JPS59179745A - Copper alloy for welded tube - Google Patents
Copper alloy for welded tubeInfo
- Publication number
- JPS59179745A JPS59179745A JP5275283A JP5275283A JPS59179745A JP S59179745 A JPS59179745 A JP S59179745A JP 5275283 A JP5275283 A JP 5275283A JP 5275283 A JP5275283 A JP 5275283A JP S59179745 A JPS59179745 A JP S59179745A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- welded
- corrosion resistance
- tube
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Arc Welding In General (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は優れた溶接部の耐食性、耐溶接割れ性を有する
溶接管用銅合金に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a copper alloy for welded pipes having excellent corrosion resistance and weld cracking resistance in welded parts.
近年薄肉の銅合金管は高周波抵抗溶接もしくは高周波誘
導溶接による溶接管が用いられるようになってきた。こ
の傾向は特にラジェーターに使用されているチューブに
ついて顕著である。In recent years, thin-walled copper alloy pipes have come to be welded by high-frequency resistance welding or high-frequency induction welding. This tendency is particularly noticeable for tubes used in radiators.
従来ラジェーターにはロックシームチューブが使用され
ていたが、コスト低減と生産効率の上昇の要求から、高
周波抵抗溶接もしくは高周波誘導溶接による溶接チュー
ブが採用されるようにな)つつある。しかしながら銅合
金溶接管はその溶接組織の特異性から、その溶接部は他
の部分と比較して耐食性が大幅に劣るという欠点を持っ
ている。このことは近年の使用環境の悪化等から考える
と銅合金溶接管の使用上の大きな制約となる。さらには
銅合金溶接管の製造の際に溶接方法として高周波誘導溶
接もしくは高周波抵抗溶接を用いた場合、その溶接方法
の特徴から特に溶接割れを発生し易いという製造上の難
点を持っている。このような状況から溶接部の耐食性が
優れ、かつ済接割れ感受性の低い−材料プエ要求されて
いる。Traditionally, lock-seam tubes were used for radiators, but due to demands for cost reduction and increased production efficiency, welded tubes made by high-frequency resistance welding or high-frequency induction welding are increasingly being adopted. However, copper alloy welded pipes have the disadvantage that the welded portion has significantly lower corrosion resistance than other parts due to the uniqueness of its welded structure. Considering the deterioration of the usage environment in recent years, this is a major restriction on the use of copper alloy welded pipes. Furthermore, when high-frequency induction welding or high-frequency resistance welding is used as a welding method when manufacturing copper alloy welded pipes, there is a manufacturing difficulty in that weld cracking is particularly likely to occur due to the characteristics of the welding method. Under these circumstances, there is a need for materials with excellent corrosion resistance in welded parts and low susceptibility to weld cracking.
0、070優、錫Q、05〜1.0係を含み、残部銅及
び不可避的な不純物よシなる耐食性を向上させた溶接管
用銅合金及び亜鉛25〜40チ、りん0005〜007
0係、錫0.05〜1.0係を含み、残部鋼及び不可避
的な不純物よりなる最終焼鈍で結晶粒度が0.015−
以下となるように調整された耐食性を向上させ、かつ耐
溶接割れ性を向上させた溶接管用鋼合金を開発した。Copper alloy for welded pipes containing 0.070%, tin Q, 05-1.0%, residual copper and inevitable impurities, improved corrosion resistance, and zinc 25-40%, phosphorus 0005-007
The final annealing results in a crystal grain size of 0.015-1.0%, tin of 0.05-1.0%, and the remainder consisting of steel and unavoidable impurities.
We have developed a steel alloy for welded pipes with improved corrosion resistance and improved weld cracking resistance, adjusted as follows.
本発明の溶接管用鋼合金における合金成分について、そ
の作用と添加量及び結晶粒度の限定理由について説明す
る。Regarding the alloy components in the steel alloy for welded pipes of the present invention, their effects, addition amounts, and reasons for limiting the crystal grain size will be explained.
銅と亜鉛は本発明合金の基本材料となるもので、加工性
2機械的強度に優れていると共に。Copper and zinc are the basic materials for the alloy of the present invention, and have excellent workability and mechanical strength.
