JPS59118843A - Copper alloy for welded pipe - Google Patents

Copper alloy for welded pipe

Info

Publication number
JPS59118843A
JPS59118843A JP22666782A JP22666782A JPS59118843A JP S59118843 A JPS59118843 A JP S59118843A JP 22666782 A JP22666782 A JP 22666782A JP 22666782 A JP22666782 A JP 22666782A JP S59118843 A JPS59118843 A JP S59118843A
Authority
JP
Japan
Prior art keywords
alloy
welded
corrosion resistance
grain size
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22666782A
Other languages
Japanese (ja)
Inventor
Susumu Kawauchi
川内 進
Masahiro Tsuji
正博 辻
Kiyoaki Nishikawa
西川 清明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP22666782A priority Critical patent/JPS59118843A/en
Publication of JPS59118843A publication Critical patent/JPS59118843A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To obtain a Cu alloy for a welded pipe with superior corrosion resistance and weld crack resistance at the weld zone by adding specified amounts of Zn, P and Si to Cu and by regulating the grain size to a specified value or below by final annealing. CONSTITUTION:A Cu alloy ingot contg. 25-40% Zn, 0.005-0.70% P and 0.005- 1.0% Si is hot rolled, and it is cold rolled while suitably carrying out annealing. The grain size of the Cu alloy of the resulting plate is regulated to <=0.015mm. by final annealing. When the Cu alloy is formed into a pipe by welding, a welded Cu alloy pipe with superior corrosion resistance and weld crack resistance at the weld zone is obtd.

Description

【発明の詳細な説明】 本発明は優れた溶接部の耐食性.耐溶接割れ性を有する
溶接管用鋼合金に関するものである。
[Detailed Description of the Invention] The present invention provides excellent corrosion resistance of welded parts. This invention relates to a steel alloy for welded pipes that has weld cracking resistance.

近年薄肉の銅合金管は高周波抵抗溶接もし〈は高周波誘
導溶接による溶接管が用いられるようになつ面きた。こ
の傾向は特にラジエーターに使用されているチューブに
ついて顕著である。
In recent years, thin-walled copper alloy pipes have come to be welded by high-frequency resistance welding or high-frequency induction welding. This tendency is particularly noticeable for tubes used in radiators.

従来.ラジエーターにはロックシームチュープが使用さ
れてきたが,コスト低減と生産′効率の上昇の要求から
高周波抵抗溶接もしくは高周波誘導溶接による溶接チュ
ーブが採用されるようになりつつある。しかしながら銅
合金溶接管はその溶接組織の特異性からその溶接部は他
の部分と比較して耐食性が大巾に劣るということが従来
からいわれており,このことは近年の使用環境の悪化等
を考え合わせると銅合金溶接管の使用上の大き々制約と
なっている。さらには銅合金溶接管の製造の際に溶接法
として高周波誘導溶接もしくは高周波抵抗溶接を用いた
場合.溶接割れを発生しやすいという製造上の難点を持
っている。このような状況から溶接部の耐食性が優れ,
かつ溶接割れ感受性の低い材料が要求されている。
Conventional. Lock-seam tubes have been used for radiators, but due to demands for cost reduction and increased production efficiency, welded tubes made by high-frequency resistance welding or high-frequency induction welding are increasingly being used. However, due to the uniqueness of the welded structure of copper alloy welded pipes, it has been said that the corrosion resistance of the welded part is significantly inferior to that of other parts, and this has been caused by the deterioration of the usage environment in recent years. Taken together, these are major constraints on the use of copper alloy welded pipes. Furthermore, when high-frequency induction welding or high-frequency resistance welding is used as a welding method when manufacturing copper alloy welded pipes. It has a manufacturing drawback in that it is prone to weld cracking. Under these circumstances, the welded parts have excellent corrosion resistance,
In addition, materials with low weld cracking susceptibility are required.

