JPS5996237A - Copper alloy for welded tube - Google Patents

Copper alloy for welded tube

Info

Publication number
JPS5996237A
JPS5996237A JP20456182A JP20456182A JPS5996237A JP S5996237 A JPS5996237 A JP S5996237A JP 20456182 A JP20456182 A JP 20456182A JP 20456182 A JP20456182 A JP 20456182A JP S5996237 A JPS5996237 A JP S5996237A
Authority
JP
Japan
Prior art keywords
alloy
corrosion resistance
welded tube
welded
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20456182A
Other languages
Japanese (ja)
Other versions
JPS6056775B2 (en
Inventor
Susumu Kawauchi
川内 進
Masahiro Tsuji
正博 辻
Kiyoaki Nishikawa
西川 清明
Junji Miyake
淳司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP20456182A priority Critical patent/JPS6056775B2/en
Priority to EP19830111619 priority patent/EP0111770B1/en
Priority to DE8383111619T priority patent/DE3362354D1/en
Publication of JPS5996237A publication Critical patent/JPS5996237A/en
Publication of JPS6056775B2 publication Critical patent/JPS6056775B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE:To obtain a Cu alloy for a welded tube having superior corrosion resistance at its weld zone and low weld crack sensitivity by adding specified amounts of Zn, P, Sn and Al to Cu. CONSTITUTION:A Cu alloy for a welded tube is composed of, by weight 25-40% Zn, 0.005-0.070% P, 0.015-1.0% Sn, 0.05-1.0% Al and the balance Cu. The grain size of the alloy is regulated to <= about 0.015mm. by final annealing. When a thin-walled welded tube or the like is manufactured by high-frequency resistance or induction welding using the resulting alloy, a product having superior corrosion resistance at its weld zone and causing hardly weld crack can be obtd.

Description

【発明の詳細な説明】 本発明は優れた耐食性、耐溶接割れ性を有する溶接管用
銅合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a copper alloy for welded pipes having excellent corrosion resistance and weld cracking resistance.

近年薄肉の銅合金管は高周波抵抗溶接もしくは高周波誘
導溶接による溶接管が用いられる様になってきた。この
傾向は特にラジェーターに使用されているチューブにつ
いて顕著である。
In recent years, thin-walled copper alloy pipes have come to be welded by high-frequency resistance welding or high-frequency induction welding. This tendency is particularly noticeable for tubes used in radiators.

従来ラジェーターにはロックシームチューブが使用され
てきたが、コスト低減と生産効率の上昇の要求から高周
波抵抗溶接もしくは高周波誘導溶接による溶接チューブ
が採用される様になりつつある。しかしながら銅合金溶
接管はその溶接組織の特異性から、その溶接部は他の部
分と比較して耐食性が大巾に劣るという欠点を持ってい
る。このことは、近年の使用環境の悪化等から考えると
釣合全溶接管の使用上の大きな制約となる。さら建は例
合金溶接管の製造の際に溶接方法として筒周波誘導溶接
もしくは高周波抵抗溶接を用いた場合、その溶接方法の
特徴から特に溶接割れを発生しやすいという製造上の難
点を持っている。この様な状況から溶接部の耐食性が侵
れ、かつ溶接割れ感受性の低い材料が要求されている。
Traditionally, lock-seam tubes have been used for radiators, but due to demands for cost reduction and increased production efficiency, welded tubes made by high-frequency resistance welding or high-frequency induction welding are increasingly being adopted. However, copper alloy welded pipes have the disadvantage that the welded part has significantly lower corrosion resistance than other parts due to the uniqueness of its welded structure. This is a major constraint on the use of balanced fully welded pipes, considering the deterioration of the usage environment in recent years. For example, when cylindrical frequency induction welding or high frequency resistance welding is used as a welding method when manufacturing alloy welded pipes, due to the characteristics of the welding method, weld cracking is particularly likely to occur. . Under these circumstances, there is a demand for materials that have low corrosion resistance in welded parts and are less susceptible to weld cracking.

