JPS59126742A - Copper alloy for welded pipe - Google Patents

Copper alloy for welded pipe

Info

Publication number
JPS59126742A
JPS59126742A JP47483A JP47483A JPS59126742A JP S59126742 A JPS59126742 A JP S59126742A JP 47483 A JP47483 A JP 47483A JP 47483 A JP47483 A JP 47483A JP S59126742 A JPS59126742 A JP S59126742A
Authority
JP
Japan
Prior art keywords
corrosion resistance
welded
alloy
copper alloy
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP47483A
Other languages
Japanese (ja)
Inventor
Susumu Kawauchi
川内 進
Masahiro Tsuji
正博 辻
Michiharu Yamamoto
山本 道晴
Kiyoaki Nishikawa
西川 清明
Hidehiko So
宗 秀彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP47483A priority Critical patent/JPS59126742A/en
Publication of JPS59126742A publication Critical patent/JPS59126742A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE:To obtain a Cu alloy for a welded pipe with superior corrosion resistance and weld crack resistance at the weld zone by adding specified percentages of Zn, P, Ni and Sn to Cu. CONSTITUTION:A Cu alloy consisting of, by weight, 25-40% Zn, 0.005-0.070% P, 0.05-2.0% Ni, 0.05-1.0% Sn and the balance Cu with ineviatable impurities is prepd. so that the grain size is regulated to <=0.015mm. by final annealing. A Cu alloy for a welded pipe with improved corrosion resistance and weld crack resistance is obtd.

Description

【発明の詳細な説明】 本発明は優れた溶接部の耐食性、耐溶接割れ性を有する
溶接管用銅合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a copper alloy for welded pipes having excellent corrosion resistance and weld cracking resistance in welded parts.

近年薄肉の銅合金管は高周波抵抗溶接もしくは高周波誘
導溶接による溶接管が用いられるようになってきた。こ
の傾向は特にラジェーターに使用されるチューブについ
て顕著である。従来ラジェーターにはロックシームチュ
ーブが使用されてきたが、コスト低減と生産効率の上昇
の要求から高周波抵抗溶接もしくは高周波誘導溶接によ
る溶接チューブが採用されるようになりつつある。しか
しながら銅合金溶接管はその溶接組織の特異性からその
溶接部は他の部分と比較して耐食性が大幅に劣るという
欠点を持っている。このことは近年の使用環境の悪化等
から考えふと銅合金溶接管の使用上の大きな制約となる
。さらKは銅合金溶接管の與造の際に溶接方法として高
周波誘導溶接もしくは高周波抵抗溶接を用いた場合、溶
接割れを発生しやすいという製造上の難点を持っている
。このような状況から溶接部の耐食性が優れ、かつ溶接
割れ感受性の低い材料が要求されている。
In recent years, thin-walled copper alloy pipes have come to be welded by high-frequency resistance welding or high-frequency induction welding. This tendency is particularly noticeable for tubes used in radiators. Traditionally, lock-seam tubes have been used for radiators, but due to demands for cost reduction and increased production efficiency, welded tubes made by high-frequency resistance welding or high-frequency induction welding are increasingly being adopted. However, copper alloy welded pipes have the disadvantage that the welded part has significantly lower corrosion resistance than other parts due to the uniqueness of its welded structure. Considering the deterioration of the usage environment in recent years, this becomes a major constraint on the use of copper alloy welded pipes. Furthermore, when high-frequency induction welding or high-frequency resistance welding is used as a welding method when welding a copper alloy welded pipe, weld cracking tends to occur, which is a manufacturing drawback. Under these circumstances, there is a demand for materials that have excellent corrosion resistance in welded areas and have low weld cracking susceptibility.

本発明はこのよう々状況を鑑みて研究を行なった結果、
亜鉛25〜40 wtチ、りん0005〜α070wt
%、ニッケルC,05−2,Owt4 。
The present invention was developed as a result of research conducted in view of the above circumstances.
Zinc 25-40wt, phosphorus 0005-α070wt
%, Nickel C, 05-2, Owt4.