燃量導性にも優れている。亜鉛添加量を上記範囲に限定
した理由は、亜鉛が25係未満では加工性が悪くなるこ
店、及び亜鉛が40係を越えると銅−亜鉛合金における
β相の析出がみられ。It also has excellent fuel conductivity. The reason why the amount of zinc added is limited to the above range is that when the zinc content is less than 25 parts, workability deteriorates, and when the zinc content exceeds 40 parts, precipitation of β phase in the copper-zinc alloy is observed.
耐食性及び冷間加工性が悪く々るためである。This is because corrosion resistance and cold workability are poor.
りんの添加量を0.005〜l1070%とする理由は
、りんの添加量がα005チ未満では耐食性の向上が認
められず、また0、070%を越えると耐食性は向上す
るが2粒界底食の徴候が見られるためである。錫の添加
量を005〜1.0チとする理由は、錫の添加量が00
5%未満では耐食性の向上、特に溶接した場合溶接部の
耐食性の向上がみられず、また1、0係を越えると耐食
性向上の効果が飽和するためである。以上のようにわん
の添加によって素材に耐食性を付加し、錫を添加するこ
とによって素材と溶接した場合に溶接部に耐食性を付加
するものである。The reason why the amount of phosphorus added is 0.005 to 1070% is that if the amount of phosphorus added is less than α005, no improvement in corrosion resistance will be observed, and if it exceeds 0.070%, corrosion resistance will improve, but the two-grain boundary bottom This is because there are signs of eclipse. The reason why the amount of tin added is set to 0.05 to 1.0 is that the amount of tin added is 0.00
This is because if it is less than 5%, no improvement in corrosion resistance, especially in the welded part when welded, will be observed, and if it exceeds a ratio of 1.0, the effect of improving corrosion resistance will be saturated. As described above, the addition of tin adds corrosion resistance to the material, and the addition of tin adds corrosion resistance to the welded part when welded to the material.
さらに結晶粒度を0.015+n+a以下に限定した理
由について述べる。高周波誘導溶接もしくは高周波抵抗
溶接によって起こる溶接割れの原因如ついて調査した結
果1本発明者らは溶融した母材金属と接触していると粒
界が脆化して軽い衝撃を受けた場合溶接割れが発生する
ことを知見した。そこでこのよう々現象について種々の
調査を行なった結果、結晶粒度の影響が大きく。Furthermore, the reason why the crystal grain size is limited to 0.015+n+a or less will be described. As a result of investigating the causes of weld cracking caused by high-frequency induction welding or high-frequency resistance welding, the present inventors found that when in contact with molten base metal, the grain boundaries become brittle, and when subjected to a light impact, weld cracking occurs. We found that this occurs. Therefore, as a result of conducting various investigations into these phenomena, the influence of crystal grain size is large.
結晶粒度を小さくすることにより、このような現象に対
する感受性が大幅に低下することが認められた。It has been observed that by reducing the grain size, the susceptibility to such phenomena is significantly reduced.
結晶粒度をao 15mm以下に限定した理由は。The reason why the crystal grain size was limited to 15 mm or less.
結晶粒度が0015■を越えると溶接割れ力;発生し易
くなるだめである。If the grain size exceeds 0.015 cm, weld cracking force is likely to occur.
実施例
第1表に示す諸組成p合金を溶製し、熱間圧延及び適宜
焼きなましを加えなから冷間圧延により1mlの厚さの
板とし最終的に種々の温度で焼きなましを加えて第1表
に示される結晶粒度に調整して試験に供した。耐食性試
験に供する溶接部材は第1表に示す諸組成の1fi厚さ
の合金を突き合わせ、T工G溶接することによって製造
した。耐食性試験は1tの水に
炭酸水素ナトリウム 1.3y/を硫酸ナトリウム
1,5t/を
塩化ナトリウム 1.lrf/l
を各々溶かした液を液温88℃に保持し、毎分100m
7!の空気を吹き込み、この液の中に240時間浸漬し
た。その時発生した脱亜鉛腐食深さを、溶接部及び母材
部について測定し、これをもって耐食性を評価した。そ
の結果を第2表に示した。Examples P alloys with various compositions shown in Table 1 were melted, hot rolled and appropriately annealed, and then cold rolled to form a plate with a thickness of 1 ml.Finally, annealed at various temperatures, the first The crystal grain size was adjusted to the one shown in the table and used for the test. The welded parts to be subjected to the corrosion resistance test were manufactured by butting together 1fi thick alloys having the various compositions shown in Table 1 and performing T-welding and G-welding. Corrosion resistance test was carried out by adding 1.3 y of sodium bicarbonate to 1 t of water, 1.5 t of sodium sulfate, and 1.5 t of sodium chloride. The solution in which lrf/l was dissolved was maintained at a temperature of 88°C, and the speed was increased at 100 m/min.
