates the catalyst converter,
A three-way monolith catalyst 5 is arranged inside the catalytic converter 4 . The variable penetrating type carburetor 2 includes a carburetor no. a needle 9 attached to the tip surface of the suction piston 8; a spacer 10 fixed on the inner wall surface of the intake passage 7 facing the tip surface of the suction piston 3; and a spacer 10 provided in the intake passage 7 downstream of the suction piston 8 It includes a throttle valve 11 and a foot chamber 12, and a venturi portion 13 is formed between the tip surface of the piston 8 and the spacer 10. A hollow cylindrical casing 14 is fixed to the carburetor housing 6 , and a guide sleeve 15 extending in the axial direction of the casing 14 inside the casing 14 is attached to the casing 14 . A bearing 17 with a number of balls 16 is inserted into the guide sleeve 15 , and the outer end of the guide sleeve 15 is closed by a blind cover 18 . On the other hand, a guide rod 19 is fixed to the suction piston 8, and this guide rod 19 is attached to the bearing 1.
7 so as to be movable in the axial direction of the guide rod 19.

このようにサクションピストン8は軸受17を介してケ
ーシング14により支持されるのでサクションピストン
8はその軸線方向に滑らかに移動することができる。ケ
ーシング14の内部はサクションピストン8によって負
圧室20と大気圧室21とに分割され、負圧室20内に
はサクションピストン8を常時ベンチュリ部13に向け
て押圧する圧縮ばね22が挿入される0負圧室20はサ
クションピストン8に形成されたチクシーン孔23を介
してペンテエリ部13に連結され、大気圧室21は気化
器ハウジング6に形成された空気孔24を介してザクシ
マ/ピストン8上流の吸気通路7内に連結される。
Since the suction piston 8 is thus supported by the casing 14 via the bearing 17, the suction piston 8 can move smoothly in its axial direction. The interior of the casing 14 is divided by the suction piston 8 into a negative pressure chamber 20 and an atmospheric pressure chamber 21, and a compression spring 22 is inserted into the negative pressure chamber 20 to constantly press the suction piston 8 toward the venturi section 13. The negative pressure chamber 20 is connected to the pentane part 13 through a chixene hole 23 formed in the suction piston 8, and the atmospheric pressure chamber 21 is connected to the suction piston 8 upstream through an air hole 24 formed in the carburetor housing 6. It is connected to the intake passage 7 of the.

一方、気化器ハウジング6内にはニードル9が侵入可能
なようにニードル9の軸線方向に延びる燃料通路25が
形成され、この燃料通路25内にはfIIiジェット2
6が設けられる。計速ジェット26上流の燃料通路25
は下方に延びる燃料パイプ27を介してフロート室12
に連結され、7目−ト室12内の燃料はこの燃料パイプ
27′jk介して燃料通路25内に送り込まれる。更に
、スペーサlOには燃料通路25と共軸的に配鎗された
中空円筒状のノズル28が固定される。このノズル28
はスペーサlOの内壁面からベンチュリ部13内に突出
し、しかもノズル28の先端部の上半分は下半分から更
にサクションピストン8に向けて突出している。ニード
ル9はノズル28および計量ジェット26内を貫通して
延び、燃料はニードル9と計量ジェット26間に形成さ
れる環状間隙により計量された後にノズル28から吸気
通路7内に供給される。
On the other hand, a fuel passage 25 is formed in the carburetor housing 6 and extends in the axial direction of the needle 9 so that the needle 9 can enter therein.
6 is provided. Fuel passage 25 upstream of speed meter jet 26
is connected to the float chamber 12 via a fuel pipe 27 extending downward.
The fuel in the seventh engine chamber 12 is sent into the fuel passage 25 through this fuel pipe 27'jk. Further, a hollow cylindrical nozzle 28 coaxially arranged with the fuel passage 25 is fixed to the spacer lO. This nozzle 28
protrudes into the venturi portion 13 from the inner wall surface of the spacer lO, and the upper half of the tip of the nozzle 28 further protrudes from the lower half toward the suction piston 8. The needle 9 extends through the nozzle 28 and the metering jet 26 , and the fuel is metered by the annular gap formed between the needle 9 and the metering jet 26 from the nozzle 28 into the intake passage 7 .

