JPS6217018B2 - - Google Patents

Info

Publication number
JPS6217018B2
JPS6217018B2 JP58052752A JP5275283A JPS6217018B2 JP S6217018 B2 JPS6217018 B2 JP S6217018B2 JP 58052752 A JP58052752 A JP 58052752A JP 5275283 A JP5275283 A JP 5275283A JP S6217018 B2 JPS6217018 B2 JP S6217018B2
Authority
JP
Japan
Prior art keywords
grain size
welded
corrosion resistance
alloy
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58052752A
Other languages
Japanese (ja)
Other versions
JPS59179745A (en
Inventor
Susumu Kawauchi
Masahiro Tsuji
Kyoaki Nishikawa
Hidehiko So
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP5275283A priority Critical patent/JPS59179745A/en
Publication of JPS59179745A publication Critical patent/JPS59179745A/en
Publication of JPS6217018B2 publication Critical patent/JPS6217018B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は優れた溶接部の耐食性、耐溶接割れ性
を有する溶接管用銅合金に関するものである。 近年薄肉の銅合金管は高周波抵抗溶接もしくは
高周波誘導溶接による溶接管が用いられるように
なつてきた。この傾向は特にラジエーターに使用
されているチユーブについて顕著である。従来ラ
ジエーターにはロツクシームチユーブが使用され
ていたが、コスト低減と生産効率の上昇の要求か
ら、高周波抵抗溶接もしくは高周波誘導溶接によ
る溶接チユーブが採用されるようになりつつあ
る。しかしながら銅合金溶接管はその溶接組織の
特異性から、その溶接部は他の部分と比較して耐
食性が大幅に劣るという欠点を持つている。この
ことは近年の使用環境の悪化等から考えると銅合
金溶接管の使用上の大きな制約となる。さらには
銅合金溶接管の製造の際に溶接方法として高周波
誘導溶接もしくは高周波抵抗溶接を用いた場合、
その溶接方法の特徴から特に溶接割れを発生し易
いという製造上の難点を持つている。このような
状況から溶接部の耐食性が優れ、かつ溶接割れ感
受性の低い材料が要求されている。 本発明はこのような状況を鑑みて研究を行つた
結果、亜鉛25〜40wt%(以下合金元素について
は全てwt%とする)、りん0.005〜0.070%、錫
0.05〜1.0%、残部銅及び不可避的な不純物より
なり、結晶粒度が0.015mm以下である(なお本願
発明の結晶粒度は最終焼鈍後の結晶粒度を意味す
る)耐食性を向上させ、かつ耐溶接割れ性を向上
させた溶接管用銅合金を開発した。 本発明の溶接管用銅合金における合金成分につ
いて、その作用と添加量及び結晶粒度の限定理由
について説明する。 銅と亜鉛は本発明合金の基本材料となるもの
で、加工性、機械的強度に優れていると共に、熱
伝導性にも優れている。亜鉛添加量を上記範囲に
限定した理由は、亜鉛が25%未満では加工性が悪
くなること、及び亜鉛が40%を越えると銅−亜鉛
合金におけるβ相の析出がみられ、耐食性及び冷
間加工性が悪くなるためである。りんの添加量を
0.005〜0.070%とする理由は、りんの添加量が
0.005%未満では溶接した場合の溶接部の耐食性
の向上が認められず、また0.070%を越えると耐
食性は向上するが、粒界腐食の徴候が見られるた
めである。錫の添加量を0.05〜1.0%とする理由
は、錫の添加量が0.05%未満では溶接した場合の
溶接部の耐食性の向上がみられず、また1.0%を
越えると耐食性向上の効果が飽和するためであ
る。さらに結晶粒度を0.015mm以下に限定した理
由について述べる。高周波誘導溶接もしくは高周
波抵抗溶接によつて起こる溶接割れの原因につい
て調査した結果、本発明者らは溶融した母材金属
と接触していると粒界が脆化して軽い衝撃を受け
た場合溶接割れが発生することを知見した。そこ
でこのような現象について種々の調査を行つた結
果、結晶粒度の影響が大きく、結晶粒度を小さく
することにより、このような現象に対する感受性
が大幅に低下することが認められた。 結晶粒度を0.015mm以下に限定した理由は、結
晶粒度が0.015mmを越えると溶接割れが発生し易
くなるためである。 実施例 第1表に示す諸組成の合金を溶製し、700℃で
熱間圧延を行い厚さ8mmの板とし、これを冷間圧
延で厚さ3mmとした。これに500℃×1hrの焼鈍を
行つたのち、最終冷間圧延で厚さ1mmの板とし
た。これを、さらに350〜600℃×1hrの各種温度
で熱処理し、第1表に示される結晶粒度に調整し
て試験に供した。耐食性試験に供する溶接部材は
第1表に示す諸組成の1mm厚さの合金を突き合わ
せ、TIG溶接することによつて製造した。耐食性
試験は1の水に 炭酸水素ナトリウム 1.3g/ 硫酸ナトリウム 1.5g/ 塩化ナトリウム 1.6g/ を各々溶かした液を液温88℃に保持し、毎分100
mlの空気を吹き込み、この液の中に240時間浸漬
した。その時発生した脱亜鉛腐食深さを、溶接部
について測定し、これをもつて耐食性を評価し
た。その結果を第2表に示した。 溶融した母材金属と接触した場合に粒界が脆化
して溶接割れの発生に対する耐性についての試験
は第1表に示す諸組成の1mm厚さの合金を第1図
に示されるようにパイプ状に加工し、これを同一
組成の融点+50℃に保持された溶融金属に3秒間
浸漬し、その後取り出して保持炉中で付着してい
る金属が溶融している状態で第2図のように衝撃
を加えた。その時変形したパイプの断面を顕微鏡
によつて観察し、粒界破壊の有無を確認し、これ
をもつて溶接割れに対する耐性を評価した。その
結果を第3表に示した。 すなわち比較合金(試料番号1〜5)では溶接
部の最大脱亜鉛腐食深さが270〜364μであるのに
対し本発明合金(試料番号6〜13)では最大脱亜
鉛腐食深さが溶接部で47〜98μであり、本発明合
金の耐脱亜鉛腐食性は著しく優れていることが分
かる。 また本発明合金は上記のように耐脱亜鉛腐食性
に優れているがさらに結晶粒度が0.015mm以下の
(試料番号6〜13)は第2図に示す溶接割れ性の
テストにおいて単に延性変形するのみで割れの発
生がなく溶接割れ性が改善される。逆に結晶粒度
が0.015mmを越えるものについては粒界破壊を起
こすので好ましくない。 したがつて結晶粒度の調整は管の用途に応じて
適宜実施する。 以上本発明合金は溶接管用銅合金として極めて
優れた特性を有するものである。
