JPS6082631A - Copper alloy having superior corrosion resistance - Google Patents

Copper alloy having superior corrosion resistance

Info

Publication number
JPS6082631A
JPS6082631A JP18933883A JP18933883A JPS6082631A JP S6082631 A JPS6082631 A JP S6082631A JP 18933883 A JP18933883 A JP 18933883A JP 18933883 A JP18933883 A JP 18933883A JP S6082631 A JPS6082631 A JP S6082631A
Authority
JP
Japan
Prior art keywords
corrosion resistance
alloy
copper
balance
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18933883A
Other languages
Japanese (ja)
Inventor
Susumu Kawauchi
川内 進
Masahiro Tsuji
正博 辻
Junji Miyake
淳司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP18933883A priority Critical patent/JPS6082631A/en
Publication of JPS6082631A publication Critical patent/JPS6082631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To obtain a Cu alloy consisting of prescribed percentages of Zn, P, Sn, Al and As and/or Sb and the balance Cu with inevitable impurities and having superior corrosion resistance, weld crack resistance and high solderability. CONSTITUTION:This Cu alloy consists of, by weight, 10-40% Zn, 0.005-0.070% P, 0.05-1.0% Sn, 0.05-1.0% Al, 0.005-0.2% in total of 0.005-0.1% As and/or 0.005-0.1% Sb, and the balance Cu with inevitable impurities. The weld crack of the Cu alloy can be prevented by regulating the grain size to <=0.015mm. by final annealing. The solderability of the alloy is improved by cold rolling the alloy at 3-20% draft after the final annealing. The Cu alloy is most suitable for use as the material, especially of tank, tubes, fins, etc. of a radiator for an automobile or the like.

Description

【発明の詳細な説明】 本発明は優れた耐食性を有する銅合金で復水器、給水加
熱器、蒸留器、冷却器、造水装置などの熱交換器用の材
料として、特に自動車等に用いられるラジェーターのタ
ンク(容器)、チューブ(管)、フィン等の材料として
最適な銅合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a copper alloy that has excellent corrosion resistance and is used as a material for heat exchangers such as condensers, feed water heaters, distillers, coolers, and water generators, especially in automobiles. This article relates to copper alloys that are optimal as materials for radiator tanks, tubes, fins, etc.

黄銅は一般に機械的性質や成形性が良好であり、そのほ
かの鋼合金にくらべて価格も安いため、広範囲の用途で
使用されている。熱交換器特に自動車用ラジェーターと
しても好んで使用されているが、黄銅は環境によっては
脱亜鉛腐食現象が起き、とれが大きな問題とガっている
Brass generally has good mechanical properties and formability, and is cheaper than other steel alloys, so it is used in a wide range of applications. Brass is also popularly used in heat exchangers, especially radiators for automobiles, but depending on the environment, brass can suffer from dezincification corrosion, which has become a major problem.

自動車用ラジェーターはエンジン本体の温度を調節する
ため釦液体を冷却媒体としてエンジンとラジェーターと
を循環させて熱を放散させるものでラジェーターは冷却
媒体と常時接触しており、この冷却媒体により内面から
腐食が生じる問題がある。又自動車の走行中にラジェー
ターは排気ガス、塩分を含む海岸大気、さらには工場大
気のEI02ガス等にさらされている場合には外面から
も腐食される。
Automobile radiators use button liquid as a cooling medium to circulate the engine and radiator to dissipate heat in order to adjust the temperature of the engine body.The radiator is in constant contact with the cooling medium, and this cooling medium can cause corrosion from the inside. There is a problem that arises. Furthermore, when the radiator is exposed to exhaust gas, salt-containing coastal air, and even EI02 gas from factory air while the car is running, it corrodes from the outside as well.

従来ラジェーターに使用されている材料としては銅65
wt%、亜鉛35 wt%からなる黄銅が用いられてい
るが、腐食環境の悪化等にょシ。
The material traditionally used for radiators is copper 65.
Brass containing 35 wt% zinc and 35 wt% zinc is used, but the corrosive environment deteriorates.