第2図に示されるようにスペーサlOの上端部には吸気
通路7内に向けて水平方向(C突出する隆起壁29が形
成され、この隆起壁29とサクシロンピストン8の先端
部間において流1制御が行なわれる。機関運転が開始さ
れると空気は吸気通路7内を下方に向けて流れる。この
とき空気流はサクションピストン8と隆起壁29間にお
いて絞られるためにペンチエリ部13には負圧が発生し
、この負圧がサクション孔23を介して負圧室20内に
導びかれる0サクシaンピストン8は負圧室20と大気
圧室21との圧力差が圧縮ばね22のばね力により定゛
まるほぼ一定圧となるように、即ちベンチュリ部13内
の負圧がほぼ−・定となるように移動する。
As shown in FIG. 2, a raised wall 29 is formed at the upper end of the spacer lO and projects horizontally (C) toward the intake passage 7. 1 control is performed. When engine operation is started, air flows downward in the intake passage 7. At this time, the air flow is narrowed between the suction piston 8 and the raised wall 29, so there is a negative impact on the pentier section 13. Pressure is generated, and this negative pressure is guided into the negative pressure chamber 20 through the suction hole 23. In other words, the negative pressure inside the venturi portion 13 is moved to become approximately constant.

第3図および第4図を参照すると、ニードル9の上流側
に位置するサクシ1ンピストン先端面部分はその全体が
ニードル9の取付端面30からニードル9の先端部に向
けて隆起しており、このサクションピストン先端面部分
上には吸気通路7の軸線方向に延びる凹溝31が形成さ
れる。この凹溝31の」;流側端部31aは【J字形断
面形状をなすと共にニードル取付端面30よシもニード
ル9の先端部に近い側に位置し−でおり、残りの凹溝部
分31bは上流側端部31aからニードル取付端面30
までほぼ゛まっすぐに延びる。更に、ニードル9よりも
上流側に位置するザク’/EIンピストン先端面部外の
断面形状は凹溝31からベンチュリ部13に向けて拡開
するV字形になしており、従ってこのサクシ日ンピスト
ン先端面部分は凹溝31に向けて傾斜する一対の傾斜壁
面部32a。
Referring to FIGS. 3 and 4, the entire tip surface of the piston located on the upstream side of the needle 9 is raised from the mounting end surface 30 of the needle 9 toward the tip of the needle 9. A groove 31 extending in the axial direction of the intake passage 7 is formed on the tip end surface of the suction piston. The downstream end 31a of this groove 31 has a J-shaped cross section and is located closer to the tip of the needle 9 than the needle mounting end surface 30, and the remaining groove part 31b is From the upstream end 31a to the needle attachment end surface 30
It extends almost in a straight line. Furthermore, the cross-sectional shape of the outside of the tip surface of the piston located upstream of the needle 9 is V-shaped, expanding from the concave groove 31 toward the venturi portion 13. Therefore, the tip surface of the piston The portions are a pair of inclined wall surface portions 32a that are inclined toward the groove 31.

32bを有する。32b.

第3図かられかるように吸入空気qが少ないときには隆
起壁29.傾斜壁部分32a、32b。
As shown in Fig. 3, when the intake air q is small, the raised wall 29. Slanted wall portions 32a, 32b.

および凹溝上流側端部31aによってほぼ二等辺三角形
状の吸入空気制御絞り部Kが形成される。
The upstream end portion 31a of the concave groove forms an intake air control constriction portion K having a substantially isosceles triangular shape.