本発明は,このような状況を鑑みて研究を行なった結果
,亜鉛25〜4 0 wt係.りん0.005〜0. 
7 0h% ,ケイ素0. 0 0 5〜1. O w
t係を含み、残部銅及び不可避的な不純物よりなる耐食
性を向上させた溶接管用銅合金及び亜鉛25〜40 w
t係、りん0.005〜0.70 wt係、ケイ素00
05〜1. Owt%を含み、残部銅及び不可避的な不
純物よりなる最終焼鈍で結晶粒度が0.015wn以下
となるように調整された耐食性を向上させ、かつ耐溶接
割れ性の向上した溶接管用銅合金を開発した。
The present invention was developed as a result of research conducted in view of these circumstances. Phosphorus 0.005-0.
70h%, silicon 0. 0 0 5~1. Ow
Copper alloy for welded pipes and zinc 25 to 40 w with improved corrosion resistance, including T-copper and the remainder copper and unavoidable impurities
T factor, phosphorus 0.005-0.70 wt factor, silicon 00
05-1. Developed a copper alloy for welded pipes with improved corrosion resistance and improved weld cracking resistance, which is adjusted so that the grain size is 0.015wn or less in the final annealing, which contains copper and unavoidable impurities. did.

本発明の溶接管用銅合金における合金成分について、そ
の作用と添加量及び結晶粒度の限定理由について説明す
ると、銅と亜鉛は本発明合金の基本材料と々るので耐食
性、加工性2機械的強度に優れていると共に熱伝導性に
も優れている。亜鉛添加量を上記範囲に限定した理由は
Regarding the alloy components in the copper alloy for welded pipes of the present invention, their effects, addition amounts, and reasons for limiting the crystal grain size are explained. Copper and zinc are the basic materials of the present alloy, so they are important for corrosion resistance, workability, and mechanical strength. It also has excellent thermal conductivity. What is the reason for limiting the amount of zinc added to the above range?

亜鉛が25wt%未満では加工性が悪くなること及び亜
鉛が40 wt%を越えると銅−亜鉛合金におけるβ相
の析出がみられ、耐食性及び冷間加工性が悪くなるため
である。りんの添加量を0、005〜0.70 wt係
とする理由は、りんの添加前が0.005 wt%未満
では溶接した場合の溶接部の耐食性の向上がみられず、
また0、70wt%を越えると耐食性は向上するが粒界
腐食の徴候がみられるためである。ケイ素の添加量を0
005〜1. Owt%とする理由は、ケイ素の添加量
がCL OO5wt%未満では溶接した場合の溶接部の
耐食性の向上がみられず、結晶粒微細化の効果も得られ
ない。またケイ素の添加量が1. Owt%を越えると
耐食性の向上の効果が飽和し、結晶粒微細化の効果も飽
和し、加えて合金の製造性を著しく低下させるためであ
る。さらに結晶粒度を0.015mm以下に限定した理
由について述べる。高周波誘導溶接もしくは高周波抵抗
溶接によって起こる溶接割れの原因について調査した結
果1本発明者らは溶融した母材金属と接触していると粒
界が脆化して軽い衝撃を受けた場合に溶接割れが発生す
ることを知見した。そこでこのような現象について種々
の調査を行なった結果、結晶粒度の影響が大きく結晶粒
度を小さくすることによりこのような現象を大巾に抑制
することがヤきることを知見した。結晶粒度を0.01
5m+以下に限定した理由は、結晶粒度が0.015+
o+を越えると溶接割れが発生しやすくなるためである
This is because if the zinc content is less than 25 wt%, workability deteriorates, and if the zinc content exceeds 40 wt%, precipitation of β phase is observed in the copper-zinc alloy, resulting in poor corrosion resistance and cold workability. The reason why the amount of phosphorus added is set at 0.005 to 0.70 wt% is that if the amount of phosphorus added is less than 0.005 wt%, no improvement in the corrosion resistance of the welded part will be seen when welding.
Moreover, if the content exceeds 0.70 wt%, corrosion resistance improves, but signs of intergranular corrosion are observed. Addition of silicon to 0
005-1. The reason why it is set as Owt% is that if the amount of silicon added is less than 5wt% of CLOO, no improvement in the corrosion resistance of the welded part will be observed when welding, and no effect of grain refinement will be obtained. Also, the amount of silicon added is 1. This is because if the content exceeds Owt%, the effect of improving corrosion resistance is saturated, the effect of grain refinement is also saturated, and in addition, the manufacturability of the alloy is significantly reduced. Furthermore, the reason why the crystal grain size was limited to 0.015 mm or less will be described. As a result of investigating the causes of weld cracking caused by high-frequency induction welding or high-frequency resistance welding, the present inventors found that when in contact with molten base metal, the grain boundaries become brittle, and when subjected to a light impact, weld cracking occurs. We found that this occurs. As a result of conducting various investigations into such phenomena, it was discovered that the effect of crystal grain size is large and that such phenomena can be largely suppressed by reducing the crystal grain size. Grain size is 0.01
The reason for limiting it to 5m+ is that the crystal grain size is 0.015+
This is because if it exceeds o+, weld cracking is likely to occur.