従来の黄銅を用いたラジェーターの寿命が短かくなりつ
つある。
The lifespan of traditional brass radiators is becoming shorter.

さらにまた、近年、特にラジェーターチューブ(管)に
は、従来のカシメによるロックシームチューブにかわっ
て、コスト低減と生産効率の面から、高周波抵抗溶接ま
たは高周波誘導溶接による銅合金溶接管が採用されるよ
う罠なってきた。しかしながら銅合金溶接管は、その溶
接組織の特異性からその溶接部は他の部分と比較して耐
食性が大幅に劣るという欠点を持っている。このことは
銅合金溶接管の使用上の大きな制約となる。さらには、
@合金溶接管の製造の際に溶接方法として高周波誘導溶
接もしくは高周波抵抗溶接を用いた場合、その溶接方法
の特徴から特に溶接割れを発生しやすいという製造上の
難点を持っている。
Furthermore, in recent years, copper alloy welded pipes made by high-frequency resistance welding or high-frequency induction welding have been adopted, especially for radiator tubes, in place of the conventional lock-seam tubes made by caulking, from the standpoint of cost reduction and production efficiency. It's becoming a trap. However, copper alloy welded pipes have the disadvantage that the welded part has significantly lower corrosion resistance than other parts due to the uniqueness of its welded structure. This poses a major restriction on the use of copper alloy welded pipes. Furthermore,
When high-frequency induction welding or high-frequency resistance welding is used as a welding method when manufacturing @alloy welded pipes, there is a manufacturing drawback in that weld cracks are particularly likely to occur due to the characteristics of the welding method.

このよう々状況から熱交換器特にラジェーターのタンク
(容器)、チューブ(管)、フィン等に耐食性の向上が
要求されると同時に、溶接部位においては耐食性と同時
に溶接割れ感受性の低い材料の開発が望まれてきた。
Under these circumstances, improvements in corrosion resistance are required for heat exchangers, especially radiator tanks, tubes, fins, etc. At the same time, for welded parts, it is necessary to develop materials that are both corrosion resistant and less susceptible to weld cracking. It has been desired.

本発明はかかる点に艦み、従来の黄銅を改良し、熱交換
器特にラジェーター用材料として優れた耐食性を有する
銅合金を提供するものである。
The present invention addresses this problem, improves conventional brass, and provides a copper alloy having excellent corrosion resistance as a material for heat exchangers, particularly radiators.

本発明は亜鉛10〜40wt%、りん0.005〜0、
070 wt%、錫0.05〜1. Owt係、アルミ
ニウム0.05〜1. Owt係を含み、さらにヒ素0
.005〜0.1 wt%、アンチモン0.005〜0
.1wt%の内伺れか1種又は2鍾を合計0005〜0
.2wt%含み。
The present invention contains zinc 10-40 wt%, phosphorus 0.005-0,
070 wt%, tin 0.05-1. Owt, aluminum 0.05-1. Including Owt, and 0 arsenic
.. 005-0.1 wt%, antimony 0.005-0
.. A total of 1 or 2 types of 1wt% 0005 to 0
.. Contains 2wt%.

残部銅及び不可避的不純物からなる合金、及び該合金を
最終焼鈍で結晶粒度が0.015m以下となるように調
整した合金、及び該合金を最終焼鈍後3〜20%の加工
度で冷間圧延をほどこ1〜た合金、ならびに該合金を最
終焼鈍で結晶粒度が0.015mm以下となるように調
整したのち。
An alloy consisting of the remainder copper and unavoidable impurities, an alloy in which the crystal grain size is adjusted to 0.015 m or less in the final annealing, and the alloy is cold rolled at a workability of 3 to 20% after the final annealing. After the alloy was subjected to the following steps, and the alloy was subjected to final annealing so that the grain size was adjusted to 0.015 mm or less.

