JPS59126743A - Copper alloy for welded pipe - Google Patents

Copper alloy for welded pipe

Info

Publication number
JPS59126743A
JPS59126743A JP47583A JP47583A JPS59126743A JP S59126743 A JPS59126743 A JP S59126743A JP 47583 A JP47583 A JP 47583A JP 47583 A JP47583 A JP 47583A JP S59126743 A JPS59126743 A JP S59126743A
Authority
JP
Japan
Prior art keywords
alloy
copper alloy
corrosion resistance
resistance
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP47583A
Other languages
Japanese (ja)
Inventor
Susumu Kawauchi
川内 進
Masahiro Tsuji
正博 辻
Michiharu Yamamoto
山本 道晴
Kiyoaki Nishikawa
西川 清明
Riyouichi Nobuyoshi
延吉 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP47583A priority Critical patent/JPS59126743A/en
Publication of JPS59126743A publication Critical patent/JPS59126743A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To obtain a Cu alloy for a welded pipe with superior corrosion resistance and weld crack resistance at the weld zone by adding specified percentages of Zn and P to Cu. CONSTITUTION:A Cu alloy consisting of 25-40wt% Zn, 0.005-0.070wt% P and the balance Cu with inevitable impurities is prepd. so that the grain size is regulated to 0.015mm. by final annealing. A Cu alloy for a welded pipe with improved corrosion resistance and weld crack resistance is obtd.

Description

【発明の詳細な説明】 本発明は優れた溶接部の耐食性及び耐溶接割れ性を有す
る溶接管用銅合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a copper alloy for welded pipes having excellent corrosion resistance and weld cracking resistance in welded parts.

近年薄肉の銅合金管は高周波抵抗溶接、もしくは高周波
誘導溶接による溶接管が用いられるようになってきた。
In recent years, thin-walled copper alloy pipes have come to be welded by high-frequency resistance welding or high-frequency induction welding.

この傾向は特にラジェーター用チューブについて顕著で
ある。
This tendency is particularly remarkable for radiator tubes.

従来ラジェーターにはロックシームチューブが使用され
てきたが、コスト低減と生産効率の上昇の要求から、高
周波抵抗溶接もしくは高周波誘導溶接による溶接チュー
ブが採用されるようになりつつある。しかしながら銅合
金溶接管はその溶接組織の特異性からその溶接部は他の
部分と比較して耐食性が大幅に劣るという欠点を持って
いる。このことは近年の使用環境の悪化等から考えると
銅合金溶接管の使用上の大きな制約となる。
Traditionally, lock-seam tubes have been used for radiators, but due to demands for cost reduction and increased production efficiency, welded tubes made by high-frequency resistance welding or high-frequency induction welding are increasingly being adopted. However, copper alloy welded pipes have the disadvantage that the welded part has significantly lower corrosion resistance than other parts due to the uniqueness of its welded structure. Considering the deterioration of the usage environment in recent years, this is a major restriction on the use of copper alloy welded pipes.

さらには銅合金溶接管の製造の際に溶接方法として高周
波誘導溶接もしくは高周波抵抗溶接を用いた場合その溶
接方法の特徴から特に溶接割れを発生し易いという製造
上の難点を持っている。
Furthermore, when high-frequency induction welding or high-frequency resistance welding is used as a welding method when manufacturing copper alloy welded pipes, there is a manufacturing difficulty in that weld cracking is particularly likely to occur due to the characteristics of the welding method.

このような状況から溶接部の耐食性が優れ。Under these circumstances, the welded parts have excellent corrosion resistance.

かつ溶接割れ感受性の低い材料が要求されている。In addition, materials with low weld cracking susceptibility are required.

