JPS6056775B2 - Copper alloy for welded pipes - Google Patents

Copper alloy for welded pipes

Info

Publication number
JPS6056775B2
JPS6056775B2 JP20456182A JP20456182A JPS6056775B2 JP S6056775 B2 JPS6056775 B2 JP S6056775B2 JP 20456182 A JP20456182 A JP 20456182A JP 20456182 A JP20456182 A JP 20456182A JP S6056775 B2 JPS6056775 B2 JP S6056775B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
welded
copper alloy
welded pipes
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20456182A
Other languages
Japanese (ja)
Other versions
JPS5996237A (en
Inventor
進 川内
正博 辻
清明 西川
淳司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP20456182A priority Critical patent/JPS6056775B2/en
Priority to DE8383111619T priority patent/DE3362354D1/en
Priority to EP19830111619 priority patent/EP0111770B1/en
Publication of JPS5996237A publication Critical patent/JPS5996237A/en
Publication of JPS6056775B2 publication Critical patent/JPS6056775B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

【発明の詳細な説明】 本発明は優れた耐食性、耐溶接割れ性を有する溶接管
用銅合金に関するものてある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a copper alloy for welded pipes having excellent corrosion resistance and weld cracking resistance.

近年薄肉の銅合金管は高周波抵抗溶接もしくは高周波
誘導溶接による溶接管が用いられる様になつてきた。
In recent years, thin-walled copper alloy pipes have come to be welded by high-frequency resistance welding or high-frequency induction welding.

この傾向は特にラジエーターに使用されているチューブ
について顕著である。従来ラジエーターにはロツクシー
ムチユーブが使用されてきたが、コスト低減と生産効率
の上昇の要求から高周波抵抗溶接もしくは高周波誘導溶
接による溶接チューブが採用される様になりつつある。
しかしながら銅合金溶接管はその溶接組織の特異性から
、その溶接部は他の部分と比較して耐食性が大 巾に劣
るという欠点を持つている。このことは、近年の使用環
境の悪化等から考えると銅合金溶接管の使用上の大きな
制約となる。さらには銅合金溶接管の製造の際に溶接方
法として高周波誘導溶接もしくは高周波抵抗溶接を用い
た場合、その溶接方法の特徴から特に溶接割れを発生し
やすいという製造上の難点を持つている。この様な状況
から溶接部の耐食性が優れ、かつ溶接割れ感受性の低い
材料が要求されている。 本発明は、この様な状況を鑑
みて研究を行なつた結果、亜鉛25〜40Wt%、りん
0.005〜0.070Wt%、錫0.05〜1.0w
t%、アルミニウム0.05〜1.0wt%を含み残部
銅及び不可避的な不純物よりなる耐食性を向上させた溶
接管用銅合金及び亜鉛25〜40Wt%、りん0.00
5〜0.070Wt%、錫0.05〜1.0wt%、ア
ルミニウム0.05〜1.0Wt%を含み残部銅及び不
可避的な不純物よりなり結晶粒度がO、0l5Tfgf
&以下である耐食性及び耐溶接割れ性に優れた溶接管用
銅合金を開発した。
This tendency is particularly noticeable for tubes used in radiators. Conventionally, lock seam tubes have been used for radiators, but due to the demand for cost reduction and increased production efficiency, welded tubes made by high frequency resistance welding or high frequency induction welding are increasingly being adopted.
However, due to the uniqueness of the weld structure, copper alloy welded pipes have the disadvantage that the corrosion resistance of the welded part is significantly inferior to that of other parts. This is a major restriction on the use of copper alloy welded pipes, considering the deterioration of the usage environment in recent years. Furthermore, when high-frequency induction welding or high-frequency resistance welding is used as a welding method when manufacturing copper alloy welded pipes, there is a manufacturing difficulty in that weld cracking is particularly likely to occur due to the characteristics of the welding method. Under these circumstances, there is a demand for materials that have excellent corrosion resistance in welded parts and are low in susceptibility to weld cracking. The present invention was developed as a result of research conducted in view of the above situation.
Copper alloy for welded pipes with improved corrosion resistance, containing 0.05 to 1.0 wt% of aluminum and the balance copper and unavoidable impurities, and 25 to 40 wt% of zinc and 0.00 wt% of phosphorus.
5 to 0.070 wt%, tin 0.05 to 1.0 wt%, aluminum 0.05 to 1.0 wt%, the balance is copper and unavoidable impurities, crystal grain size is O, 0l5Tfgf
We have developed a copper alloy for welded pipes that has excellent corrosion resistance and weld cracking resistance.