錫0.05〜1、Owt%を含み、残部銅及び不可避的
な不純物より表る耐食性を向上させた溶接管用銅合金及
び亜鉛25−25−4O,りんQ、005−0.070
wt%、ニッケル 0.05〜2. Owt% 。
Copper alloy for welded pipes containing 0.05 to 1 Owt% of tin and improved corrosion resistance due to the balance copper and unavoidable impurities, and zinc 25-25-4O, phosphorus Q, 005-0.070
wt%, nickel 0.05-2. Owt%.

錫α05〜1. Owt%を含み、残部銅及び不可避的
な不純物よシなる最終焼鈍で結晶粒度が0.015慎以
下となるように調整された耐食性を向上させ、かつ耐溶
接割れ性の向上した溶接管用銅合金を開発した。
Tin α05~1. Copper alloy for welded pipes with improved corrosion resistance and improved weld cracking resistance, which is adjusted so that the grain size is 0.015 cm or less in the final annealing, containing Owt% and residual copper and unavoidable impurities. was developed.

本発明の溶接管用銅合金における合金成分についてその
作用と添加量及び結晶粒度の限定理由について説明する
。銅と亜鉛は本発明合金の基本成分となるもので、加工
性1機械的強度に優れていると共に、熱伝導性にも優れ
ている。
The effects of the alloy components in the copper alloy for welded pipes of the present invention, the amount added, and the reason for limiting the crystal grain size will be explained. Copper and zinc are the basic components of the alloy of the present invention, and have excellent workability, mechanical strength, and thermal conductivity.

亜鉛添加量を上記範囲に限定した理由は、亜鉛が25 
wt%未満では加工性が悪くなること及び亜鉛が40 
wt4を越えると銅−亜鉛合金におけるβ相の析出がみ
られ耐食性及び冷開加工性が悪くなるためである。りん
の添加量を0.005〜α070 wt%とする理由は
、りんの添加量がo、 o o s wt%未満では耐
食性の向上がみられず。
The reason why the amount of zinc added was limited to the above range is that zinc
If it is less than wt%, the processability will be poor and the zinc content will be less than 40%.
This is because when the content exceeds wt4, precipitation of β phase in the copper-zinc alloy is observed, resulting in poor corrosion resistance and cold opening workability. The reason why the amount of phosphorus added is 0.005 to α070 wt% is that if the amount of phosphorus added is less than o, o o s wt%, no improvement in corrosion resistance is observed.

またα070 wt4を越えると耐食性は向上するが1
粒界病食の徴候がみられるためである。ニッケルの添加
量をα05〜2. Owt%とする理由は、ニッケルの
添加量が0.05 wt%未満では溶接した場合溶接部
の耐食性の向上がみられず。
In addition, corrosion resistance improves when α070 wt4 is exceeded, but 1
This is because signs of grain boundary disease are observed. The amount of nickel added is α05~2. The reason for setting it as Owt% is that when the amount of nickel added is less than 0.05 wt%, no improvement in the corrosion resistance of the welded part is observed when welding.

また2、 Owt%を越えると耐食性向上の効果が飽和
するためである。錫の添加量を0.05〜1.0wt%
とする理由は、錫の添加量を0.05 wt係未満では
溶接した場合の溶接部の耐食性の向上がみられず、また
1、 Owt%を越えると耐食性向上の効果が飽和する
ためである。以上のよう忙りんの添加によって素材に耐
食性を付加し、ニッケルと錫を添加することによって素
材と溶接した場合に溶接部に耐食性を付加するものであ
る。
2. If the content exceeds Owt%, the effect of improving corrosion resistance is saturated. The amount of tin added is 0.05-1.0wt%
The reason for this is that if the amount of tin added is less than 0.05 wt%, no improvement in the corrosion resistance of the welded part will be observed, and if it exceeds 1.0 wt%, the effect of improving corrosion resistance will be saturated. . As described above, by adding phosphorus, corrosion resistance is added to the material, and by adding nickel and tin, corrosion resistance is added to the welded part when welded to the material.