実施例 第1表に示す諸組成の合金を溶製し、熱間圧延及び適宜
焼きな捷しを加えなから冷間圧延により1m厚さの板と
し、最終的に種々の温度で焼きなましを加えて第1表に
示される結晶粒度に調整して試験に供した。耐食性試験
に供する溶接部材は第1表に示す諸組成の1謳厚さの合
金を突き合せT工G溶接することによって製造した。耐
食性試験は1tの水に 炭酸水素ナトリウム   1、yst/を硫酸ナトリウ
ム  t s y/を 塩化ナトリウム  1.6 t/l を各々溶かした液を液温88℃に保持し、毎分100m
7!の空気を吹き込み、この液の中に240時間浸漬し
た。その時発生した最大の脱亜鉛腐食深さを溶接部につ
いて測定し、これをもって耐食性を評mR%、その結果
を第2表に示した。
Examples Alloys having the various compositions shown in Table 1 were melted, hot rolled and appropriately annealed, then cold rolled to form a 1 m thick plate, and finally annealed at various temperatures. The crystal grain size was adjusted to the one shown in Table 1 and subjected to the test. The welded parts to be subjected to the corrosion resistance test were manufactured by butt T welding of alloys of one thickness each having the various compositions shown in Table 1. Corrosion resistance test was carried out by dissolving 1 yst/l of sodium bicarbonate, 1.6 t/l of sodium sulfate, and 1.6 t/l of sodium chloride in 1 ton of water.
7! of air was blown into the sample, and the sample was immersed in this solution for 240 hours. The maximum dezincification corrosion depth that occurred at that time was measured for the welded part, and the corrosion resistance was evaluated based on this in mR%, and the results are shown in Table 2.

溶融した母材金属と接触した場合に粒界が脆化して溶接
割れの発生に対する耐性についての試験は第1表に示す
諸組成の1簡厚さの合金を第1図に示されるようにリン
グ状に加工し、これを同一組成の融点+50℃に保持さ
れた溶融金属に3秒間浸漬し、その後取り出して保持炉
中で付着している金属が溶融している状態で第2図のよ
うに衝撃を加えた。その時変形したリングの断面を顕微
鏡によって観察し粒界破壊の有無を確認し、これをもっ
て溶接割れに対する耐性を評価した。その結果を第6表
に示した。
A test for resistance to weld cracking caused by embrittlement of grain boundaries when in contact with molten base metal was carried out using alloys of one thickness and the compositions shown in Table 1 in a ring as shown in Figure 1. This is processed into a shape, immersed in molten metal of the same composition maintained at +50°C, melting point, for 3 seconds, and then taken out and placed in a holding furnace, with the attached metal melted, as shown in Figure 2. Added a shock. The cross section of the deformed ring was observed under a microscope to confirm the presence or absence of intergranular fracture, and this was used to evaluate resistance to weld cracking. The results are shown in Table 6.

第2表、第3表かられかるように本発明合金は脱亜鉛腐
食に対して溶接部は優れた耐食性を有し、かつ耐溶接割
れ性が改善されることが判明した。
As can be seen from Tables 2 and 3, it was found that the alloys of the present invention had excellent corrosion resistance in the welded areas against dezincification corrosion, and the weld cracking resistance was improved.

