JPS59915A - Method of producing laminated circuit part - Google Patents

Method of producing laminated circuit part

Info

Publication number
JPS59915A
JPS59915A JP11052482A JP11052482A JPS59915A JP S59915 A JPS59915 A JP S59915A JP 11052482 A JP11052482 A JP 11052482A JP 11052482 A JP11052482 A JP 11052482A JP S59915 A JPS59915 A JP S59915A
Authority
JP
Japan
Prior art keywords
capacitor
layer
circuit
dielectric
laminated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11052482A
Other languages
Japanese (ja)
Other versions
JPH038573B2 (en
Inventor
涼 木村
野中 和志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11052482A priority Critical patent/JPS59915A/en
Publication of JPS59915A publication Critical patent/JPS59915A/en
Publication of JPH038573B2 publication Critical patent/JPH038573B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は積層回路部品の製造方法に関し、^誘電率を有
した酸化チタン系、チタン酸バリウム系コンデンサーを
有する回路において集積度の高い電気回路を構成しよう
とするものである。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing a laminated circuit component, and is intended to construct a highly integrated electric circuit in a circuit having a titanium oxide type or barium titanate type capacitor having a dielectric constant. be.

一般に磁気コンデンサーは電子回路中に^性能、島信頼
性を利用して多く用いられている。最近の実装技術の進
歩は著しく、チップコンデンサーやチップ抵抗等リード
レス部品が実用化され広く普及してきた。とシわけ、チ
ップコンデンサーの分野ではセラミック製造技術である
グリーンシート工法の発達に伴い積層型のコンデンサー
として小型・高容量のコンデンサーを実現し1こ、そし
て小型・高容盪化の要望から一般に用いられている磁気
コンデンサーとして、誘電率の高い材料が用いられる。
Generally, magnetic capacitors are widely used in electronic circuits due to their high performance and reliability. Recent advances in packaging technology have been remarkable, and leadless components such as chip capacitors and chip resistors have been put into practical use and widely used. Particularly, in the field of chip capacitors, with the development of the green sheet method, which is a ceramic manufacturing technology, compact, high-capacity capacitors have been realized as multilayer capacitors. Materials with high dielectric constants are used as magnetic capacitors.

これらのチップ部品は半導体部品とともに電子機器の小
型・高密度化に重要な役割を果している。数多く用いら
れる磁器コンデンサーを更に高密度実装を実現するため
に複数個のコンデンサーを1つのチップに構成すると実
装密度が上るとともに接地端子が内部Mct!liiで
共通的に用いることができるため、端子11E極数は単
機能チップコンデンサーで構成するときよシ少なくて良
い特長を有するようになる。更に次の段階として磁器コ
ンデンサーの表面を用いて機能回路を構成するととが考
えられる。このときにコンデンサーが高tjlt率であ
るtこめに電極間に分布容量が発生し、回路上問題があ
った。この問題を解決する方法としてMIIE体素子の
必要な部分に再結晶性焼結型低温ガラス層よシなる絶縁
層を設け、この絶縁層上に抵抗を設ける方法(特公昭4
8−18015  号)、或いは誘電体素子上に略全面
的にこの誘電体素子と熱膨張が餡等しい弱誘電体の層を
形成し、この弱誘電体層上に上記コンデンサー自体に跨
ってR,IC素子等の電気部品を装着する方法(特公昭
46−40129号)等の技術が見られる。このことを
第1図の概略図を用いて説明する。第1図において(1
)は誘電体層、(2)は内部電極、(3ンは配線電極、
(4月J厚膜抵抗、(6)は半導体素子、(6)は低誘
電率層(ガラ゛ス)を示す、誘電体層(1)上にガラス
等の低@重体層(6)を設けることによって配線電極(
3)、厚膜抵抗(4)、半導体素子(6)が誘電体層(
1)と直接に接触しない構成となっている。この方法は
平面回路のみ構成するときには有効であるが、8次元的
に構成する場合、例えば誘電体層(1)の両面に回路実
装するとき、或いは平面回路を構成し、誘電体層(1)
の端部を通ってマザーボード(プリンート基板)へ信号
回路を構成するときが考えられる。何れの場合にも誘電
体層(1)の端部を配線経路に取る必要があシ、このま
までは分布容量が発生する。そこでガラス等の低誘電率
材料を端部にも施こすことが考えられるが、通常塗布、
或いは印刷で行なう場合、誘電体層(1)のエツジ部で
の処理が製造技術的に困難である。その理由は誘電体素
子の寸法ばらつきや焼結時の1’、uが・・ある1こめ
である。エツジ部で配線電極(3)の下部に必らず低誘
電率層(6)が介在してbなければいけないのであるが
、端部4面にわたって処理することは工数、歩留まシの
点で問題がある。
These chip components, together with semiconductor components, play an important role in making electronic devices smaller and more dense. In order to realize higher density mounting of the many used ceramic capacitors, configuring multiple capacitors on one chip increases the mounting density and the ground terminal is internal McT! Since the terminal 11E can be used in common with other terminals, the number of poles of the terminal 11E can be reduced compared to when a single-function chip capacitor is used. The next step would be to construct a functional circuit using the surface of the ceramic capacitor. At this time, a distributed capacitance was generated between the electrodes at the moment when the capacitor had a high tjlt rate, which caused a problem in the circuit. A method to solve this problem is to provide an insulating layer such as a recrystallized sintered low-temperature glass layer in the necessary parts of the MIIE element, and to provide a resistor on this insulating layer.
No. 8-18015), or a layer of a weak dielectric material whose thermal expansion is almost the same as that of the dielectric element is formed almost entirely on the dielectric element, and a layer of R, which is formed over the weak dielectric layer, straddles the capacitor itself. Techniques such as a method for mounting electric components such as IC elements (Japanese Patent Publication No. 46-40129) are available. This will be explained using the schematic diagram of FIG. In Figure 1 (1
) is a dielectric layer, (2) is an internal electrode, (3 is a wiring electrode,
(April J thick film resistor, (6) is a semiconductor element, (6) is a low dielectric constant layer (glass), a low @ heavy layer (6) such as glass is placed on the dielectric layer (1) By providing wiring electrodes (
3), thick film resistor (4), and semiconductor element (6) with dielectric layer (
1) The structure is such that it does not come into direct contact with. This method is effective when configuring only a planar circuit, but when configuring an eight-dimensional circuit, for example, when the circuit is mounted on both sides of the dielectric layer (1), or when configuring a planar circuit and mounting the circuit on both sides of the dielectric layer (1).
One example is when a signal circuit is configured through the end of the board to the motherboard (printed circuit board). In either case, it is necessary to take the end of the dielectric layer (1) as a wiring route, and if this continues, distributed capacitance will occur. Therefore, it is possible to apply a low dielectric constant material such as glass to the edges, but normally
Alternatively, in the case of printing, it is difficult to process the edges of the dielectric layer (1) from a manufacturing technology perspective. The reason for this is the dimensional variation of the dielectric element and the fact that 1' and u during sintering are certain. A low dielectric constant layer (6) must be interposed below the wiring electrode (3) at the edge, but it is difficult to process the four edges in terms of man-hours and yield. There is a problem with this.