さらに結晶粒度をαO15m以下に限定した理由につい
て述べる。高周波誘導溶接もしくは高周波抵抗溶接によ
って起こる溶接割れの原因について調査した結果2本発
明者らは溶融した母材金属と接触していると粒界が脆化
して軽い衝撃金堂けた場合、溶接割れが発生することを
知見した。そこでこのような現象につぃ゛て種々の調査
を行なった結朶、結晶粒度の影響が犬きく結晶粒度を小
さくすることによりこのような現象に対する感受性が大
幅に低下することが認められた。
Furthermore, the reason why the crystal grain size is limited to αO15m or less will be described. As a result of investigating the cause of weld cracking caused by high-frequency induction welding or high-frequency resistance welding, the inventors found that when contact with molten base metal, the grain boundaries become brittle and cracking due to a light impact causes weld cracking. I found out that. As a result of conducting various investigations into such phenomena, it was found that the influence of crystal grain size is significant, and by reducing the crystal grain size, the susceptibility to such phenomena is significantly reduced.

結晶粒度を0.015waa以下に限定した理由は。The reason why the crystal grain size was limited to 0.015 waa or less.

結晶粒度が0.01j+gmを越えると溶接割れが発生
し易くなるためである。
This is because if the grain size exceeds 0.01j+gm, weld cracking is likely to occur.

実施例 第1表に示す諸組成の合金を溶製し熱間圧延及び適宜焼
きなましを加えなから冷間圧延により1m厚さの板とし
、最終的に種々の温度で焼きなましを加えて第1表に示
される結晶粒度に調整して試験に供した。耐食性試験に
供する溶接部材は第12表に示す諸組成の1m+厚さの
合金を突き合せT工G溶接する仁とによって製造した。
Examples Alloys having the various compositions shown in Table 1 were melted, hot rolled and appropriately annealed, then cold rolled to form a plate with a thickness of 1 m, and finally annealed at various temperatures to form the sheets shown in Table 1. The crystal grain size was adjusted to the one shown in , and used for the test. The welded parts to be subjected to the corrosion resistance test were manufactured by butting 1 m+thick alloys having various compositions shown in Table 12 and performing T-welding and G-welding.

耐食性試験は1tの蒸留水に 炭酸水素ナトリウム   t s t/を硫酸ナトリウ
ム  1.5 f/を 塩化ナトリウム  1.6 f/L を各々溶かした液を液温88℃に保持し、毎分100−
の空気を吹き込み、この液中に240時間浸漬した。そ
の時発生した最大脱亜鉛腐食深さを溶接部について測定
し、これをもって耐食性を評価した。その結果を第2表
に示した。
The corrosion resistance test was carried out by dissolving 1 t of sodium bicarbonate, 1.5 f/L of sodium sulfate, and 1.6 f/L of sodium chloride in 1 ton of distilled water.
of air was blown into the sample, and the sample was immersed in this liquid for 240 hours. The maximum dezincification corrosion depth that occurred at that time was measured for the welded part, and the corrosion resistance was evaluated based on this. The results are shown in Table 2.

溶融した母材金属と接触した場合に粒界が脆化して溶接
割れの発生に対する耐性についての試験は第1表に示す
諸組成の1瓢厚さの合金を第1図に示されるようにパイ
プ状に加工し、これを同一組成の融点+50℃に保持さ
れた溶融金属に3秒間浸漬し、その後取り出して保持炉
中で付着している金属が溶融している状態で第2図に示
されるように衝撃を加えた。その時変形したパイプの断
面を顕微鏡によって観察し粒界破壊の有無を確認し、こ
れをもって溶接割れに対する耐性を評価した。その結果
を第3表に示した。
A test for resistance to weld cracking caused by embrittlement of grain boundaries when in contact with molten base metal was conducted using alloys of one thickness and the compositions shown in Table 1 in pipes as shown in Figure 1. This is processed into a shape, immersed for 3 seconds in molten metal of the same composition maintained at +50°C, melting point, and then taken out in a holding furnace with the attached metal melted, as shown in Figure 2. It was shocking. The cross section of the deformed pipe was then observed under a microscope to confirm the presence or absence of intergranular fracture, and this was used to evaluate resistance to weld cracking. The results are shown in Table 3.