このように吸入空気制御絞り部Kを形成することによっ
てサクションピストン8のリフ)tが吸入空気制御絞り
部にの開口面積に比例するようになり、従ってサクショ
ンピストン8のリフlは吸入空気量の増大に応じて滑ら
かに増大するようになる。更に、サクシ3ンピストン8
は軸受17によって支持されているので吸入空気量の変
化に対して応答性よく移動し、斯くしてサクシ蓼ンピス
トン8は吸入空気量が増大したときに吸入空気量の増大
に応答性よくかつ滑らかに移動する。その結果、加速運
転時のように吸入空気量が急激に変化する場合であって
もサクシ謬ンピストン8のリフトが吸入空気量の増大に
比例して増大するためにノズル28から供給される燃料
の量は吸入空気量に常時比例することになる。更に、第
3図かられかるように吸入空気量が少ないときには吸入
空気が吸気通路7の中央部を流量せしめられ、その結果
ノズル28から供給された燃料は吸入空気流と共に即座
に機関シリンダ内に供給されるので吸入空気量が少ない
ときであってもノズル28から供給された燃料は即座に
機関シリンダ内に供給される。従って、加速運転時のよ
うに吸入空気量が急激に増大しても上述したようにノズ
ル28から供給される燃料の縦が吸入空気量に比例し、
しかもノズル28から供給された燃料が即座に機関シリ
ンダ内に供給されるので機関シリンダ内に供給される混
合気の空燃比は吸入空気量が急激に変化してもほぼ一定
に維持され桐また、サクシトンピストン8は軸受17に
よって支持されているので機関温度がサクシ1ンピスト
ン8の移動に影響全路えることがなく、斯くしてサクシ
ョンピストン8は機関温度とは無関係に吸入空気量の変
化に応答性よく移動することができる0斯くして、第2
図に示す可変べyチュリ型気化器2を用いると、機関温
度および機関運転状態にかかわらずに機関シリンダ内に
供給される混合気の空燃比をほぼ一定値、例えばほぼ理
論空燃比に維持することができる。
By forming the intake air control throttle part K in this way, the rift (t) of the suction piston 8 becomes proportional to the opening area of the intake air control throttle part, and therefore the rift (l) of the suction piston 8 becomes proportional to the intake air amount. It will increase smoothly as it increases. In addition, Sakushi 3 piston 8
Since it is supported by the bearing 17, it moves with good response to changes in the amount of intake air, and thus, when the amount of intake air increases, the piston 8 moves smoothly and responsively to the increase in the amount of intake air. Move to. As a result, even when the amount of intake air changes rapidly, such as during acceleration, the lift of the piston 8 increases in proportion to the increase in the amount of intake air, so that the amount of fuel supplied from the nozzle 28 increases. The amount will always be proportional to the intake air amount. Furthermore, as can be seen from FIG. 3, when the amount of intake air is small, the intake air is forced to flow through the center of the intake passage 7, and as a result, the fuel supplied from the nozzle 28 immediately flows into the engine cylinder together with the intake air flow. Therefore, even when the amount of intake air is small, the fuel supplied from the nozzle 28 is immediately supplied into the engine cylinder. Therefore, even if the amount of intake air increases rapidly as during acceleration, the vertical direction of the fuel supplied from the nozzle 28 is proportional to the amount of intake air as described above.
Moreover, since the fuel supplied from the nozzle 28 is immediately supplied into the engine cylinder, the air-fuel ratio of the mixture supplied into the engine cylinder is maintained almost constant even if the intake air amount changes rapidly. Since the suction piston 8 is supported by a bearing 17, the engine temperature does not affect the movement of the suction piston 8, and thus the suction piston 8 responds to changes in the amount of intake air regardless of the engine temperature. Thus, the second
By using the variable Bay Turri type carburetor 2 shown in the figure, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinders can be maintained at a substantially constant value, for example, at approximately the stoichiometric air-fuel ratio, regardless of engine temperature and engine operating conditions. be able to.