本発明はこのような状況を鑑みて研究を行なった結果、
亜鉛2525−4o%、  りんcL005〜0.07
0 wt%を含み、残部銅及び不可避的な不純物よりな
る耐食性を向上させた溶接管用銅合金、及び亜鉛25〜
40 wt係、りん0.005〜0.070 wt%を
含み、残部銅及び不可避的な不純物よりなり、最終焼鈍
で結晶粒度がα015頷以下となるように調整された耐
食性を向上させ、かつ耐溶接割れ性の向上した溶接管用
鋼合金を開発した。
The present invention was developed as a result of research conducted in view of these circumstances.
Zinc 2525-4o%, phosphorus cL005-0.07
Copper alloy for welded pipes with improved corrosion resistance, containing 0 wt% and the balance consisting of copper and unavoidable impurities, and zinc 25~
40 wt%, phosphorus 0.005 to 0.070 wt%, the balance is copper and unavoidable impurities, and the grain size is adjusted to α015 or less in the final annealing. We have developed a steel alloy for welded pipes with improved weld cracking resistance.

本発明の溶接管用銅合金における合金成分についてその
作用と添加量′及び結晶粒度の限定理由について説明す
る。
The effects of the alloying components in the copper alloy for welded pipes of the present invention, the amount added, and the reason for limiting the crystal grain size will be explained.

銅と亜鉛は本発明合金の基本材料となるもので、加工性
2機械的強度に優れていると共に。
Copper and zinc are the basic materials for the alloy of the present invention, and have excellent workability and mechanical strength.

熱伝導性にも優れている。亜鉛含有量を25〜40’w
t%とする理由は、亜鉛含有量が25 wt%未満では
加工性が悪くなること及び40.vyt%を越えると銅
−亜鉛合金におけるβ相の析出がみられ耐食性及び冷間
加工性が悪くなるためである。りん含有量を0.00’
5〜l 07 Owt係とする理由は、りん含有量がO
,OO5wt%未満では耐食性と〈K溶接した場合溶接
部の耐食性の向上がみられず、また0、 070 wt
%を越えると耐食性は向上するが粒界腐食の徴候がみら
れるためである。このようにりんを添加することにより
素材と溶接した場合の溶接部に耐食性を付加するもので
ある。さらに結晶粒度を0.015m+n以下に限定し
た理由について述べる。高周波誘導溶接もしくは高周波
抵抗溶接によって起こる溶接割れの原因について調査し
た結果2本発明者らは溶融した母材金属と接触している
と粒界が脆化して軽い衝撃を受けると溶接割れが発生す
ることを知見した。そこでこのような現象について調査
を行なった結果、結晶粒度の影響が大きく結晶粒度を小
さくすることにより、このような現象を大幅に抑制する
ことができることを知見した。
It also has excellent thermal conductivity. Zinc content 25-40'w
The reason why the zinc content is less than 25 wt% is that workability deteriorates and 40. This is because if the content exceeds vyt%, precipitation of β phase in the copper-zinc alloy will occur, resulting in poor corrosion resistance and cold workability. Phosphorus content 0.00'
5~l 07 The reason why it is classified as Owt is that the phosphorus content is O.
, 0.070 wt.
%, corrosion resistance improves, but signs of intergranular corrosion are seen. By adding phosphorus in this way, corrosion resistance is added to the welded part when welding with the raw material. Furthermore, the reason why the crystal grain size was limited to 0.015 m+n or less will be described. As a result of investigating the cause of weld cracking caused by high-frequency induction welding or high-frequency resistance welding, the inventors found that the grain boundaries become brittle when in contact with molten base metal, and weld cracking occurs when subjected to a light impact. I found out that. As a result of investigating such phenomena, it was found that the effect of crystal grain size is large and that such phenomena can be significantly suppressed by reducing the crystal grain size.

結晶粒度を0.015mm以下に限定した理由は。The reason why the crystal grain size was limited to 0.015 mm or less.