第2表、第3表かられかるように本発明合金は溶接部の
脱亜鉛腐食に対して優れた耐食性を有し、かつ耐溶接割
れ性が改善されることが判明した。
As can be seen from Tables 2 and 3, it was found that the alloys of the present invention have excellent corrosion resistance against dezincification corrosion of welded parts and have improved weld cracking resistance.

すなわち、比較合金(試料番号1〜5)では溶接部の最
大脱亜鉛腐食深さが347μ〜603μであるのに対し
1本発。明合金(試料番号6〜20)では最大脱亜鉛腐
食深さが溶接部48μ〜104μであり1本発明合金の
耐脱亜鉛腐食性は著しく優れていることが分る。
That is, for the comparison alloys (sample numbers 1 to 5), the maximum dezincification corrosion depth of the welded part was 347μ to 603μ, but only one crack occurred. In the light alloys (sample numbers 6 to 20), the maximum dezincification corrosion depth was 48μ to 104μ in the welded area, indicating that the dezincification corrosion resistance of the alloy of the present invention is extremely excellent.

また本発明合金は、上記のように耐脱亜鉛腐食性に優れ
ているが、さらに結晶粒度が0.015簡以下であるも
の(試料番号7〜11.14.18〜20)は第2図に
示す溶接割れ性のテスNCおいて単に延性変形するのみ
で割れの発生がなく、耐溶接割れ性が改善される。逆に
結晶粒度が0.015簡を越えるものについては粒界破
壊を起こすので好ましくない。
In addition, the alloys of the present invention have excellent dezincification corrosion resistance as described above, but those with crystal grain sizes of 0.015 or less (sample numbers 7 to 11, 14, 18 to 20) are shown in Figure 2. In the weld cracking test NC shown in Figure 3, there is only ductile deformation, no cracking occurs, and the weld cracking resistance is improved. On the other hand, crystal grains with a grain size exceeding 0.015 mm are not preferable because they cause grain boundary fracture.

したがって結晶粒度の調整は管の用途に応じ実施例 以上本発明合金は溶接管用銅合金として極めて優れた特
性を有するものである。
Therefore, the grain size is adjusted depending on the use of the pipe.The alloy of the present invention has extremely excellent properties as a copper alloy for welded pipes.

第1表 M2表 第3表Table 1 M2 table Table 3

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐溶接割れ性の試験に用いる厚さ1簡の合金パ
イプ断面図、第2図は耐溶接割れ性試験装置の概略説明
図である。 1:厚さ1簡の合金パイプ(長さ10mm)2:自由落
下体(tt2o o gw )3:支持台 4:加熱保持炉 a;パイプ内径(の20m) b=パイプ外径(◇22闘) C:落下体2の落下距離(50覇) 特許出願人 日本鉱業株式会社 代理人 弁理士(7569)並用啓志 206−
FIG. 1 is a cross-sectional view of a one-piece thick alloy pipe used in the weld cracking resistance test, and FIG. 2 is a schematic explanatory diagram of the weld cracking resistance testing apparatus. 1: 1 piece thick alloy pipe (length 10mm) 2: Free falling body (tt2 o gw) 3: Support stand 4: Heating and holding furnace a; Pipe inner diameter (20 m) b = Pipe outer diameter (◇22 mm) ) C: Falling distance of falling object 2 (50 wins) Patent applicant Nippon Mining Co., Ltd. Agent Patent attorney (7569) Keishi Namiyo 206-

Claims (2)

【特許請求の範囲】[Claims] (1)  亜鉛25〜40 wt係、りんα005〜0
.070wt%、ニッケルa O5〜2. Owtq6
.錫[105〜t o wt4を含み、残部鋼及び不可
避的な不純物からなる溶接管用銅合金。
(1) Zinc 25-40wt, phosphorus α005-0
.. 070wt%, nickel a O5~2. Owtq6
.. A copper alloy for welded pipes, containing tin [105 to 4 wt4, with the remainder being steel and unavoidable impurities.
(2)  最終焼鈍で結晶粒度が0.015m以下とな
るように調整された亜鉛25〜40 wt係、りん(1
005−0,070wt%、 =ツケル[LO5〜2.
Owt係、錫α05〜1. Owt係を含み、残部銅及
び不可避的な不純物からなる溶接管用銅合金。
(2) Zinc 25 to 40 wt., phosphorus (1
005-0,070wt%, = Tsukel [LO5~2.
Owt person, tin α05~1. Copper alloy for welded pipes, containing copper and the remainder copper and unavoidable impurities.
JP47483A 1983-01-07 1983-01-07 Copper alloy for welded pipe Pending JPS59126742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP47483A JPS59126742A (en) 1983-01-07 1983-01-07 Copper alloy for welded pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP47483A JPS59126742A (en) 1983-01-07 1983-01-07 Copper alloy for welded pipe