なお、明細書中に記載さJれている結晶粒度は最終焼鈍
後の結晶粒度を意味 る。 本発明の溶接管用銅合金に
おける合金成分についてその作用と添加量及び結晶粒度
の限定理由について説明する。
Incidentally, the crystal grain size indicated by J in the specification means the crystal grain size after final annealing. The effects of the alloy components in the copper alloy for welded pipes of the present invention, the amount added, and the reason for limiting the crystal grain size will be explained.

銅と亜鉛は本発明合金の基本材料となるもので、加工性
、機械的強度に優れていると共に熱伝導性にも優れてい
る。
Copper and zinc are the basic materials of the alloy of the present invention, and have excellent workability, mechanical strength, and thermal conductivity.

亜鉛添加量を上記範囲に限定した理由は、亜鉛が25W
t%未満では加工性が悪くなること及び亜鉛が40Wt
%を越えると銅一亜鉛合金におけるβ相の析出がみられ
、耐食性及び冷間加工性が悪くなるためである。りんの
添加量を0.005〜0.070Wt%とする理由は、
りんの添加量が0.005Wt%未満では耐食性の向上
がみられず、また0.070wt%を越えると耐食性は
向上するが粒界腐食の徴候が見られるためである。錫の
添加量を0,05〜1.0Wt%とする理由は、錫の添
加量が0.05Wt%未満では耐食性の向上、特に溶接
した場合溶接部の耐食性の向上がみられず、また1.0
Wt%を越えると耐食性向上の効果が飽和するためであ
る。アルミニウムの添加量を0.05〜1.0Wt%と
する理由は、アルミニウムの添加量が0.05Wt%未
満では耐食性、特に溶接した場合溶接部の耐食性の向上
がみられず、また1.0Wt%を越えると耐食性向上の
効果が飽和するためである。以上の様にりんの添加によ
つて素材に耐食性を付加し、錫とアルミニウムを添加す
ることによつて素材を溶接した場合の溶接部に耐食性を
付加するものである。さらに結晶粒度を0.015TW
i以下に限定した理由について述べる。高周波誘導溶接
もしくは高周波抵抗溶接によつて起こる溶接割れの原因
について調査した結果、本発明者らは、溶融した母材金
属と接触している.と粒界が脆化して軽い衝撃を受けた
場合に溶接割れが発生することを知見した。
The reason why the amount of zinc added was limited to the above range is that zinc is 25W.
If it is less than t%, the workability will be poor and the zinc content will be 40Wt.
%, precipitation of β phase is observed in the copper-zinc alloy, resulting in poor corrosion resistance and cold workability. The reason why the amount of phosphorus added is 0.005 to 0.070 Wt% is as follows.
This is because if the amount of phosphorus added is less than 0.005 wt%, no improvement in corrosion resistance is observed, and if it exceeds 0.070 wt%, corrosion resistance is improved but signs of intergranular corrosion are observed. The reason why the amount of tin added is set to 0.05 to 1.0 Wt% is that if the amount of tin added is less than 0.05 Wt%, no improvement in corrosion resistance is observed, especially in the welded part when welded. .0
This is because when the content exceeds Wt%, the effect of improving corrosion resistance is saturated. The reason why the amount of aluminum added is set to 0.05 to 1.0 Wt% is that if the amount of aluminum added is less than 0.05 Wt%, no improvement in corrosion resistance, especially of the welded part when welded, is observed; %, the effect of improving corrosion resistance is saturated. As described above, by adding phosphorus, corrosion resistance is added to the material, and by adding tin and aluminum, corrosion resistance is added to the welded part when the materials are welded. Furthermore, the grain size was increased to 0.015TW.
The reason for limiting it to i or less will be explained. As a result of investigating the cause of weld cracking caused by high-frequency induction welding or high-frequency resistance welding, the present inventors found that it is caused by contact with molten base metal. It was discovered that weld cracking occurs when the grain boundaries become brittle and receive a light impact.