本発明は、この様な状況をうみて研究を行なった結果、
亜鉛25〜40 wt係、りん0.005〜0.07 
Owt係、錫0.05〜1. Owt係、アルミニウム
[105〜1. Owt%を含み残部銅及び不可避的な
不純物よりなる耐食性を向上さぜた溶接管用銅合金及び
亜鉛25〜40 wt% 、りんo、oos〜0.07
0 wt% 、 /14 G、 05〜1. Owt%
 、アルミニウム0.05〜1. Owt4を含み残部
銅及び不可避的な不純物よりなる最終焼鋪で結晶粒度が
0.015n+m以下となる様に調整された耐食性を向
上させ、かつ耐溶接割れ性の向上した溶接管用鋼合金を
開発した。
The present invention was developed as a result of research conducted in light of this situation.
Zinc 25-40 wt, phosphorus 0.005-0.07
Owt section, tin 0.05~1. Owt section, aluminum [105-1. Copper alloy for welded pipes with improved corrosion resistance consisting of Owt% and balance copper and unavoidable impurities and zinc 25-40wt%, phosphorus o, oos~0.07
0 wt%, /14 G, 05-1. Owt%
, aluminum 0.05-1. We have developed a steel alloy for welded pipes with improved corrosion resistance and improved weld cracking resistance, which is adjusted so that the grain size is 0.015n+m or less in the final annealing, which contains Owt4 and the balance is copper and unavoidable impurities. .

本発明の溶接管用銅合金における合金成分についてその
作用と添加−二及び結晶粒度の限定理由について説明す
る。
The effects and additions of the alloy components in the copper alloy for welded pipes of the present invention and reasons for limiting the crystal grain size will be explained.

銅と亜鉛は本発明合金の基本材料となるもので、耐食性
、加工性1機械的強度に優れていると共に熱伝導性にも
優れている。亜鉛添加量を上記範囲に限定した理由は、
亜鉛が25 wt%未満では加工性が悪くなること及び
亜鉛が4哩wt%を越えると銅−亜鉛合金におけるβ相
の析出がみられ、耐食性及び冷間加工性が悪くなるため
である。りんの添加量をo、 o o s〜0.070
 Wtqbとする理由は、りんの添加量が0.005 
wt係未満では耐食性の向上がみられず、また0、 0
70 w14を越えると耐食・注は向上するが粒界腐食
の徴候が見られるためでちる。錫の添加量をα05〜1
、Owt係とする理由は、(口の添加量が0.05 w
tφ未貴では耐食性の向上、特に溶接した場合溶接部の
耐食性の向上がみられず、また1、 Owt%を越える
と耐食性向上の効果が飽和するだめである。アルミニウ
ムの添加量を0.05〜t o wt%とする理由は、
アルミニウムの添加量がQ、05wt%未溝では耐食性
、特に溶接した場合溶接部の耐食性の向上がみられず、
また1、 Owt96を越えると耐食性向上の効果が飽
和するためである。
Copper and zinc are the basic materials of the alloy of the present invention, and have excellent corrosion resistance, workability, mechanical strength, and thermal conductivity. The reason why the amount of zinc added was limited to the above range was as follows.
This is because if the zinc content is less than 25 wt%, workability deteriorates, and if the zinc content exceeds 4 wt%, precipitation of β phase is observed in the copper-zinc alloy, resulting in poor corrosion resistance and cold workability. The amount of phosphorus added is o, o o s~0.070
The reason for choosing Wtqb is that the amount of phosphorus added is 0.005.
No improvement in corrosion resistance was observed below the wt ratio, and 0, 0
If it exceeds 70 W14, the corrosion resistance will improve, but signs of intergranular corrosion will be seen. The amount of tin added is α05~1
, the reason why it is in charge of Owt is (the amount of addition is 0.05 w
With tφ Miki, there is no improvement in corrosion resistance, especially in the welded parts when welded, and if it exceeds 1.0% by weight, the effect of improving corrosion resistance is saturated. The reason why the amount of aluminum added is set to 0.05 to wt% is as follows.
When the amount of aluminum added is Q, 05wt%, no improvement in corrosion resistance, especially in the welded part, is observed when the groove is not grooved.
In addition, 1. This is because the effect of improving corrosion resistance is saturated when Owt exceeds 96.