7! of air was blown into the sample, and the sample was immersed in this solution for 240 hours. The depth of dezincification corrosion that occurred at that time was measured for the welded part and the base metal part, and the corrosion resistance was evaluated based on this. The results are shown in Table 2.
溶融した母材金属と接触した場合に粒界が脆化して溶接
割れの発生に対する耐性についての試験は第1表に示す
諸組成の1鴫厚さの合金を第1図に示されるようにノく
イブ状に加工し、これを同一組成の融点+50℃に保持
された溶融金属に3秒間浸漬し、その後取り出して保持
炉中で付着している金属が溶融して゛いる状態12図の
ように衝撃を加えた。その時変形したノくイブ゛の断面
を顕微鏡によって観察し1粒界破壊の有無を確認し、こ
れをもって溶接割れに対する耐性を評価した。その結果
を第3表に示した。A test for resistance to weld cracking caused by embrittlement of grain boundaries when in contact with molten base metal was carried out using alloys with a thickness of 1 mm with the compositions shown in Table 1 as shown in Figure 1. Processed into a tube shape, it is immersed for 3 seconds in molten metal of the same composition maintained at +50°C, melting point, and then taken out and placed in a holding furnace, where the attached metal is melted, as shown in Figure 12. Added a shock. The cross section of the deformed wedge was observed under a microscope to confirm the presence or absence of single grain boundary fracture, and this was used to evaluate resistance to weld cracking. The results are shown in Table 3.
すなわち比較合金(試料番号1〜5)では溶接部の最大
脱亜鉛腐食深さが270〜364μであるのに対し本発
明合金(試料番号6〜20)では最大脱亜鉛腐食深さが
溶接部で47〜105μであり1本発明合金の耐脱亜鉛
腐食性は著しく優れていることが分る。In other words, the maximum dezincification corrosion depth in the welds for the comparative alloys (sample numbers 1 to 5) is 270 to 364μ, while the maximum dezincification corrosion depth in the welds for the invention alloys (sample numbers 6 to 20) is 270 to 364μ. It can be seen that the dezincing corrosion resistance of the alloy of the present invention is extremely excellent.
また本発明合金は上記のように耐脱亜鉛腐食性に優れて
いるがさらに結晶粒度が0.015+++m以下である
もの(試料番号7〜14)は第2図に示す溶接割れ性の
テストにおいて単に延性変形するのみで割れの発生がな
く溶接割れ性が改善される。逆に結晶粒度が0.015
mを越えるものについては粒界破壊を起こすので好まし
くない。Furthermore, although the alloys of the present invention have excellent dezincification corrosion resistance as described above, those with a grain size of 0.015+++m or less (sample numbers 7 to 14) were simply Only ductile deformation occurs, no cracking occurs, and weld cracking resistance is improved. On the other hand, the grain size is 0.015
If it exceeds m, it is not preferable because it causes grain boundary destruction.
しだがって結晶粒度の調整は管の用途に応じ実施例
以上本発明合金は溶接管用銅合金として極めて優れた特
性を有するものである。Therefore, the grain size is adjusted depending on the use of the pipe.The alloy of the present invention has extremely excellent properties as a copper alloy for welded pipes.