The present invention relates to a copper alloy for welded pipes having excellent corrosion resistance and weld cracking resistance in welded parts. In recent years, thin-walled copper alloy pipes have come to be welded by high-frequency resistance welding or high-frequency induction welding. This tendency is particularly noticeable for tubes used in radiators. Conventionally, lock seam tubes have been used for radiators, but due to the demand for cost reduction and increased production efficiency, welded tubes made by high-frequency resistance welding or high-frequency induction welding are increasingly being adopted. However, copper alloy welded pipes have the disadvantage that the welded portion has significantly lower corrosion resistance than other parts due to the uniqueness of its welded structure. Considering the deterioration of the usage environment in recent years, this is a major restriction on the use of copper alloy welded pipes. Furthermore, when high frequency induction welding or high frequency resistance welding is used as a welding method when manufacturing copper alloy welded pipes,
Due to the characteristics of its welding method, it has a manufacturing difficulty in that it is particularly prone to weld cracking. Under these circumstances, there is a demand for materials that have excellent corrosion resistance in welded areas and have low weld cracking susceptibility. The present invention was developed as a result of research conducted in view of the above situation.Zinc 25-40wt% (hereinafter all alloying elements are referred to as wt%), phosphorus 0.005-0.070%, tin
0.05 to 1.0%, the balance being copper and unavoidable impurities, and the grain size is 0.015 mm or less (the grain size in the present invention means the grain size after final annealing), which improves corrosion resistance and resists weld cracking. We have developed a copper alloy for welded pipes with improved properties. Regarding the alloy components in the copper alloy for welded pipes of the present invention, their effects, addition amounts, and reasons for limiting the crystal grain size will be explained. Copper and zinc are the basic materials of the alloy of the present invention, and have excellent workability and mechanical strength, as well as excellent thermal conductivity. The reason why the amount of zinc added is limited to the above range is that if the zinc content is less than 25%, the workability will deteriorate, and if the zinc content exceeds 40%, precipitation of β phase will be observed in the copper-zinc alloy, resulting in poor corrosion resistance and cold workability. This is because workability deteriorates. The amount of phosphorus added
The reason for setting it to 0.005 to 0.070% is that the amount of phosphorus added is
This is because if it is less than 0.005%, no improvement in the corrosion resistance of the welded part is observed, and if it exceeds 0.070%, although the corrosion resistance is improved, signs of intergranular corrosion are observed. The reason why the amount of tin added is 0.05 to 1.0% is that if the amount of tin added is less than 0.05%, no improvement in the corrosion resistance of the welded part will be observed, and if it exceeds 1.0%, the effect of improving corrosion resistance will be saturated. This is to do so. Furthermore, the reason why the crystal grain size was limited to 0.015 mm or less will be explained. As a result of investigating the causes of weld cracking caused by high-frequency induction welding or high-frequency resistance welding, the present inventors found that grain boundaries become brittle when in contact with molten base metal, and weld cracks occur when subjected to a light impact. We found that this occurs. As a result of conducting various investigations into such phenomena, it was found that the influence of the crystal grain size is large, and that by reducing the crystal grain size, the sensitivity to such phenomena is significantly reduced. The reason why the grain size is limited to 