すなわち、比較合金(試料番号1〜5)では溶接部の最
大脱亜鉛腐食深さが240μ〜325μであるのに対し
9本発明合金(試料番号6〜15)では、最大脱亜鉛腐
食深さが溶接部で43μ〜83μであり2本発明合金の
耐脱亜鉛腐食は著しく優れていることが分る。
In other words, the maximum dezincification corrosion depth of the welded parts of the comparative alloys (sample numbers 1 to 5) is 240μ to 325μ, whereas the maximum dezincification corrosion depth of the nine invention alloys (sample numbers 6 to 15) is 240μ to 325μ. It can be seen that the welded portion has a resistance of 43μ to 83μ, which indicates that the dezincing corrosion resistance of the two invention alloys is extremely excellent.

寸だ本発明合金は上記のように耐脱亜鉛腐食性に優れて
いるが、さらに結晶粒度が0.015闇以下であるもの
(試料番号7〜10.14)は、第2図に示す溶接割れ
性のテストにおいて。
The alloys of the present invention have excellent dezincification corrosion resistance as described above, but those with a grain size of 0.015 mm or less (sample numbers 7 to 10.14) can be welded as shown in Figure 2. In crackability tests.

単に延性変形するのみで割れの発生がなく、溶接割れが
改善される。逆に結晶粒度が0.015咽を越えるもの
については粒界破壊を起こすので好ましくない。
There is no cracking due to only ductile deformation, and weld cracking is improved. On the other hand, a crystal grain size exceeding 0.015 mm is not preferable because it causes grain boundary destruction.

したがって結晶粒度の調整は管の用途に応じ実施例 以上本発明合金は、溶接管用銅合金として極めて優れた
特性を有するものである。
Therefore, the grain size is adjusted depending on the use of the pipe.The alloy of the present invention has extremely excellent properties as a copper alloy for welded pipes.

第1表 (単位wt係) 第  2  表 第  5  表Table 1 (Unit wt section) Table 2 Table 5

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐溶接割れ性の試験に用いる厚さ1胴の合金パ
イプの断面図、第2図は耐溶接割れ性試験装置の概略説
明図である。 1:厚さ1調の合金パイプ(長さ10+Wn)2: 自
由落下体(重量200gW) 3:支持台 4: 加熱保持炉 a: パイプ内径(g20閣) b: パーイブ外径(c322−) C: 落下体2の落下距離(50mm)特許出願人 日
本鉱業株式会社 代理人 弁理士(7569)並川啓志 手  続  補  正  書 昭和58年3月Jθ日 特許庁長官  若 杉 和 夫 殿 1、事件の表示 昭和57年特許願第226667号 2、発明の名称 溶接管用銅合金 五補正をする者 事件との関係  特許出願人 4、代 理 人 〒105  電話582−2111住
所 東京都港区虎ノ門二丁目10番1号日本鉱業株式会
社内 5、補正命令の日付  自発     8″−°−+6
、補正の対象 「明細書の発明の詳細な説明の欄」 Z補正の内容 (1)  明細書第6頁第4行に「°リング状に加工し
」とあるを、「パイプ状に加工しJと補正します。 (2)  同  第6頁第8〜9行に「リングの断面」
とあるを、「パイプの断面講と補正します。 (3)  同  第7頁第4行に「試料番号7〜10,
14Jとあるを、r試料番号7〜11,14Jと補正し
ます。
FIG. 1 is a cross-sectional view of an alloy pipe with a thickness of one body used in the weld cracking resistance test, and FIG. 2 is a schematic explanatory diagram of the weld cracking resistance testing apparatus. 1: Alloy pipe with thickness 1 (length 10+Wn) 2: Free falling body (weight 200gW) 3: Support stand 4: Heating and holding furnace a: Pipe inner diameter (g20) b: Purive outer diameter (c322-) C : Falling distance of falling object 2 (50 mm) Patent applicant: Japan Mining Co., Ltd. Patent attorney (7569) Keishite Namikawa Continued amendment Written by Jθ, March 1982, Commissioner of the Japan Patent Office Kazuo Wakasugi 1, of the case Indication Patent Application No. 226667 No. 2 of 1980, Relationship with the case of the person amending the name of the invention: Copper Alloy for Welded Pipe 5 Patent Applicant 4, Agent Address: 2-10 Toranomon, Minato-ku, Tokyo 105 Phone: 582-2111 Address: 2-10 Toranomon, Minato-ku, Tokyo No. 1 Japan Mining Co., Ltd. 5, date of amendment order Voluntary 8″−°−+6
, Target of amendment "Column for detailed explanation of the invention in the specification" Contents of Z amendment (1) In the fourth line of page 6 of the specification, the phrase "Processed into a ring shape" was replaced with "Processed into a pipe shape." Correct it to J. (2) “Cross section of the ring” on page 6, lines 8 to 9.
(3) In the 4th line of the 7th page of the same page, ``Sample numbers 7 to 10,
Correct 14J to r sample number 7-11, 14J.