さらに3〜20qbの加工度で冷間圧延を施した合金で
あって優れた耐食性を有する銅合金に関する。
Furthermore, the present invention relates to a copper alloy that is cold-rolled with a working degree of 3 to 20 qb and has excellent corrosion resistance.

次に本発明合金を構成する合金成分及び内容の限理理由
を説明する。銅と亜鉛は本発明合金の基本材料となるも
ので加工性1機械的強度にすぐれていると共に熱伝導性
にもすぐれている。
Next, the reasons for limiting the alloy components and contents constituting the alloy of the present invention will be explained. Copper and zinc are the basic materials of the alloy of the present invention, and have excellent workability, mechanical strength, and thermal conductivity.

亜鉛含有量を10〜40wt%とする理由は、亜鉛含有
量が10 wt%未満では加工性が悪くなること、及び
亜鉛含有量が40 wt%を越えると銅−亜鉛合金にお
けるβ相の析出がみられ、耐食性及び冷間加工性が悪く
なるためである。りんの含有量を0.005〜0.07
0wt係とする理由は、りんの含有量が0.005 w
t%未満では耐食性は改善されるが1粒界病食の徴候が
見られるためで・ある。逆にりん含有量が0.070 
w−t’lyを越えると耐食性は改善されるが1粒界病
食の徴候が見られるためである。錫の含有量が11.0
5 wt4未満では耐食性、特に溶接した場合溶接部の
耐食性の改善が認められず、また1、 Owt%を越え
るとその効果が飽和するためである。アルミニウムの含
有量を005〜1. Owt%とする理由は。
The reason why the zinc content is set to 10 to 40 wt% is that if the zinc content is less than 10 wt%, the workability will deteriorate, and if the zinc content exceeds 40 wt%, the precipitation of β phase in the copper-zinc alloy will occur. This is because corrosion resistance and cold workability deteriorate. Phosphorus content 0.005-0.07
The reason why it is classified as 0wt is that the phosphorus content is 0.005w.
This is because when the content is less than t%, corrosion resistance is improved, but signs of grain boundary disease are observed. On the other hand, the phosphorus content is 0.070
This is because, although corrosion resistance is improved when the content exceeds w-t'ly, signs of grain boundary disease are observed. Tin content is 11.0
This is because if the content is less than 5 wt%, no improvement in corrosion resistance, especially of the welded part when welded, will be observed, and if it exceeds 1.0 wt%, the effect will be saturated. Aluminum content is 005-1. The reason for setting it as Owt% is.

アルミニウムの含有量がo、 o s wt1未満では
耐食性、特に溶接した場合溶接部の耐食性の改善が認め
られず、また1、 Ow14を越えるとその効果が飽和
するためである。さらにヒ素の含有量を0.005〜0
1vt係とする理由は、ヒ素の含有量がQ、 OO5w
t%未満では耐食性1%に溶接した場合溶接部の耐食性
の改善が認められず、また0、1w匈を越えるとその効
果が飽和するためである。アンチモンの含有量を0.0
05〜0.1wt4とする理由は、アンチモンの含有量
が0.005wt%未満では耐食性、特に溶接した場合
溶接部の而」食性の改善が認められず、また[1.1 
wt%を越えるとその効果が飽和するためである。
This is because if the aluminum content is less than 1, o s wt1, no improvement in corrosion resistance, especially of the welded part when welded, will be observed, and if it exceeds 1,0 s wt14, the effect will be saturated. Furthermore, the content of arsenic is 0.005 to 0.
The reason why it is classified as 1vt is that the arsenic content is Q, OO5w
This is because if it is less than t%, no improvement in the corrosion resistance of the welded part will be observed when welding to a corrosion resistance of 1%, and if it exceeds 0.1w, the effect will be saturated. Antimony content 0.0
05 to 0.1wt4 is because if the antimony content is less than 0.005wt%, there is no improvement in corrosion resistance, especially in the welded part when welded, and [1.1
This is because the effect becomes saturated if it exceeds wt%.