0.015 mm or less is that if the grain size exceeds 0.015 mm, weld cracking is likely to occur. Examples Alloys having the compositions shown in Table 1 were melted and hot rolled at 700°C to form a plate with a thickness of 8 mm, which was then cold rolled to a thickness of 3 mm. This was annealed at 500°C for 1 hour, and then finally cold rolled into a plate with a thickness of 1 mm. This was further heat-treated at various temperatures of 350 to 600°C for 1 hr, and the crystal grain size was adjusted to the size shown in Table 1, and then used for testing. The welded parts to be subjected to the corrosion resistance test were manufactured by butting together 1 mm thick alloys having the compositions shown in Table 1 and performing TIG welding. Corrosion resistance test was conducted by dissolving 1.3 g of sodium bicarbonate, 1.5 g of sodium sulfate, and 1.6 g of sodium chloride in 1 water, maintaining the liquid temperature at 88°C, and heating at 100 m/min.
ml of air was blown into it, and it was immersed in this solution for 240 hours. The depth of dezincification corrosion that occurred at that time was measured for the welded part, and the corrosion resistance was evaluated based on this. The results are shown in Table 2. A test for resistance to weld cracking caused by embrittlement of grain boundaries when in contact with molten base metal was carried out using 1 mm thick alloys with various compositions shown in Table 1 in a pipe shape as shown in Figure 1. It is immersed for 3 seconds in molten metal of the same composition maintained at +50°C, melting point, and then taken out and shocked in a holding furnace with the attached metal melted as shown in Figure 2. added. The cross section of the deformed pipe was then observed under a microscope to confirm the presence or absence of intergranular fracture, and this was used to evaluate resistance to weld cracking. The results are shown in Table 3. In other words, the maximum dezincification corrosion depth in the welds for the comparative alloys (sample numbers 1 to 5) is 270 to 364μ, while the maximum dezincification corrosion depth in the welds for the invention alloys (sample numbers 6 to 13) is 270 to 364μ. It is found that the dezincing corrosion resistance of the alloy of the present invention is extremely excellent. In addition, although the present invention alloy has excellent dezincification corrosion resistance as described above, in addition, those with a grain size of 0.015 mm or less (sample numbers 6 to 13) simply undergo ductile deformation in the weld cracking test shown in Figure 2. Weld cracking resistance is improved with no cracking. On the other hand, crystal grains with a grain size exceeding 0.015 mm are not preferred because they cause grain boundary fracture. Therefore, the crystal grain size is adjusted as appropriate depending on the use of the pipe. As described above, the alloy of the present invention has extremely excellent properties as a copper alloy for welded pipes.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐溶接割れ性の試験に用いる厚さ1mm
の合金パイプの断面図、第2図は耐溶接割れ性の
試験装置の概略説明図である。 1:厚さ1mmの合金パイプ(長さ10mm)、2:
自由落下体(重量200gw)、3:支持台、4:加
熱保持炉、a:パイプ内径(φ20mm)、b:パイ
プ外径(φ22mm)、c:落化体2の落下距離(50
mm)。
Figure 1 shows the thickness of 1mm used in the weld cracking resistance test.
FIG. 2 is a cross-sectional view of the alloy pipe shown in FIG. 1: 1mm thick alloy pipe (10mm length), 2:
Free falling object (weight 200 gw), 3: Support stand, 4: Heating and holding furnace, a: Pipe inner diameter (φ20 mm), b: Pipe outer diameter (φ22 mm), c: Falling distance of falling object 2 (50
mm).