以上の様にりんの添加によって素材に耐食性を付加し1
価とアルミニウムを添加することによって素材を溶接し
た場合の溶接部に耐食性を付加するものである。さらに
結晶粒度を0.015−以下に限定した理由について述
べる。
As mentioned above, the addition of phosphorus adds corrosion resistance to the material.
By adding aluminum and aluminum, corrosion resistance is added to the welded part when the materials are welded. Furthermore, the reason why the crystal grain size was limited to 0.015- or less will be described.

高周波誘導溶接もしくは高周波抵抗溶接によって起こる
溶接割れの原因について調査した結果1本発明者らは、
溶融した母材金属と接触していると粒界が脆化して軽い
衝撃を受けた場合に溶接割れが発生することを知見した
。そこでとの様な現象について調査を行なった結果、結
晶粒度の影響が犬きく、結晶粒度を小さくすることによ
りこの様な現象を大巾に抑制することができることを知
見した。
As a result of investigating the causes of weld cracking caused by high-frequency induction welding or high-frequency resistance welding, the present inventors found that:
It was discovered that the grain boundaries become brittle when in contact with molten base metal, and weld cracking occurs when subjected to a light impact. As a result of investigating such phenomena, we found that the effect of crystal grain size is significant and that such phenomena can be largely suppressed by reducing the crystal grain size.

結晶粒度を0.015+a以下に限定した理由は結晶粒
度が0.015 Tjnを越えると溶接割れが発生しゃ
すぐなるためである。
The reason why the grain size is limited to 0.015+a or less is that if the grain size exceeds 0.015 Tjn, weld cracking is likely to occur.

実施例 第1表に示す諸組成の合金を溶寒し熱間圧延及び適宜焼
きなましを加えなから冷間圧延によシ1覇厚さの板とし
、最終的に種々の己度で坑きなましを加えたのち試験に
供した。耐食性試敗に供する溶接部材は第1表に示す諸
組成の1調厚さの合金を突き合せT工G溶接することに
よって作製した。耐食性試験は1tの水に炭酸水素ナト
リウム  1.59/を 硫酸ナトリウム  j、 5 f/1 塩化ナトリウム  1.69/l を各々溶かした液を液温88℃に保持し毎分100ゴの
空気を吹き込み、この液の中に240時間没潰した。そ
の時発生した脱亜鉛腐食深さを溶接部及び母材部につい
て測定し、これをもって耐食性を評価した。その結果を
第2表に示した。
Examples Alloys having the various compositions shown in Table 1 were melted and cooled, hot-rolled and appropriately annealed, and then cold-rolled into plates with a thickness of 1 mm, and finally drilled to various degrees. After adding salt, it was tested. The welded parts to be subjected to the corrosion resistance test were fabricated by butting T-welding and G-welding alloys having the compositions shown in Table 1 and having one thickness. The corrosion resistance test was carried out by dissolving 1.59/l of sodium bicarbonate, 1.59/l of sodium sulfate, and 1.69/l of sodium chloride in 1 ton of water, maintaining the liquid temperature at 88°C, and blowing air at 100 g/min. It was blown into the solution and submerged in this solution for 240 hours. The depth of dezincification corrosion that occurred at that time was measured for the welded part and the base metal part, and the corrosion resistance was evaluated based on this. The results are shown in Table 2.

溶融した母材金属と接触した場合に粒界が脆化して溶接
割れの発生に対する耐性についての試几tは第1表に示
す諸組成の1哩厚さの合金をt、¥1図に示される様に
パイプ状に加工し、これを同一組成のD点+50℃に保
持された溶融今月に3秒間浸漬し、その後取り出して保
持炉中で付楚している金属が溶励している状態で第2図
の様に膀f?を加えた。その時変形したリングの断面を
検微使によって観察し1粒界破壊の有無を確認し、これ
をもって溶接割れに対する耐性を評価した。その結果を
第3表に示した。
A test sample for resistance to weld cracking caused by embrittlement of grain boundaries when in contact with molten base metal, t, is shown in Figure 1 for a 1-meter thick alloy with the various compositions shown in Table 1. It is processed into a pipe shape so that it is melted, and then immersed in a molten metal having the same composition held at point D + 50℃ for 3 seconds, and then taken out and placed in a holding furnace so that the metal being cleaned is molten. So, as shown in Figure 2, is the bladder f? added. The cross section of the ring deformed at that time was observed with a microscope to confirm the presence or absence of single grain boundary fracture, and this was used to evaluate resistance to weld cracking. The results are shown in Table 3.