Publications (1)

Publication Number Publication Date
JPS59126742A true JPS59126742A (en) 1984-07-21

Family

ID=11474774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP47483A Pending JPS59126742A (en) 1983-01-07 1983-01-07 Copper alloy for welded pipe

Country Status (1)

Country Link
JP (1) JPS59126742A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935076A (en) * 1988-05-11 1990-06-19 Mitsui Mining & Smelting Co., Ltd. Copper alloy for use as material of heat exchanger
WO2000029632A1 (en) * 1998-11-16 2000-05-25 Olin Corporation Stress relaxation resistant brass
EP2228153A3 (en) * 2006-12-14 2010-12-15 CTA Technology (Proprietary) Limited Manufacturing method for a multi-channel copper tube, and manufacturing apparatus for the tube

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935076A (en) * 1988-05-11 1990-06-19 Mitsui Mining & Smelting Co., Ltd. Copper alloy for use as material of heat exchanger
WO2000029632A1 (en) * 1998-11-16 2000-05-25 Olin Corporation Stress relaxation resistant brass
US6471792B1 (en) 1998-11-16 2002-10-29 Olin Corporation Stress relaxation resistant brass
EP2228153A3 (en) * 2006-12-14 2010-12-15 CTA Technology (Proprietary) Limited Manufacturing method for a multi-channel copper tube, and manufacturing apparatus for the tube
US8336604B2 (en) 2006-12-14 2012-12-25 Cta Technology (Proprietary) Limited Manufacturing method for a multi-channel copper tube, and manufacturing apparatus for the tube
US8869874B2 (en) 2006-12-14 2014-10-28 Cta Technology (Proprietary) Limited Manufacturing method for a multi-channel copper tube, and manufacturing apparatus for the tube

Similar Documents

Publication Publication Date Title
JP3794971B2 (en) Copper alloy tube for heat exchanger
JP3864437B2 (en) High Mo nickel base alloy and alloy tube
JPS59126742A (en) Copper alloy for welded pipe
JPH03170646A (en) Manufacture of copper alloy having fine crystalline grains as well as low strength
JPS6217018B2 (en)
JPS59179744A (en) Copper alloy for welded tube
JP5792696B2 (en) High strength copper alloy tube
JPS59126741A (en) Copper alloy for welded pipe
JPS59126743A (en) Copper alloy for welded pipe
EP0111770B1 (en) Copper alloy for welded tubes
JPS59150045A (en) Copper alloy with superior corrosion resistance
JPS59153854A (en) Copper alloy with superior corrosion resistance
JPS59118842A (en) Copper alloy with superior corrosion resistance
JPS59153856A (en) Copper alloy with superior corrosion resistance
JPS6082632A (en) Copper alloy having superior corrosion resistance
JP3046932B2 (en) Corrosion-resistant copper alloy with excellent hot ductility and resistance to annealing brittleness
JPS59126744A (en) Copper alloy with superior corrosion resistance
JPS59118843A (en) Copper alloy for welded pipe
JPS6230862A (en) Manufacture of copper alloy having superior corrosion resistance
JPS59100245A (en) Copper alloy with superior corrosion resistance
JPS646265B2 (en)
JPS6082635A (en) Copper alloy having superior corrosion resistance
JPS59150046A (en) Copper alloy with superior corrosion resistance
JPS6082634A (en) Copper alloy having superior corrosion resistance
JPS59126745A (en) Copper alloy with superior corrosion resistance