第 1 表 第 2 表 第 3 表Table 1 Table 2 Table 3
第1図は耐溶接割れ性の試験に用いる厚さ1■の合金パ
イプの断面図、第2図は耐溶接割れ性の試験装置の概略
説明図である。
1:厚さ1■の合金パイプ(長さ10m)2: 自由落
下体(重量200 gw )3:支持台
4:加熱保持炉
a:パイプ内径(e2o鱈)
b:パイプ外径(g22■)
C:落下体2の落下距離(50m+)
特許出願人 日本鉱業株式会社
代理人 弁理士(7569) ’並用啓志第1図
第2図
手 続 補 正 書
昭和58年6月79日
特許庁長官 若杉和夫殿
1、事件の表示
昭和58年特許願第52752号
2発明の名称
溶接管用鋼合金
五補正をする者
事件との関係 特許出願人
住所 東京都港区虎ノ門二丁目10番1号名称 日本鉱
業株式会社
代表者 佐々木 陽 信
4代 理 人 〒105 電話582−2111住所
東京都港区虎ノ門二丁目10番1号5、補正命令の日
付 自発
6、補正の対象
「明細書の発明の詳細な説明の欄」
l補正の内容
(1) 明細書第3頁下から3行目「未満では耐食」
とあるを1未満では溶接した場合の溶接部の耐食1に補
正します。
(2) 明細書第3頁3行目「耐食性の向上、特に溶
接した場合溶接部の」とあるを「溶接した場合の溶接部
の」に補正します。
(3) 明細書筒4頁5行目〜8行目「以上のように
・・・・・・・・・・・・・・・・・・付加するもので
ある。」とあるを削除します。
(4) 明細書第5頁下から3行目「及び母材部」と
あるを削除します。
以 上FIG. 1 is a cross-sectional view of an alloy pipe with a thickness of 1 cm used in the weld cracking resistance test, and FIG. 2 is a schematic explanatory diagram of the weld cracking resistance testing apparatus. 1: Alloy pipe with thickness 1■ (length 10m) 2: Free-falling object (weight 200gw) 3: Support stand 4: Heating and holding furnace a: Pipe inner diameter (e2o cod) b: Pipe outer diameter (g22■) C: Falling distance of falling object 2 (50m+) Patent applicant Nippon Mining Co., Ltd. Agent Patent attorney (7569) 'Namiyo Keishi Figure 1 Figure 2 Procedures Amendment Written June 79, 1980 Commissioner of the Patent Office Wakasugi Mr. Kazuo 1. Display of the case Patent Application No. 52752 filed in 1982 2. Name of the invention Steel alloy for welded pipes 5. Relationship to the amendment case Patent applicant address 2-10-1 Toranomon, Minato-ku, Tokyo Name Nippon Mining Co., Ltd. Co., Ltd. Representative: Yoshin Sasaki 4th Director: 105 Phone: 582-2111 Address: 2-10-1-5 Toranomon, Minato-ku, Tokyo Date of amendment order: Voluntary action 6, subject of amendment: ``Detailed explanation of the invention in the specification'' Contents of the amendment (1) Page 3 of the specification, 3rd line from the bottom: “Corrosion resistance is less than”
If the value is less than 1, the corrosion resistance of the welded part will be corrected to 1 when welded. (2) On page 3, line 3 of the specification, the phrase "Improvement of corrosion resistance, especially of the welded parts" will be corrected to "of the welded parts when welded." (3) Delete the following from lines 5 to 8 on page 4 of the specification cylinder: “As stated above, this is added.” Masu. (4) Delete "and base material" on the third line from the bottom of page 5 of the specification. that's all
Claims (2)
5〜α070wt%。 錫α05〜1.0wt1を含み、残部鋼及び不可避的な
不純物よりなる溶接管用銅合金。(1) Zinc 25-40wt1. l) N [1,00
5~α070wt%. A copper alloy for welded pipes containing 05 to 1.0 wt1 of tin, with the remainder being steel and unavoidable impurities.
るように調整された亜鉛25〜40wt%、j9んα0
05〜α070wt憾、錫[LO5〜1. (l it
チを含み。 残部鋼及び不可避的な不純物よシなる溶接管用銅合金。(2) Zinc 25 to 40 wt%, j9 α0 adjusted so that the grain size is 10150 or less in the final annealing.