結晶粒度が0.015mを越えると溶接割れが発生しや
すくなるためである、 実施例 第1表に示す諸組成の合金を溶製し熱間圧延及び適宜焼
きなましを加えなから冷間圧延により1+mn厚さの板
とし、最終的に種々の温度で焼きなましを加えて第1表
に示される結晶粒度に調整して試験に供した。耐食性試
験に供する溶接部材は第1表に示す諸組成の1wn厚さ
の合金を突き合せT工G溶接することKよって製造した
。耐食性試験は1tの蒸留水に 炭酸水素ナトリウム   1.3y/を硫酸ナトリウム
  1.5 y7を 塩化ナトリウム  1./)r/z を各々溶かした液を液温88℃に保持し、毎分100m
/の空気を吹き込み、この液中に240時間浸漬した。
This is because weld cracking is likely to occur if the grain size exceeds 0.015 m.Alloys with the various compositions shown in Table 1 of Examples were melted, hot rolled and appropriately annealed, and then cold rolled to 1+ mn. The plates were made into plates of various thicknesses, and finally annealed at various temperatures to adjust the grain size shown in Table 1 and used for testing. The welded parts to be subjected to the corrosion resistance test were manufactured by butting 1wn thick alloys having the various compositions shown in Table 1 and welding them using T-welding and G-welding. Corrosion resistance test was carried out using 1 ton of distilled water, 1.3 y of sodium bicarbonate, 1.5 y of sodium sulfate, and 7 y of sodium chloride. /) The solution in which each of r/z was dissolved was maintained at a temperature of 88℃, and the speed was
/ of air was blown into the sample, and the sample was immersed in this liquid for 240 hours.

その時発生した最大脱亜鉛腐食深さを溶接部について測
定し、これをもって耐食性を評価した。その結果を第2
表に示した。
The maximum dezincification corrosion depth that occurred at that time was measured for the welded part, and the corrosion resistance was evaluated based on this. The second result is
Shown in the table.

溶融した母材金属と接触した場合に粒界が脆化して溶接
割れの発生に対する耐性についての試験舊第1表に示す
諸組成の1叫厚さの合金を第1図に示されるようにパイ
プ状に加工し、これを同一組成の融点+50’CK:保
持された溶融金属に3秒間浸漬し、その後取り出して保
持炉中で付着している金属が溶融している状態で第2図
のように衝撃を加えた。その時変形したパイプの断面を
顕微鏡によって観察し粒界破壊の有無を確認し、これを
もって溶接割れに対する耐性を評価した。その結果を第
3表に示した。
Test for resistance to weld cracking caused by embrittlement of grain boundaries when in contact with molten base metal.Alloys with the compositions shown in Table 1 and the thickness of 1.5 mm were made into pipes as shown in Figure 1. This is immersed in a molten metal of the same composition with a melting point + 50'CK: held for 3 seconds, and then taken out and placed in a holding furnace with the attached metal melted as shown in Figure 2. added a shock. The cross section of the deformed pipe was then observed under a microscope to confirm the presence or absence of intergranular fracture, and this was used to evaluate resistance to weld cracking. The results are shown in Table 3.

第2表、第3表かられかるように本発明合金は溶接部の
脱亜鉛腐食に対して優れた耐食性を有し、かつ耐溶接割
れ性が改善されることが判明した。
As can be seen from Tables 2 and 3, it was found that the alloys of the present invention have excellent corrosion resistance against dezincification corrosion of welded parts and have improved weld cracking resistance.

すなわち、比較合金(試料番号1〜5)では溶接部の最
大脱亜鉛腐食深さが321μ〜567μであるのに対し
2本発明合金(試料番号6〜15)では最大脱亜鉛腐食
深さが溶接部43μ〜97μであり1本発明合金の耐脱
亜鉛腐食性は著しぐ優れていることが分る。
That is, in the comparison alloys (sample numbers 1 to 5), the maximum dezincification corrosion depth at the weld zone was 321μ to 567μ, whereas in the two invention alloys (sample numbers 6 to 15), the maximum dezincification corrosion depth was at the weld zone. It can be seen that the dezincing corrosion resistance of the alloy of the present invention is extremely excellent.