第2図を参照すると、気化器ノ・ウジフグ2内には計量
ジェット26を迂回するコ字形のバイパス通路30が形
成される0このバイパス通路30の燃料流入口31は計
量ジェット26の上流において燃料通路25内に開口し
、バイパス通路30の燃料流出口32は計量ジェット2
6の下流において燃料通路25内に開口する。燃料流入
1」31近傍のバイパス通路30内にはバイパス通路3
0内を流れる燃料を計量するための計殖ジエツ)33が
挿入される。このバイパス通路30はエアブリード通路
35およびエアブリードジェット37を介して隆起壁2
9−上流の吸気通路7内に連結される。また、バイパス
通路30からは補助燃料通路34が分岐され、この補助
燃料通路34は燃料通路25内に開口する燃料流入口3
8に連結される。
Referring to FIG. 2, a U-shaped bypass passage 30 that bypasses the metering jet 26 is formed in the carburetor nozzle 2. The fuel outlet 32 of the bypass passage 30 opens into the passage 25 and the fuel outlet 32 of the bypass passage 30 is connected to the metering jet 2.
6 opens into the fuel passage 25 . There is a bypass passage 3 in the bypass passage 30 near the fuel inflow 1'' 31.
A metering jet 33 is inserted for metering the fuel flowing through the tank. This bypass passage 30 is connected to the raised wall 2 via an air bleed passage 35 and an air bleed jet 37.
9 - connected into the upstream intake passage 7; Further, an auxiliary fuel passage 34 is branched from the bypass passage 30, and this auxiliary fuel passage 34 has a fuel inlet 3 that opens into the fuel passage 25.
8.

この燃料流入口38は燃料流入口31よりも上流におい
て燃料通路25内に開口する。燃料流入口38近傍の補
助燃料通路34内には補助燃料を計量するための補助燃
料it級レジエツト9が挿入され、補助燃料通路34の
途中にはりニアソレノイド弁40によって開口面積が制
御される弁ボート36が形成される。機関アイドリング
1転時には大部分の燃料がバイパス通路30を介してノ
ズル28に供給される。このとき燃料は一定断面の計量
ジェット33によって計量されるためにノズル28から
吸気通路7内に供給される燃料の避は安定しており、斯
くして安定した機関ア・1ドリング運転1確保すること
ができる。吸入空気lが増大するとニードル9が左方に
移動するために計1ジェット26とニードル9間に形成
される環状間隙の面積が増大する。このときバイパス通
路30内を流れる燃料の皺はほとんど変化せず、計+1
ジェット26とニードル9間に形成される環状間隙内を
流れる燃料が増大してノズル28から供給される全燃料
量が増大せしめられる。
This fuel inlet 38 opens into the fuel passage 25 upstream of the fuel inlet 31 . An auxiliary fuel IT class register 9 for metering auxiliary fuel is inserted into the auxiliary fuel passage 34 near the fuel inlet 38, and a valve whose opening area is controlled by a beam near solenoid valve 40 is inserted in the middle of the auxiliary fuel passage 34. A boat 36 is formed. During engine idling, most of the fuel is supplied to the nozzle 28 via the bypass passage 30. At this time, since the fuel is metered by the metering jet 33 with a constant cross section, the flow of fuel supplied from the nozzle 28 into the intake passage 7 is stable, thus ensuring stable engine idle operation 1. be able to. As the intake air 1 increases, the needle 9 moves to the left, so that the area of the annular gap formed between the jet 26 and the needle 9 increases. At this time, the wrinkles of the fuel flowing in the bypass passage 30 hardly change, and the total amount increases by +1.
The flow of fuel within the annular gap formed between jet 26 and needle 9 increases, increasing the total amount of fuel delivered from nozzle 28.

リニアソレノイド弁40は弁ボート36の開口面aを制
御する弁体41と、弁体41に連結された可動プランジ
ャ42と、可動グラ/ジャ42を吸引するためのソレノ
イド43とを具備し、ソレノイド43はソレノイド駆動
回路50に接続される。このリニアソレノイド弁40で
はソレノイド43を流れる電流に比例した距離だけ可動
プランジャ42が移動し、ソレノイド43を流れる電流
が増大するにつれて弁体41が右方に移動する。
The linear solenoid valve 40 includes a valve body 41 for controlling the opening surface a of the valve boat 36, a movable plunger 42 connected to the valve body 41, and a solenoid 43 for suctioning the movable plunger 42. 43 is connected to the solenoid drive circuit 50. In this linear solenoid valve 40, the movable plunger 42 moves by a distance proportional to the current flowing through the solenoid 43, and as the current flowing through the solenoid 43 increases, the valve body 41 moves to the right.

従って、弁ボート36の開口面積はソレノイド43を流
れる電流に比例して変化することになる。
Therefore, the opening area of the valve boat 36 changes in proportion to the current flowing through the solenoid 43.