そこでこの様な現象について調査を行なつた結果、結晶
粒度の影響が大きく、結晶粒度を小さくすることにより
この様な現象を大巾に抑制することができることを知丁
見した。結晶粒度を0.015?以下に限定した理由は
結晶粒度が0.015瓢を越えると溶接割れが発生しや
すくなるためである。
As a result of investigating such phenomena, it was found that the effect of crystal grain size is large and that such phenomena can be largely suppressed by reducing the crystal grain size. The grain size is 0.015? The reason why it is limited to the following is that if the grain size exceeds 0.015, welding cracks are likely to occur.

実施例 第1表に示す諸組成の合金を溶製し、800℃にて熱間
圧延を行ない、厚さ8?の板とした。
Example Alloys having various compositions shown in Table 1 were melted and hot rolled at 800°C to a thickness of 8mm. It was made into a board.

次に酸洗処理の後、冷間圧延で厚さ2瓢の板とした。さ
らに、500℃にて1時間焼鈍を施した後、冷間圧延で
厚さ1wnの板とした。最終的に、第1表に示す種々の
温度で1時間焼きなましを加えたのち試験に供した。耐
食性試験に供する溶接部材は第1表に示す諸組成の1醜
厚さの合金を突き合せTIG溶接することによつて作製
した。耐食性試験は1′の水に炭酸水素ナトリウム
1.3v1e硫酸ナトリウム 1.5y
Ie番 塩化ナトリウム 1.6yIeを
各々溶かした液を液温88℃に保持し毎分100m1の
空気を吹き込み、この液の中に24叫間浸漬した。
Next, after pickling treatment, it was cold rolled into a plate with a thickness of 2 gourds. Furthermore, after annealing at 500° C. for 1 hour, a plate having a thickness of 1 wn was obtained by cold rolling. Finally, the samples were annealed for 1 hour at various temperatures shown in Table 1, and then tested. The welded parts to be subjected to the corrosion resistance test were prepared by butting and TIG welding alloys having the compositions shown in Table 1 and having a thickness of 1 mm. Corrosion resistance test was conducted using sodium bicarbonate in 1' water.
1.3v1e Sodium sulfate 1.5y
A solution in which 1.6yIe of sodium chloride (No. Ie) was dissolved was maintained at a temperature of 88° C., air was blown in at a rate of 100 ml per minute, and the samples were immersed in this solution for 24 hours.

その時発生した脱亜鉛腐食深さを溶接部及び母材部につ
いて測定し、これをもつて耐食性を評価した。その結果
を第2表に示した。溶融した母材金属と接触した場合に
粒界が脆化して溶接割れの発生に対する耐性についての
試験は第1表に示す諸組成の1Tgn厚さの合金を第1
図に示される様にバイブ状に加工し、これを同一組成の
融点+50℃に保持された溶融金属に3秒間浸漬し、そ
の後取り出して保持炉中で付着している金属が溶融して
いる状態で第2図の様に衝撃を加えた。
The depth of dezincification corrosion that occurred at that time was measured for the welded part and the base metal part, and the corrosion resistance was evaluated based on this. The results are shown in Table 2. A test for resistance to weld cracking due to embrittlement of grain boundaries when in contact with molten base metal was conducted using alloys with a thickness of 1 Tgn having various compositions shown in Table 1.
As shown in the figure, it is processed into a vibrator shape, immersed in molten metal of the same composition maintained at +50°C, melting point, for 3 seconds, then taken out and placed in a holding furnace, where the attached metal is melted. Then, a shock was applied as shown in Figure 2.