第2表、第6表かられかる様に本発明合金は脱亜鉛腐食
に対して母材、溶接部とも優れた耐食性を有し、かつ耐
溶接割れ性が改、苫されることが判明した。
As shown in Tables 2 and 6, it was found that the alloy of the present invention has excellent corrosion resistance against dezincification corrosion in both the base metal and the welded part, and the weld cracking resistance has been improved. .

すなわち、比較合金(試料番号1〜6.19〜21)で
は、母材部で70〜125μ、溶接部で165〜413
μに達するのに対し1本発明合金(試料番号4〜18)
は、母材部で最低値8μ〜最高値15μ、溶接部で最低
値15μ〜最高僅63μであり、耐脱亜鉛腐食に優れて
いることが分る。
That is, in the comparative alloys (sample numbers 1 to 6.19 to 21), the base metal part had a diameter of 70 to 125μ, and the weld part had a diameter of 165 to 413μ.
1 invention alloy (sample numbers 4 to 18)
The minimum value of 8μ to the maximum value of 15μ in the base metal part, and the minimum value of 15μ to only 63μ in the welded part, indicating that the dezincification corrosion resistance is excellent.

才だ第5表に示すように耐脱亜鉛腐食に優れた本発明合
金の中でも結晶粒度が0.015m以下のものは結晶粒
度が0.015圏を越えるものと比較して溶融した母材
金属と接触した場合に衝撃を加えた時粒界破壊を起こさ
ず粒界脆化を起こしに〈〈耐溶接割れ性に優れているこ
とが分る。
As shown in Table 5, among the alloys of the present invention with excellent dezincification corrosion resistance, those with a grain size of 0.015 m or less have a higher resistance to molten base metal than those with a grain size of more than 0.015 m. It can be seen that the material has excellent weld cracking resistance because it does not cause intergranular fracture but grain boundary embrittlement when impact is applied when it comes into contact with the material.

第1表 (単位wt%) 第  2  表 ’jrJ 3表Table 1 (Unit wt%) Table 2 'jrJ Table 3

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶接割れ性の試験に供するパイプの断面図、第
2図は加熱保持炉内で、重量物を落下させ、パイプの溶
接割れ性の試験を行う装皿の概略説明図である。 1・・・・・・・・・試験用パイプ 2・・・・・・・・・支持台 3・・・・・・・・・落下重セ・物(200S’w )
4・・・・・・・・加熱保持炉 a・・・・・・・・内 径(20a+)b・・・・・・
・・・外 径(22r−Jn)C・・・・・・・・・自
由落下距!’J(50+r、g)d・・・・・・・・・
落下方向 特許出願人 日本鉱県株式会社 代理人 弁理士(7569)並用啓志 第11ユニ う、二、 2i−、=
FIG. 1 is a sectional view of a pipe to be subjected to a weld crackability test, and FIG. 2 is a schematic explanatory diagram of a plate for testing the weld crackability of a pipe by dropping a heavy object in a heating and holding furnace. 1... Test pipe 2... Support stand 3... Falling heavy object (200S'w)
4・・・・・・Heating and holding furnace a・・・・・・Inner diameter (20a+)b・・・・・・
...Outer diameter (22r-Jn)C...Free fall distance! 'J(50+r,g)d・・・・・・・・・
Fall Direction Patent Applicant Nippon Koken Co., Ltd. Agent Patent Attorney (7569) Keishi Junyo 11th Uni U, 2, 2i-, =

Claims (2)