以上のようにりんを添加することにより素材に耐食性を
付加し、錫、アルミニウム、ヒ素。
As mentioned above, by adding phosphorus, corrosion resistance is added to the material, and it can be used to improve the corrosion resistance of tin, aluminum, and arsenic.

アンチモンを添加することにより素材及び溶接した場合
溶接部に耐食性を付加するものである。
By adding antimony, corrosion resistance is added to the material and the welded part when welded.

さらに結晶粒度をα015rtan以下に限定した理由
について述べる。高周波抵抗溶接もしくは高周波抵抗溶
接によって起こる溶接割れの原因について調査した結果
1本発明者らは溶融した母材金属と接触していると粒界
が脆化して軽い衝撃を受けた場合に溶接割れが発生する
ことを知見した。そこでこのような現象について調査を
行なった結果、結晶粒度の影響が大きく、結晶粒度を小
さくすることにより、このような現象を大幅に抑制する
ととができることを知見した。また本発明者らは、耐食
性に及ぼす結晶粒度の影響について調査した結果、耐食
性特に耐脱亜鉛腐食性は結晶粒度に依存し、結晶粒度を
小さくすることにより耐食性を向上させることができる
ことを知見した。
Furthermore, the reason why the crystal grain size is limited to α015rtan or less will be described. As a result of investigating the causes of weld cracking caused by high-frequency resistance welding or high-frequency resistance welding, the present inventors found that when in contact with molten base metal, the grain boundaries become brittle, and when subjected to a light impact, weld cracking occurs. We found that this occurs. As a result of investigating such phenomena, it was found that the effect of crystal grain size is large and that such phenomena can be significantly suppressed by reducing the crystal grain size. Furthermore, as a result of investigating the influence of grain size on corrosion resistance, the present inventors found that corrosion resistance, especially dezincification corrosion resistance, depends on grain size, and that corrosion resistance can be improved by reducing grain size. .

結晶粒度を0.015+Mn以下に限定した理由は。The reason why the crystal grain size was limited to 0.015+Mn or less.

結晶粒度が0.015mmを越えると溶接割れが発止し
易くなり、また耐食性の劣化が認められるためである。
This is because if the crystal grain size exceeds 0.015 mm, weld cracking is likely to occur, and deterioration of corrosion resistance is observed.

また本発明合金を最終焼鈍した後3〜20%の加工度で
冷間圧延を施こす理由は、冷間圧延を施こすことにょ多
本発明合金のはんだ付は性が向上するためであるが、加
工度が3係未満では、はんだ付は性の向上が認められず
、また20チを越えると機械的強度が高くなシ成形性特
にラジェーターチューブ加工時の成形性が劣化するため
である。
Furthermore, the reason why the alloy of the present invention is cold rolled with a workability of 3 to 20% after final annealing is that cold rolling often improves the soldering properties of the alloy of the present invention. If the degree of processing is less than 3, no improvement in soldering properties will be observed, and if it exceeds 20, the mechanical strength will be high and the formability, especially when processing the radiator tube, will deteriorate.

このような本発明合金は、良好な耐食性及び耐溶接割れ
性を示すと共に、はんだ付は性も良好な合金であるため
、熱交換器用特にラジェーター用銅合金として適した材
料である。
The alloy of the present invention exhibits good corrosion resistance and weld cracking resistance, and also has good solderability, so it is a material suitable as a copper alloy for heat exchangers, particularly for radiators.