その時変形したリングの断面を検微鏡によつて観察し、
粒界破壊の有無を確認し、これをもつて溶接割れに対す
る耐性を評価した。その結果を第3表に示した。第2表
、第3表かられかる様に本発明合金は脱亜鉛腐食に対し
て母材、溶接部とも優れた耐食性を有し、かつ耐溶接割
れ性が改善されることが判明した。
The cross section of the deformed ring was then observed using a microscope, and
The presence or absence of intergranular fracture was confirmed, and resistance to weld cracking was evaluated based on this. The results are shown in Table 3. As shown in Tables 2 and 3, it was found that the alloy of the present invention has excellent corrosion resistance against dezincification corrosion in both the base metal and the welded part, and has improved weld cracking resistance.

すなわち、比較合金(試料番号1〜3、19〜21)て
は、母材部て70〜125μ、溶接部て165〜413
pに達するのに対し、本発明合金(試料番号4〜18)
は、母材部て最低値8μ〜最高値15μ、溶接部で最低
値15μ〜最高値63μであり、耐脱亜鉛腐食に優れて
いることが分る。
That is, the comparative alloys (sample numbers 1 to 3, 19 to 21) have a base material of 70 to 125 μm and a welded part of 165 to 413 μm.
In contrast, the alloys of the present invention (sample numbers 4 to 18)
The minimum value is 8μ to the maximum value 15μ in the base metal part, and the minimum value is 15μ to the maximum value 63μ in the welded part, indicating that the steel has excellent dezincification corrosion resistance.

また第3表に示すように耐脱亜鉛腐食に優れた本発明合
金の中でも結晶粒度が0.015Tr0fL以下のもの
は結晶粒度が0.015TIrInを越えるものと比較
して溶融した母材金属と接触した場合に衝撃を加えた時
粒界破壊を起こさす粒界脆化を起こしにくく耐溶接割れ
性に優れていることが分る。
Furthermore, as shown in Table 3, among the alloys of the present invention that have excellent dezincification corrosion resistance, those with a grain size of 0.015Tr0fL or less are more likely to contact the molten base metal than those with a grain size of more than 0.015TIrIn. It can be seen that when subjected to impact, grain boundary embrittlement, which causes intergranular fracture, is less likely to occur, and the weld cracking resistance is excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶接割れ性の試験に供するバイブの断面図、第
2図は加熱保持炉内て重量物を落下させ、バイブの溶接
割れ性の試験を行う装置の概略夕説明図である。 1・・・・・・試験用バイブ、2・・・・・・支持台、
3・・・・・・落下重量物(200yw)、4・・・・
・・加熱保持炉、a・・・・・内径(2C)m)、b・
・・・・・外径(22順)、c・・・・・・自由落下距
離(50T!Rm)、d・・・・・・落下方向。
FIG. 1 is a sectional view of a vibrator used for a weld crackability test, and FIG. 2 is a schematic illustration of an apparatus for testing the weld crackability of a vibrator by dropping a heavy object in a heating and holding furnace. 1... Test vibrator, 2... Support stand,
3... Falling heavy object (200yw), 4...
...Heating and holding furnace, a...Inner diameter (2C) m), b.
...Outer diameter (in 22 order), c...Free fall distance (50T!Rm), d...Falling direction.