05~α070wt, tin [LO5~1. (l it
Including chi. Copper alloy for welded pipes free of residual steel and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5275283A JPS59179745A (en) | 1983-03-30 | 1983-03-30 | Copper alloy for welded tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5275283A JPS59179745A (en) | 1983-03-30 | 1983-03-30 | Copper alloy for welded tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59179745A true JPS59179745A (en) | 1984-10-12 |
JPS6217018B2 JPS6217018B2 (en) | 1987-04-15 |
Family
ID=12923625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5275283A Granted JPS59179745A (en) | 1983-03-30 | 1983-03-30 | Copper alloy for welded tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59179745A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8220697B2 (en) | 2005-01-18 | 2012-07-17 | Siemens Energy, Inc. | Weldability of alloys with directionally-solidified grain structure |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0244203U (en) * | 1988-09-19 | 1990-03-27 | ||
JPH0394715U (en) * | 1990-01-12 | 1991-09-26 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56136946A (en) * | 1980-03-28 | 1981-10-26 | Kobe Steel Ltd | Copper alloy for radiator tube |
JPS57108234A (en) * | 1980-12-24 | 1982-07-06 | Nippon Denso Co Ltd | Corrosion resistant copper alloy and heat exchanger using it |
JPS58161742A (en) * | 1982-03-19 | 1983-09-26 | Nippon Radiator Co Ltd | Welded tube of heat exchanger for car |
-
1983
- 1983-03-30 JP JP5275283A patent/JPS59179745A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56136946A (en) * | 1980-03-28 | 1981-10-26 | Kobe Steel Ltd | Copper alloy for radiator tube |
JPS57108234A (en) * | 1980-12-24 | 1982-07-06 | Nippon Denso Co Ltd | Corrosion resistant copper alloy and heat exchanger using it |
JPS58161742A (en) * | 1982-03-19 | 1983-09-26 | Nippon Radiator Co Ltd | Welded tube of heat exchanger for car |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8220697B2 (en) | 2005-01-18 | 2012-07-17 | Siemens Energy, Inc. | Weldability of alloys with directionally-solidified grain structure |
Also Published As
Publication number | Publication date |
---|---|
JPS6217018B2 (en) | 1987-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4694527B2 (en) | Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same | |
KR20090087005A (en) | High strength and high thermal conductivity copper alloy tube and method for producing the same | |
CN112955281B (en) | Aluminum alloy brazing sheet and method for producing same | |
JPS59179745A (en) | Copper alloy for welded tube | |
JPS59179744A (en) | Copper alloy for welded tube | |
JPS59126742A (en) | Copper alloy for welded pipe | |
JPH04272148A (en) | Heat resistant copper alloy for heat exchanger excellent brazability | |
JP5792696B2 (en) | High strength copper alloy tube | |
JPS59118843A (en) | Copper alloy for welded pipe | |
JPS59126743A (en) | Copper alloy for welded pipe | |
JPS59118842A (en) | Copper alloy with superior corrosion resistance | |
JPS59153856A (en) | Copper alloy with superior corrosion resistance | |
JP3046932B2 (en) | Corrosion-resistant copper alloy with excellent hot ductility and resistance to annealing brittleness | |
JPS59126741A (en) | Copper alloy for welded pipe | |
JPS5996237A (en) | Copper alloy for welded tube | |
JPS59153854A (en) | Copper alloy with superior corrosion resistance | |
JPS59118841A (en) | Copper alloy having excellent corrosion resistance | |
JPS59150045A (en) | Copper alloy with superior corrosion resistance | |
JPS60208458A (en) | Mandrel alloy for piercing or expanding seamless steel pipe | |
JPS59100245A (en) | Copper alloy with superior corrosion resistance | |
JPS6230862A (en) | Manufacture of copper alloy having superior corrosion resistance | |
JP2013076123A (en) | Copper alloy tube | |
JPS59126744A (en) | Copper alloy with superior corrosion resistance | |
JPS61199043A (en) | Copper alloy having superior corrosion resistance and its manufacture | |
JPS6082631A (en) | Copper alloy having superior corrosion resistance |