実施例 第1表に示す諸組成の合金を溶製し熱間圧延及び適宜焼
きなましを加えなから冷間圧延により1mm厚さの板と
し、最終的に腫々の温度で焼きなましを加え第2表に示
される結晶粒度に調整した。強度は引張強さと伸びで評
価し、結果を第3表に示した。耐食性試験に供する溶接
部材は第2表に示される結晶粒度をもつ1露厚さの諸組
成の合金を突き合せT工G溶接することにより作製した
。耐食性試験は1tの蒸留水に炭酸ナトリウム 1.3
f 硫酸ナトリウム 1.5f 塩化ナトリウム 1662 を各々溶かした液を液温88℃に保持し、毎分100t
nlの空気を吹き込みこの液の中に500時間浸漬した
。その時発生した最大脱亜鉛腐食深さを溶接部及び母材
部について測定しこれをもって耐食性を評価した。その
結果を第4表に示した。
Examples Alloys having the various compositions shown in Table 1 were melted, hot rolled and appropriately annealed, then cold rolled to form a plate with a thickness of 1 mm, and finally annealed at a high temperature as shown in Table 2. The grain size was adjusted to be as shown in . The strength was evaluated by tensile strength and elongation, and the results are shown in Table 3. The welded parts to be subjected to the corrosion resistance test were fabricated by butt T welding of alloys of various compositions having the crystal grain sizes shown in Table 2 and having a thickness of 1 dew. Corrosion resistance test: 1 ton of distilled water with sodium carbonate 1.3
f Sodium sulfate 1.5f Sodium chloride 1662 dissolved liquids were maintained at a temperature of 88°C, and the flow rate was 100 tons per minute.
nl of air was blown into the sample, and the sample was immersed in this solution for 500 hours. The maximum dezincification corrosion depth that occurred at that time was measured for the welded part and the base metal part, and the corrosion resistance was evaluated based on this. The results are shown in Table 4.

溶融した母材金属と接触した場合に粒界が脆化して溶接
割れが発生することに対する耐性についての試験は第2
表に示される結晶粒度をもつ諸組成の合金を第1図に示
されるようにパイプ状に加工し、これを同一組成の融点
+50℃に保持された溶融金属に3秒間浸漬し、その後
取り出して保持炉中で付着している金属が溶融している
状態で第2図のように衝撃を加えた。
The second test was for resistance to weld cracking caused by embrittlement of grain boundaries when in contact with molten base metal.
Alloys of various compositions with the grain sizes shown in the table are processed into pipe shapes as shown in Figure 1, immersed in molten metal of the same composition maintained at +50°C melting point for 3 seconds, and then taken out. While the attached metal was melted in the holding furnace, an impact was applied as shown in Figure 2.

その時変形したパイプ断面を顕微鏡によって観察し粒界
破壊の有無を確認し、これをもって溶接割れに対する耐
性を評価した。その結果を第5表に示した。
The cross section of the deformed pipe was then observed under a microscope to confirm the presence or absence of intergranular fracture, and this was used to evaluate resistance to weld cracking. The results are shown in Table 5.

さらに第2表に示された結晶粒度をもつ1餌厚さの合金
を第6表に示す加工度で冷間圧延も加えたのちはんだ付
は性試験に供した。はんだ付は性試験は直径80111
I+1.深さ60w+の円筒形ルツボにSn 20 w
t%−Pb 80 wt係からなるはんだを360℃に
加熱して溶湯をつくり、その中に降下速度25 m /
 secでサンプル(表面を清浄にした幅1.0+++
m、長さ50mの形状)を浸漬したときはんだ浴からサ
ンプルが受ける浮力とはんだ浴に引き込まれる力とが平
衡に達するまでの時間を測定し、これをもってはんだ付
は性を評価した。その結果を第7表に示した。
Furthermore, the alloys having a grain size shown in Table 2 and having a thickness of one plate were cold rolled at the working degree shown in Table 6, and then subjected to a soldering test. Soldering test is 80111 diameter
I+1. Sn 20w in a cylindrical crucible with a depth of 60w+
Solder consisting of t%-Pb 80 wt was heated to 360°C to create a molten metal, and a descending speed of 25 m /
Sample in sec (width 1.0+++ with surface cleaned)
The time required for the buoyant force exerted on the sample from the solder bath and the force drawn into the solder bath to reach equilibrium was measured when the sample was immersed in the sample (shape of 50 m long), and the soldering properties were evaluated based on this measurement. The results are shown in Table 7.