ソレノイド駆動回路50は第5図(a)に示すような1
 Hzから2Hzの周波数の鋸波状゛電圧を発生する鋸
歯発生器51と、鋸波発生器51の出力端子に接続され
た電圧電流変換器52からなり、電圧Km変換器52の
出力端子はソレノイド43に接続される。前述したよう
に弁ボート36の開口面積はソレノイド43を流れる[
流に比例して変化し、ソレノイド43には第5(a)図
に示すような電流が供給されるので弁ボート36の開口
面積は鋸歯状に変化することがわかる。このように弁ボ
ート36の開口面積が鋸歯状に変化すると補助燃料通路
34からバイパス通路30内に供給される燃料1」も#
!両歯状変化し、斯くしてこのとき燃料流出口32から
流出する燃料の量も鋸歯状に変化する。その結果、機関
シリンダ内に供給される空燃比が変動することになる。
The solenoid drive circuit 50 is a solenoid drive circuit 50 as shown in FIG. 5(a).
It consists of a sawtooth generator 51 that generates a sawtooth voltage with a frequency of Hz to 2Hz, and a voltage-current converter 52 connected to the output terminal of the sawtooth generator 51. The output terminal of the voltage Km converter 52 is connected to the solenoid 43. connected to. As mentioned above, the opening area of the valve boat 36 allows the flow through the solenoid 43 [
It can be seen that the opening area of the valve boat 36 changes in a sawtooth pattern because the current is supplied to the solenoid 43 as shown in FIG. 5(a). When the opening area of the valve boat 36 changes in a serrated manner in this way, the fuel 1 supplied from the auxiliary fuel passage 34 into the bypass passage 30 also changes to #
! The amount of fuel flowing out from the fuel outlet 32 also changes in a sawtooth manner at this time. As a result, the air-fuel ratio supplied into the engine cylinders will vary.

空燃比の変動中および変動する空燃比の平均値はジェッ
)33,37゜39および弁ボート36の開口面積によ
って定まる。これらのジェット33,37.39と弁ボ
ート36の寸法は吸入空気量が少ないときに機関シリン
ダ内に供給される混合気の空燃比A/Fの平均値が第5
(b)図に示されるようにほぼ理論空燃比となり、空燃
比の使動巾が理論空燃比に対してほぼ十〇、2から±1
.0となるように定められる。従って吸入空気量が少な
いときには機関温度に関係なく機関シリンダ内に供給さ
れる混合気の空燃比はI Hzから2Hzの周波数でも
ってほぼ理論空燃比に対して±0.2から±1.0の範
囲で変動せしめられ、しかもこの空燃比の平均値は第1
(b)図のウィンドウWo内に維持されるので三冗モノ
リス触媒5の酸素保持機能を利用して高い浄化効率を得
ることができる。一方、前述したように吸入空気量が増
大してもバイパス通路30内を流れる燃料量はほとんど
変化せず、従ってノズル28から供給される全燃料址に
対して補助燃料通路34からバイパス通路30内に供給
される燃料量が吸入空気量の増大に伴なって減少するた
めに吸入空気量が増大するにつれて空燃比の平均値は次
第に大きくなる。このように吸入空気量が多いとき、即
ち頻繁に使用される中負荷運転時に空燃比の平均値が大
きくなるので燃料消費率を向上することができる。熱論
上述のように空燃比の平均値が大きくなっても空燃比の
平均値は第1(b)図のウィンドウWo内に維持さ゛れ
るので高い浄化効率を得られることは変りがない。更に
#!5図(b)に示されるように空燃比が滑らかに変動
するので燃焼状態が急激に変化することがなく、斯くし
て機関の運転状態にかかわらずに常時安定した燃焼を確
保することができる。
During the fluctuation of the air-fuel ratio, the average value of the fluctuating air-fuel ratio is determined by the jets 33, 37° 39 and the opening area of the valve boat 36. The dimensions of these jets 33, 37.
(b) As shown in the figure, the air-fuel ratio is almost stoichiometric, and the operating range of the air-fuel ratio is approximately 100, 2 to ±1 relative to the stoichiometric air-fuel ratio.
.. It is set to be 0. Therefore, when the amount of intake air is small, the air-fuel ratio of the mixture supplied into the engine cylinders is approximately ±0.2 to ±1.0 with respect to the stoichiometric air-fuel ratio at a frequency of IHz to 2Hz, regardless of the engine temperature. The air-fuel ratio is varied within a range, and the average value of this air-fuel ratio is
(b) Since it is maintained within the window Wo in the figure, high purification efficiency can be obtained by utilizing the oxygen retention function of the three-redundant monolith catalyst 5. On the other hand, as described above, even if the amount of intake air increases, the amount of fuel flowing through the bypass passage 30 hardly changes. Since the amount of fuel supplied to the engine decreases as the amount of intake air increases, the average value of the air-fuel ratio gradually increases as the amount of intake air increases. In this way, when the amount of intake air is large, that is, during medium-load operation where the vehicle is frequently used, the average value of the air-fuel ratio becomes large, so that the fuel consumption rate can be improved. Thermal Theory As mentioned above, even if the average value of the air-fuel ratio becomes large, the average value of the air-fuel ratio is maintained within the window Wo in FIG. 1(b), so it is still possible to obtain a high purification efficiency. More #! As shown in Figure 5 (b), the air-fuel ratio fluctuates smoothly, so the combustion state does not change suddenly, and stable combustion can be ensured at all times regardless of the engine operating state. .