Claims (1)

【特許請求の範囲】[Claims] 1 亜鉛25〜40wt%、りん0.005〜0.070wt%、錫
0.05〜1.0wt%、残部銅及び不可避的な不純物よ
りなり、結晶粒度が0.015mm以下である溶接管用
銅合金。
1 Zinc 25-40wt%, phosphorus 0.005-0.070wt%, tin
A copper alloy for welded pipes, consisting of 0.05 to 1.0 wt%, the balance being copper and unavoidable impurities, and having a crystal grain size of 0.015 mm or less.
JP5275283A 1983-03-30 1983-03-30 Copper alloy for welded tube Granted JPS59179745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5275283A JPS59179745A (en) 1983-03-30 1983-03-30 Copper alloy for welded tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5275283A JPS59179745A (en) 1983-03-30 1983-03-30 Copper alloy for welded tube

Publications (2)

Publication Number Publication Date
JPS59179745A JPS59179745A (en) 1984-10-12
JPS6217018B2 true JPS6217018B2 (en) 1987-04-15

Family

ID=12923625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5275283A Granted JPS59179745A (en) 1983-03-30 1983-03-30 Copper alloy for welded tube

Country Status (1)

Country Link
JP (1) JPS59179745A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244203U (en) * 1988-09-19 1990-03-27
JPH0394715U (en) * 1990-01-12 1991-09-26

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8220697B2 (en) 2005-01-18 2012-07-17 Siemens Energy, Inc. Weldability of alloys with directionally-solidified grain structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136946A (en) * 1980-03-28 1981-10-26 Kobe Steel Ltd Copper alloy for radiator tube
JPS57108234A (en) * 1980-12-24 1982-07-06 Nippon Denso Co Ltd Corrosion resistant copper alloy and heat exchanger using it
JPS58161742A (en) * 1982-03-19 1983-09-26 Nippon Radiator Co Ltd Welded tube of heat exchanger for car

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136946A (en) * 1980-03-28 1981-10-26 Kobe Steel Ltd Copper alloy for radiator tube
JPS57108234A (en) * 1980-12-24 1982-07-06 Nippon Denso Co Ltd Corrosion resistant copper alloy and heat exchanger using it
JPS58161742A (en) * 1982-03-19 1983-09-26 Nippon Radiator Co Ltd Welded tube of heat exchanger for car

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244203U (en) * 1988-09-19 1990-03-27
JPH0394715U (en) * 1990-01-12 1991-09-26

Also Published As

Publication number Publication date
JPS59179745A (en) 1984-10-12

Similar Documents

Publication Publication Date Title
JP3794971B2 (en) Copper alloy tube for heat exchanger
JPS6217018B2 (en)
JPS5823452B2 (en) Softening resistant copper alloy
JPS59126742A (en) Copper alloy for welded pipe
JPS6056775B2 (en) Copper alloy for welded pipes
JPH0210212B2 (en)
JPS646265B2 (en)
JPS59179744A (en) Copper alloy for welded tube
JPS59126743A (en) Copper alloy for welded pipe
JPS646266B2 (en)
JPS5832220B2 (en) Softening resistant copper alloy
JPS59150045A (en) Copper alloy with superior corrosion resistance
JPS59126741A (en) Copper alloy for welded pipe
JPH0333770B2 (en)
JPS59118843A (en) Copper alloy for welded pipe
JPS59118842A (en) Copper alloy with superior corrosion resistance
JPS61199043A (en) Copper alloy having superior corrosion resistance and its manufacture
JPS59153854A (en) Copper alloy with superior corrosion resistance
JPS59118841A (en) Copper alloy having excellent corrosion resistance
JPS59153856A (en) Copper alloy with superior corrosion resistance
JPS59126744A (en) Copper alloy with superior corrosion resistance
JPS59153855A (en) Copper alloy with superior corrosion resistance
JPS6082632A (en) Copper alloy having superior corrosion resistance
JPS59100245A (en) Copper alloy with superior corrosion resistance
JPS59150046A (en) Copper alloy with superior corrosion resistance