第6表、第4表、第5表、第7表かられかるように本発
明合金は、脱亜鉛腐食に対して素材及び溶接した場合溶
接部において優れた耐食性を示すとともに強度も向上し
ており、さらには耐溶接割れ性及びはんだ付は性も良好
な合金であることが判明した。
As can be seen from Table 6, Table 4, Table 5, and Table 7, the alloy of the present invention exhibits excellent corrosion resistance against dezincification corrosion in the raw material and in the welded part when welded, and also has improved strength. The alloy was also found to have good weld cracking resistance and soldering properties.

すなわち比較合金(試料番号1〜5)では最大脱亜鉛腐
食深さが素材で211〜361μ。
That is, in the comparison alloys (sample numbers 1 to 5), the maximum dezincification corrosion depth was 211 to 361 μm.

溶接部で620〜719μに達するのに対し。Whereas it reaches 620-719μ in the welded part.

本発明合金(試料番号6〜15)は最低値29μ〜最高
値79g、溶接部で最低値67μ〜最高値160μであ
り、耐脱亜鉛腐食性に優れていることが分る。そして本
発明合金の中でも結晶粒度が0.015m以下の合金は
より耐脱亜鉛腐食性に優れている。
It can be seen that the alloys of the present invention (sample numbers 6 to 15) have a minimum value of 29μ to a maximum value of 79g, and a minimum value of 67μ to a maximum value of 160μ in the welded part, and are excellent in dezincification corrosion resistance. Among the alloys of the present invention, alloys with a grain size of 0.015 m or less have better dezincification corrosion resistance.

また比較合金(試料番号1〜5)では引張強さ”が34
〜37胸/−であるのに対し1本発明合金(試料番号6
〜15)は42〜48Kf/−と強度が向上しているこ
とが分る。
In addition, the comparative alloys (sample numbers 1 to 5) had a tensile strength of 34
~37 breasts/-, whereas 1 inventive alloy (sample no. 6
It can be seen that the strength of samples 15) to 15) is improved to 42 to 48 Kf/-.

また本発明合金は上記のよう忙耐脱亜鉛腐食性2強度に
優れているが、さらに結晶粒度が0、015間以下であ
るもの(試料番号7.11.12)は第2図に示される
溶接割れ性の試験において単に延性変形するのみで割れ
の発生がなく溶接割れ性が改善される。逆に結晶粒度が
0. Of S澗を越えるものについては粒界破壊を起
こすので好ましくない。
In addition, the alloy of the present invention has excellent dezincification resistance and corrosion resistance 2 strength as described above, but in addition, the alloy with a grain size of 0.015 or less (sample number 7.11.12) is shown in Figure 2. In the weld crackability test, the weld crackability is improved by simply undergoing ductile deformation without cracking. On the other hand, if the grain size is 0. If it exceeds OfS, it is not preferable because it causes grain boundary destruction.

さらに本発明合金のうち加工度3〜20係の冷間圧延を
施したもの(試料番号6〜12)け同冷間圧延を施して
い方いもの(試料番号13〜15)のはんだ付は性の評
価(はんだ浴からサンプルが受ける浮力とはんだ浴に引
き込まれる力とが平衡に達するまでの時間による)にお
いて2.22〜2−30秒と比較的長時間かかるのに比
べてより短時間に平衡に達し、はんだ付は性に優れてい
るξとが分る。
Furthermore, among the alloys of the present invention, those that were cold-rolled with a workability of 3 to 20 (sample numbers 6-12) and those that were cold-rolled (sample numbers 13-15) had poor soldering properties. (depending on the time it takes for the buoyant force exerted on the sample from the solder bath and the force drawn into the solder bath to reach equilibrium) compared to the relatively long time of 2.22 to 2-30 seconds. It can be seen that equilibrium is reached and the soldering properties are excellent.