このように本発明によれば高価な酸素濃度検出器および
高価な空燃比制御用の電子制御ユニットを用いることな
く、価格の低い気化器を用いて排気ガスを良好に浄化で
きるので排気ガス浄化装置の製造コス)f大巾に低減す
ることができる。更に、エアブリード通路に電磁弁を設
けるだけなので、構造は極めて簡単であり、従って排気
ガス浄化装置の信禎性を向上することができる。また、
機関シリンダ内に供給される混合気の空燃比が滑らかに
変動せしめられるので安定した燃焼を確保することがで
きる。更に、通常H4繁に使用される運転領域において
は空燃比が増大せしめられるので燃料消費率を向上する
ことができる。
As described above, according to the present invention, exhaust gas can be effectively purified using an inexpensive carburetor without using an expensive oxygen concentration detector or an expensive electronic control unit for air-fuel ratio control. (manufacturing cost) f can be greatly reduced. Furthermore, since only a solenoid valve is provided in the air bleed passage, the structure is extremely simple, and therefore the reliability of the exhaust gas purification device can be improved. Also,
Since the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder is smoothly varied, stable combustion can be ensured. Furthermore, since the air-fuel ratio is increased in the operating range where H4 is frequently used, the fuel consumption rate can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は排気ガス浄化効率を示す線図、第2図は機関吸
排気系の側面断面図、第3図は第2図の矢印璽に沿って
みた平面図、第4図はサクションピストンの側面断面図
、第5図は空燃比の変動を示す線図である。 2・・・・・・気化器、8・・・・・・サクシジンピス
トン、30・・・・・・バイパス通路、34・・・・・
・補助燃料通路、40 ・・・・リニアソレノイド弁。 特許出願人 トヨタ自動車株式会社 番 特許出願代理人 弁理士 青 木    朗 弁理士 西 舘 和 之 弁理士 中  山 恭 介 弁理士 山 口 昭 之
Figure 1 is a diagram showing exhaust gas purification efficiency, Figure 2 is a side sectional view of the engine intake and exhaust system, Figure 3 is a plan view taken along the arrow mark in Figure 2, and Figure 4 is a diagram of the suction piston. The side sectional view, FIG. 5, is a diagram showing variations in the air-fuel ratio. 2... Carburizer, 8... Sucsidine piston, 30... Bypass passage, 34...
・Auxiliary fuel passage, 40...Linear solenoid valve. Patent Applicant Toyota Motor Corporation Number Patent Application Agent Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney Kyo Nakayama Patent Attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] 機関吸気通路に可変ペンチエリ型気化器を取付けると共
に機関排気通路に三元触媒コンバータを取付け、該気化
器がサクションピストンに固定されたニードルと、該ニ
ードルが侵入する燃料通路と、該燃料通路内に設けられ
てニードルと協働する計量ジェットを具備した内燃機関
において、上記計量ジェット上流の燃料通路と計量ジェ
ット下流の燃料通路とを連結するバイパス通路を設ける
と共に該バイパス通路を補助燃料通路を介して計量ジェ
ット−E流の燃料通路に連結し、該補助燃料通路内に補
助燃料通路をほぼ11(Zから2Hzの一定周波数で開
閉する電磁弁を設け、該電磁弁を開閉した際に空燃比が
平均値に対してほぼ±0.2から±1.0の間で周期的
に変動すると共に防空燃比の平均値がほぼ理論空燃比と
なるように電磁弁の開口面積を定めだ内燃機関の排気ガ
ス浄化装置L
A variable Pentieri type carburetor is installed in the engine intake passage, and a three-way catalytic converter is installed in the engine exhaust passage. An internal combustion engine having a metering jet provided and cooperating with a needle, wherein a bypass passage is provided connecting a fuel passage upstream of the metering jet and a fuel passage downstream of the metering jet, and the bypass passage is connected via an auxiliary fuel passage. The auxiliary fuel passage is connected to the metering jet-E fuel passage, and the auxiliary fuel passage is provided with a solenoid valve that opens and closes at a constant frequency of approximately 11 (Z to 2 Hz), and when the solenoid valve is opened and closed, the air-fuel ratio changes. The opening area of the solenoid valve is determined so that the air-fuel ratio periodically fluctuates between approximately ±0.2 and ±1.0 with respect to the average value, and the average value of the air-fuel ratio is approximately the stoichiometric air-fuel ratio. Gas purification device L
JP13738082A 1982-08-09 1982-08-09 Purifier for exhaust gas of internal combustion engine Pending JPS5928013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13738082A JPS5928013A (en) 1982-08-09 1982-08-09 Purifier for exhaust gas of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13738082A JPS5928013A (en) 1982-08-09 1982-08-09 Purifier for exhaust gas of internal combustion engine