【特許請求の範囲】[Claims] (1)  亜鉛2525−4o%、りんQ、OO5〜1
1070wt係、錫0.05〜1. Owtφ、アルミ
ニウム0.05〜1. Owt係を含み残部錦及び不可
避的外不純物よりなる溶接管用銅合金。
(1) Zinc 2525-4o%, phosphorus Q, OO5-1
1070wt, tin 0.05~1. Owtφ, aluminum 0.05-1. A copper alloy for welded pipes, which contains Owt and the remainder is brocade and unavoidable external impurities.
(2)最終焼鈍で結晶粒度が0.015ai以下となる
様に調整された亜鉛25〜40wt係、りん0、.00
5〜0.07’Owt係、錫0.05〜1. Owt先
7 /L/ミニウム0.05〜t o wt%を含み残
部鋸及び不可避的な不純物よりなる溶接管用銅合金。
(2) Zinc 25-40wt, phosphorus 0, . 00
5~0.07'Owt, tin 0.05~1. Copper alloy for welded pipes containing 0.05 to 0 wt% of Owt tip 7/L/minium and the remainder consisting of sawdust and unavoidable impurities.
JP20456182A 1982-11-24 1982-11-24 Copper alloy for welded pipes Expired JPS6056775B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP20456182A JPS6056775B2 (en) 1982-11-24 1982-11-24 Copper alloy for welded pipes
EP19830111619 EP0111770B1 (en) 1982-11-24 1983-11-21 Copper alloy for welded tubes
DE8383111619T DE3362354D1 (en) 1982-11-24 1983-11-21 Copper alloy for welded tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20456182A JPS6056775B2 (en) 1982-11-24 1982-11-24 Copper alloy for welded pipes

Publications (2)

Publication Number Publication Date
JPS5996237A true JPS5996237A (en) 1984-06-02
JPS6056775B2 JPS6056775B2 (en) 1985-12-11

Family

ID=16492508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20456182A Expired JPS6056775B2 (en) 1982-11-24 1982-11-24 Copper alloy for welded pipes

Country Status (3)

Country Link
EP (1) EP0111770B1 (en)
JP (1) JPS6056775B2 (en)
DE (1) DE3362354D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480987A (en) * 2013-09-26 2014-01-01 郑州机械研究所 Preparation method for high-fragility copper-zinc welding wires/welding lugs

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR894529A (en) * 1939-05-30 1944-12-27 Copper alloy
GB1170125A (en) * 1966-03-01 1969-11-12 Olin Mathieson Copper Base Alloys
DE2353238C2 (en) * 1973-10-24 1975-09-11 Wieland-Werke Ag, 7900 Ulm Use of a phosphorus-containing brass alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480987A (en) * 2013-09-26 2014-01-01 郑州机械研究所 Preparation method for high-fragility copper-zinc welding wires/welding lugs

Also Published As

Publication number Publication date
DE3362354D1 (en) 1986-04-03
EP0111770A1 (en) 1984-06-27
EP0111770B1 (en) 1986-02-26
JPS6056775B2 (en) 1985-12-11

Similar Documents

Publication Publication Date Title
JP3794971B2 (en) Copper alloy tube for heat exchanger
JPS5996237A (en) Copper alloy for welded tube
JPH07166271A (en) Copper alloy excellent in resistance to ant-lair-like corrosion
JPH07166270A (en) Copper alloy excellent in resistance to ant-lair-like corrosion
JPS60138033A (en) Copper alloy having excellent corrosion resistance
JPS6217018B2 (en)
JPS60138034A (en) Copper alloy having superior corrosion resistance
JPS59153856A (en) Copper alloy with superior corrosion resistance
JPS59126742A (en) Copper alloy for welded pipe
JPS59179744A (en) Copper alloy for welded tube
JPS59150045A (en) Copper alloy with superior corrosion resistance
JPS6230862A (en) Manufacture of copper alloy having superior corrosion resistance
JPS59126741A (en) Copper alloy for welded pipe
JPS59118842A (en) Copper alloy with superior corrosion resistance
JPS59126743A (en) Copper alloy for welded pipe
JPS646265B2 (en)
JPS59118841A (en) Copper alloy having excellent corrosion resistance
JPS59153854A (en) Copper alloy with superior corrosion resistance
JPS61199043A (en) Copper alloy having superior corrosion resistance and its manufacture
JP3046932B2 (en) Corrosion-resistant copper alloy with excellent hot ductility and resistance to annealing brittleness
JPS59100245A (en) Copper alloy with superior corrosion resistance
JPS59118843A (en) Copper alloy for welded pipe
JPS6311598B2 (en)
JPS6082635A (en) Copper alloy having superior corrosion resistance
JPS6082634A (en) Copper alloy having superior corrosion resistance