以上本発明合金は熱交換器用特にラジェーター用として
極めて優れた特性を有するものである。
As described above, the alloy of the present invention has extremely excellent properties for use in heat exchangers, especially radiators.

第 1 表 (単位wt係) 第2表 第 3 表 第 4 表 第 5 宍 第 6 表 第7表Table 1 (Unit wt section) Table 2 Table 3 Table 4 Chapter 5 Shishi Table 6 Table 7

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐溶接割れ性の試験に用いる厚さ1間の合金パ
イプの断面図、第2図は耐溶接割れ性の試験装置の概略
説明図である。 1゛厚さ1簡の合金パイプ(長さ1OW)2: 自由落
下体(重量200gW )3:支持台 4:加熱保持炉 a;パイプ内径(σ20思) b:パイプ外径(e22梠) C:落下体2の落下距離(50謂) 特許出願人 日本鉱業株式会社 代理人 弁理士(7569)並川啓志 第1図
FIG. 1 is a cross-sectional view of an alloy pipe with a thickness of 1 mm used for the weld cracking resistance test, and FIG. 2 is a schematic explanatory diagram of the weld cracking resistance testing apparatus. 1. Alloy pipe with 1 piece thickness (length 1OW) 2: Free falling body (weight 200gW) 3: Support stand 4: Heating and holding furnace a; Pipe inner diameter (σ20) b: Pipe outer diameter (e22) C : Falling distance of falling object 2 (50 clauses) Patent applicant: Japan Mining Co., Ltd. Patent attorney (7569) Keishi Namikawa Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)亜鉛10〜40wt係、りん0.005〜α07
0Wtチ。 錨Q、05〜1.0 wtチ、アルミニウム0.05〜
1、 Owt係を含み、さらにヒ素0.005〜[1,
jwt係。 アンチモン0.0 (15〜0.1wt%の内伺れか1
種又は2種を合計0.005〜0.2wt%含み、残部
鋼及び不可避的な不純物からなる耐食性に優れた銅合金
(1) Zinc 10-40wt, phosphorus 0.005-α07
0Wtchi. Anchor Q, 05~1.0 wt, aluminum 0.05~
1. Contains Owt, and further contains arsenic 0.005~[1,
jwt staff. Antimony 0.0 (within 15-0.1wt%)
A copper alloy with excellent corrosion resistance, containing one or two species in a total amount of 0.005 to 0.2 wt%, and the balance being steel and unavoidable impurities.
(2)最終焼鈍で結晶粒度が0.015wn以下なる、
ように調整した亜鉛10〜40 wt% 、りんo、o
o s〜0.07 Owt係、錫0,05〜1.0.w
t係、アルミニウム0.05〜t o wt4を含み、
さらにヒ紫0.005〜0.1wt%、アンチモン0.
005〜0,1wt%の内何れか1種又は2種を合計0
.005〜o、 2 wtfo含み、残部銅及び不可避
的な不純物からなる耐食性に優れた銀合金。
(2) The grain size becomes 0.015wn or less in the final annealing.
Zinc 10-40 wt%, phosphorus o, o
os~0.07 Owt, tin 0.05~1.0. lol
t ratio, including aluminum 0.05 to t wt4,
In addition, 0.005 to 0.1 wt% of purple violet and 0.0% of antimony.
A total of 0 of any one or two of 005 to 0.1 wt%
.. A silver alloy with excellent corrosion resistance, containing 005~o, 2 wtfo, and the balance being copper and unavoidable impurities.
(3) 最終焼鈍で結晶粒度がα015簡以下となるよ
うに調整したのち、さらに3〜20係の加工度で冷間圧
′延をほどこした亜鉛10〜40wt%、りん0.00
5〜0.070wt係、錫0.05〜1.0は2種を合
計o、oos〜o、2 wtqb含み、残部銅及び不可
避的な不純物からなる耐食性に優れた銅合金。
(3) After final annealing, the crystal grain size was adjusted to α015 or less, and then cold-rolled at a working ratio of 3 to 20, containing 10 to 40 wt% zinc and 0.00 phosphorus.
A copper alloy with excellent corrosion resistance, containing a total of 5 to 0.070 wt, 0.05 to 1.0 of tin, and a total of 2 types of o, oos to o, 2 wtqb, and the balance being copper and unavoidable impurities.
(4) 最終焼鈍後さらに3〜20%の加工度で冷間圧
延をほどこした亜鉛10〜40 wt% 、りんQ、0
05〜Q、D70 wt%、 錫0.05− t D 
wt%。 アルミニウム0.05〜1. Ovzt%を含み、さら
にヒ素α005〜0.1wt係、アンチモン0005〜
0、1wt%の内何れか1種又は2種を合計0005〜
0.2 wtl含み、残部銅及び不可避的々不純物から
なる耐食性に優れた銀合金。
(4) Zinc 10-40 wt%, phosphorus Q, 0 which was further cold-rolled with a working degree of 3-20% after final annealing.
05~Q, D70 wt%, Tin 0.05-t D
wt%. Aluminum 0.05-1. Contains Ovzt%, and further contains arsenic α005~0.1wt, antimony 0005~
0, 1 wt% of any one or two types in total 0005 ~
A silver alloy with excellent corrosion resistance that contains 0.2 wtl and the balance is copper and unavoidable impurities.
JP18933883A 1983-10-12 1983-10-12 Copper alloy having superior corrosion resistance Pending JPS6082631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18933883A JPS6082631A (en) 1983-10-12 1983-10-12 Copper alloy having superior corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18933883A JPS6082631A (en) 1983-10-12 1983-10-12 Copper alloy having superior corrosion resistance