また本発明合金は、上記のように耐脱亜鉛腐食性に優れ
ているが、さらに結晶粒度、が0.015第  2  
表 第3表
The alloy of the present invention has excellent dezincification corrosion resistance as described above, but also has a grain size of 0.015.
Table 3

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐溶接割れ性の試験に用いる厚さ1調の合金パ
イプの断面図、第2図は耐溶接割れ性試験装置の概略説
明図である。 1°厚さ1+wの合金パイプ(長さ10窮)2: 自由
落下体(重量200 gw )5:支持台 4;加熱保持炉 a:パイプ内径(c120mm) b:パイプ外径(饅22m+) C:落下体2の落下距離(50+m) 特許出願人 日本鉱業株式会社 代理人 弁理士(7569)並川啓志 第2図
FIG. 1 is a cross-sectional view of an alloy pipe with a thickness of 1 used for the weld cracking resistance test, and FIG. 2 is a schematic explanatory diagram of the weld cracking resistance testing apparatus. 1° thickness 1+W alloy pipe (length 10mm) 2: Free falling object (weight 200 gw) 5: Support stand 4; Heating and holding furnace a: Pipe inner diameter (c 120 mm) b: Pipe outer diameter (rice cake 22 m+) C : Falling distance of falling object 2 (50+m) Patent applicant Nippon Mining Co., Ltd. Agent Patent attorney (7569) Keishi Namikawa Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)  亜鉛25〜40 wt% 、  りんo、 
o、 o s〜0.070wt%を含み、残部、銅及び
不可避的な不純物よりなる溶接管用銅合金。
(1) Zinc 25-40 wt%, phosphorus o,
A copper alloy for welded pipes containing from 0.070 wt% to 0.070 wt%, with the remainder consisting of copper and unavoidable impurities.
(2)  最終焼鈍で結晶粒度が0.01511111
以下なるように調整された亜鉛25〜40 vrt%、
りん0、 OO5〜0.070 wt係を含み、残部銅
及び不可避的な不純物よりなる溶接管用銅合金。
(2) Grain size is 0.01511111 in final annealing
Zinc 25-40 vrt%, adjusted to:
A copper alloy for welded pipes, containing 0% phosphorus, OO5~0.070 wt, and the remainder consisting of copper and unavoidable impurities.
JP47583A 1983-01-07 1983-01-07 Copper alloy for welded pipe Pending JPS59126743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP47583A JPS59126743A (en) 1983-01-07 1983-01-07 Copper alloy for welded pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP47583A JPS59126743A (en) 1983-01-07 1983-01-07 Copper alloy for welded pipe

Publications (1)

Publication Number Publication Date
JPS59126743A true JPS59126743A (en) 1984-07-21

Family

ID=11474801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP47583A Pending JPS59126743A (en) 1983-01-07 1983-01-07 Copper alloy for welded pipe

Country Status (1)

Country Link
JP (1) JPS59126743A (en)

Similar Documents

Publication Publication Date Title
JP3794971B2 (en) Copper alloy tube for heat exchanger
JPH03170646A (en) Manufacture of copper alloy having fine crystalline grains as well as low strength
JPS59126743A (en) Copper alloy for welded pipe
JPS59126742A (en) Copper alloy for welded pipe
JPS6217018B2 (en)
JP5639025B2 (en) Copper alloy tube
JPH04272148A (en) Heat resistant copper alloy for heat exchanger excellent brazability
JPS59118842A (en) Copper alloy with superior corrosion resistance
JPS59179744A (en) Copper alloy for welded tube
JPS59153856A (en) Copper alloy with superior corrosion resistance
JPS59153854A (en) Copper alloy with superior corrosion resistance
JPS59126741A (en) Copper alloy for welded pipe
JPS646265B2 (en)
JPS6082632A (en) Copper alloy having superior corrosion resistance
JPS59150045A (en) Copper alloy with superior corrosion resistance
JPS646266B2 (en)
JPS6056775B2 (en) Copper alloy for welded pipes
JPS59126744A (en) Copper alloy with superior corrosion resistance
JPS6082635A (en) Copper alloy having superior corrosion resistance
JP2014043622A (en) High-strength copper alloy tube
JP2011225989A (en) Copper alloy tube
JPS59118843A (en) Copper alloy for welded pipe
JPS61199043A (en) Copper alloy having superior corrosion resistance and its manufacture
JPS59150044A (en) Copper alloy with superior corrosion resistance
JPS59150046A (en) Copper alloy with superior corrosion resistance