Claims (1)

【特許請求の範囲】 1 亜鉛25〜40wt%、りん0.005〜0.07
0wt%、錫0.05〜1.0wt%、アルミニウム0
.05〜1.0wt%を含み残部銅及び不可避的な不純
物よりなる溶接管用銅合金。 2 亜鉛25〜40wt%、りん0.005〜0.07
0wt%、錫0.05〜1.0wt%、アルミニウム0
.05〜1.0wt%を含み残部銅及び不可避的な不純
物よりなり、結晶粒度が0.015mm以下である溶接
管用銅合金。
[Claims] 1. Zinc 25-40wt%, phosphorus 0.005-0.07
0wt%, tin 0.05-1.0wt%, aluminum 0
.. A copper alloy for welded pipes, which contains 0.05 to 1.0 wt%, with the remainder being copper and unavoidable impurities. 2 Zinc 25-40wt%, phosphorus 0.005-0.07
0wt%, tin 0.05-1.0wt%, aluminum 0
.. A copper alloy for welded pipes, containing 0.05 to 1.0 wt%, the balance consisting of copper and unavoidable impurities, and having a crystal grain size of 0.015 mm or less.
JP20456182A 1982-11-24 1982-11-24 Copper alloy for welded pipes Expired JPS6056775B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP20456182A JPS6056775B2 (en) 1982-11-24 1982-11-24 Copper alloy for welded pipes
DE8383111619T DE3362354D1 (en) 1982-11-24 1983-11-21 Copper alloy for welded tubes
EP19830111619 EP0111770B1 (en) 1982-11-24 1983-11-21 Copper alloy for welded tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20456182A JPS6056775B2 (en) 1982-11-24 1982-11-24 Copper alloy for welded pipes

Publications (2)

Publication Number Publication Date
JPS5996237A JPS5996237A (en) 1984-06-02
JPS6056775B2 true JPS6056775B2 (en) 1985-12-11

Family

ID=16492508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20456182A Expired JPS6056775B2 (en) 1982-11-24 1982-11-24 Copper alloy for welded pipes

Country Status (3)

Country Link
EP (1) EP0111770B1 (en)
JP (1) JPS6056775B2 (en)
DE (1) DE3362354D1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480987B (en) * 2013-09-26 2015-08-19 郑州机械研究所 A kind of preparation method of high fragility copper zinc welding rod/weld tabs

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR894529A (en) * 1939-05-30 1944-12-27 Copper alloy
GB1170125A (en) * 1966-03-01 1969-11-12 Olin Mathieson Copper Base Alloys
DE2353238C2 (en) * 1973-10-24 1975-09-11 Wieland-Werke Ag, 7900 Ulm Use of a phosphorus-containing brass alloy

Also Published As

Publication number Publication date
DE3362354D1 (en) 1986-04-03
JPS5996237A (en) 1984-06-02
EP0111770B1 (en) 1986-02-26
EP0111770A1 (en) 1984-06-27

Similar Documents

Publication Publication Date Title
JP3794971B2 (en) Copper alloy tube for heat exchanger
JPS6245301B2 (en)
JPS6056775B2 (en) Copper alloy for welded pipes
JPS6217018B2 (en)
JPH04272148A (en) Heat resistant copper alloy for heat exchanger excellent brazability
JPS59126742A (en) Copper alloy for welded pipe
JPS59150045A (en) Copper alloy with superior corrosion resistance
JPS646265B2 (en)
JPS59153856A (en) Copper alloy with superior corrosion resistance
JPS59179744A (en) Copper alloy for welded tube
JPS5832220B2 (en) Softening resistant copper alloy
JPS646266B2 (en)
JPS59118842A (en) Copper alloy with superior corrosion resistance
JPS59126743A (en) Copper alloy for welded pipe
JPS61199043A (en) Copper alloy having superior corrosion resistance and its manufacture
JPS59118841A (en) Copper alloy having excellent corrosion resistance
JPS59153854A (en) Copper alloy with superior corrosion resistance
JPS59118843A (en) Copper alloy for welded pipe
JPS59126741A (en) Copper alloy for welded pipe
JPS6082635A (en) Copper alloy having superior corrosion resistance
JPS59150046A (en) Copper alloy with superior corrosion resistance
JPS6082632A (en) Copper alloy having superior corrosion resistance
JPS59126744A (en) Copper alloy with superior corrosion resistance
JPS59107051A (en) Copper alloy with superior corrosion resistance
JPS59150044A (en) Copper alloy with superior corrosion resistance