Publications (1)

Publication Number Publication Date
JPS6082631A true JPS6082631A (en) 1985-05-10

Family

ID=16239664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18933883A Pending JPS6082631A (en) 1983-10-12 1983-10-12 Copper alloy having superior corrosion resistance

Country Status (1)

Country Link
JP (1) JPS6082631A (en)

Similar Documents

Publication Publication Date Title
JP3794971B2 (en) Copper alloy tube for heat exchanger
JP2008050657A (en) Aluminum piping material for automobile heat exchanger
CN115418533A (en) High strength and corrosion resistant alloy for HVAC &amp; R systems
JPH03193849A (en) Copper alloy having fine crystalline grain and low strength and its production
JPH03170646A (en) Manufacture of copper alloy having fine crystalline grains as well as low strength
JPS6082631A (en) Copper alloy having superior corrosion resistance
JPS6082635A (en) Copper alloy having superior corrosion resistance
JPS59153854A (en) Copper alloy with superior corrosion resistance
JPS6082632A (en) Copper alloy having superior corrosion resistance
JPS646265B2 (en)
JPS59118842A (en) Copper alloy with superior corrosion resistance
JPS646266B2 (en)
JPS6082630A (en) Copper alloy having superior corrosion resistance
JPS59118841A (en) Copper alloy having excellent corrosion resistance
JPS61199043A (en) Copper alloy having superior corrosion resistance and its manufacture
JPS59153856A (en) Copper alloy with superior corrosion resistance
JPS59118839A (en) Copper alloy having excellent corrosion resistance
JPS59150045A (en) Copper alloy with superior corrosion resistance
JPS6082634A (en) Copper alloy having superior corrosion resistance
JPS59126744A (en) Copper alloy with superior corrosion resistance
JPS6139387B2 (en)
JPS59107051A (en) Copper alloy with superior corrosion resistance
JPS6082633A (en) Copper alloy having superior corrosion resistance
JPS59150044A (en) Copper alloy with superior corrosion resistance
JPS59118840A (en) Copper alloy having excellent corrosion resistance