Claims (2)

【特許請求の範囲】[Claims] (1)  亜鉛25〜4 0 wt係.りん0. 0 
0 5〜0.70wt% ,ケイ素0. 0 O 5 
〜1. O wt%を含み.残部鋼及び不可避的な不純
物よりなる溶接管用銅合金。
(1) Zinc 25-40 wt. Phosphorus 0. 0
05-0.70wt%, silicon 0. 0 O 5
~1. Contains O wt%. Copper alloy for welded pipes consisting of residual steel and unavoidable impurities.
(2)  最終焼鈍で結晶粒度が0. 0 1 5■以
下となるように調整された亜鉛25〜4 0 wt% 
,  りん0005〜0. 7 0 wt係,ケイ素0
005〜1.Owt%を含み,残部銅及び不可避的な不
純物よりなる溶接管用銅合金。
(2) The grain size is 0 in the final annealing. Zinc 25-40 wt% adjusted to be 0.15■ or less
, Rin0005~0. 7 0 wt, silicon 0
005-1. Copper alloy for welded pipes, containing 50% by weight and the balance consisting of copper and unavoidable impurities.
JP22666782A 1982-12-27 1982-12-27 Copper alloy for welded pipe Pending JPS59118843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22666782A JPS59118843A (en) 1982-12-27 1982-12-27 Copper alloy for welded pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22666782A JPS59118843A (en) 1982-12-27 1982-12-27 Copper alloy for welded pipe

Publications (1)

Publication Number Publication Date
JPS59118843A true JPS59118843A (en) 1984-07-09

Family

ID=16848767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22666782A Pending JPS59118843A (en) 1982-12-27 1982-12-27 Copper alloy for welded pipe

Country Status (1)

Country Link
JP (1) JPS59118843A (en)

Similar Documents

Publication Publication Date Title
JPS59118843A (en) Copper alloy for welded pipe
JPS59179745A (en) Copper alloy for welded tube
JPS59179744A (en) Copper alloy for welded tube
JPS59126742A (en) Copper alloy for welded pipe
JP6822563B2 (en) Ni-based alloy pipe for nuclear power
JPH04272148A (en) Heat resistant copper alloy for heat exchanger excellent brazability
JP3046932B2 (en) Corrosion-resistant copper alloy with excellent hot ductility and resistance to annealing brittleness
JPH07166271A (en) Copper alloy excellent in resistance to ant-lair-like corrosion
JPS59126743A (en) Copper alloy for welded pipe
JPS59100245A (en) Copper alloy with superior corrosion resistance
JPS6056775B2 (en) Copper alloy for welded pipes
JPS59126741A (en) Copper alloy for welded pipe
JPH11140572A (en) High strength aluminum alloy brazing sheet for heat exchanger excellent in intergranular corrosion resistance
JPS59118842A (en) Copper alloy with superior corrosion resistance
JPS60208458A (en) Mandrel alloy for piercing or expanding seamless steel pipe
JPS59150045A (en) Copper alloy with superior corrosion resistance
JPS59153856A (en) Copper alloy with superior corrosion resistance
US1848857A (en) of waterbury
US3528807A (en) Copper brazing alloy
JPS59153854A (en) Copper alloy with superior corrosion resistance
JPS59126744A (en) Copper alloy with superior corrosion resistance
JPS61199043A (en) Copper alloy having superior corrosion resistance and its manufacture
US1848858A (en) Louis p
JPS59126745A (en) Copper alloy with superior corrosion resistance
JPS59150044A (en) Copper alloy with superior corrosion resistance