Publications (1)

Publication Number Publication Date
JPS5928013A true JPS5928013A (en) 1984-02-14

Family

ID=15197328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13738082A Pending JPS5928013A (en) 1982-08-09 1982-08-09 Purifier for exhaust gas of internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5928013A (en)

Similar Documents

Publication Publication Date Title
US3942493A (en) Fuel metering system
JPS5928013A (en) Purifier for exhaust gas of internal combustion engine
JPS597723A (en) Exhaust gas purifier of internal-combustion engine
JPS5934456A (en) Exhaust gas purifier for internal combustion engine
JPS5910724A (en) Exhaust emission control device for internal-combustion engine
JPS5934468A (en) Exhaust gas purifier for internal combustion engine
JPS5912114A (en) Exhaust gas purifying device of internal combustion engine
JPS5910725A (en) Exhaust gas purifying device for internal-combustion engine
JPS5993950A (en) Exhaust-gas purifier for internal-combustion engine
JPS5934461A (en) Exhaust gas purifier for internal combustion engine
JPS5934452A (en) Exhaust gas purifier for internal combustion engine
JPS5915620A (en) Exhaust gas purifier of internal-combustion engine
JPS597724A (en) Exhaust gas purifier of internal-combustion engine
JPS5993951A (en) Exhaust-gas purifier for internal-combustion engine
JPS5934466A (en) Exhaust gas purifier for internal combustion engine
JPS5996425A (en) Exhaust gas purifying device of internal-combustion engine
JPS5934458A (en) Exhaust gas purifier for internal combustion engine
JPS5934462A (en) Exhaust gas purifier for internal combustion engine
JPS5993952A (en) Exhaust-gas purifier for internal-combustion engine
JPS5934457A (en) Exhaust gas purifier for internal combustion engine
JPS5996422A (en) Exhaust gas purifying device of internal-combustion engine
JPS5934455A (en) Exhaust gas purifier for internal combustion engine
JPS59101529A (en) Exhaust gas purging device of internal-combustion engine
JPS5934460A (en) Exhaust gas purifier for internal combustion engine
JPS5996420A (en) Exhaust gas purifying device of internal-combustion engine