本発明方法はこれらの問題点を解決するために為された
もので、分布容量を電気回路として実用できる領域まで
下げ、8次元的に電気回路を構成できるようにした積層
回路部品を提供するものである。こ“の目的を達成する
ために本発明はニッケル、銅の内生なくとも1種の金属
を積層型磁器コンデンサーの表面に、無電解メッキし、
その後大気中成いは酸化雰囲気中にて熱処理し、斯かる
後磁器コンデンサー上に電気部品を装着することを特徴
とする。
The method of the present invention was devised to solve these problems, and provides a laminated circuit component that lowers the distributed capacitance to a level where it can be put to practical use as an electric circuit, thereby making it possible to construct an electric circuit eight-dimensionally. It is. In order to achieve this objective, the present invention electrolessly plating at least one metal such as nickel or copper on the surface of a multilayer ceramic capacitor,
It is characterized in that it is then heat-treated in an oxidizing atmosphere, and then electrical components are mounted on the porcelain capacitor.

以下本発明の一実施例について第2図、第8図に基づき
詳述する6図において0pは誘電体層、Q埠は内部電極
、0葎は配線電極、llI◆は厚膜抵抗、(ト)は半導
体素子、αQはワイヤ、Qηは拡散層を示す。
An embodiment of the present invention will be described below in detail based on FIGS. 2 and 8. In FIG. ) indicates a semiconductor element, αQ indicates a wire, and Qη indicates a diffusion layer.

ところで仁のような積層回路部品の製造方法について説
明すると、内部電極(ロ)と強誘電体層(ロ)とを一層
以上積層して少なくとも1個以上のコンデンサーを有し
た積層型コンデンサーを構成する。
By the way, to explain the manufacturing method of a laminated circuit component like Jin, one or more layers of internal electrodes (b) and ferroelectric layers (b) are laminated to form a laminated capacitor having at least one capacitor. .

通常その焼結温度は1000〜1400℃で行なわれる
The sintering temperature is usually 1000-1400°C.

その後、この強誘電体基板の表面(チップ状のときでは
大面)に一定厚みの強8m体を構成する以外の異種イオ
ンを拡散させ、表層部のみ低WsWIL率似しようとす
るもので、これが拡散層aηである。
After that, different types of ions other than those forming the strong 8m body with a certain thickness are diffused on the surface of this ferroelectric substrate (large surface when it is in the form of a chip), in order to make only the surface layer resemble a low WsWIL rate. This is the diffusion layer aη.

拡散層(ロ)の厚みを内部電極韓層まで至らないように
するためには、グリーンシートの1[を行なうときに予
じめ厚く積層すると良い、これは焼結のときのへす、或
いは基板としての強度を十分に確保する点でも有効であ
る。−例として基板厚みは1InI前後が最適である。
In order to prevent the thickness of the diffusion layer (b) from reaching the inner electrode layer, it is best to stack the green sheet thickly in advance when performing step 1 of the green sheet. It is also effective in ensuring sufficient strength as a substrate. - For example, the optimal substrate thickness is around 1 InI.

断面方向で内部!Itt!111aaが中心部に1/8
の厚みで構成され、上面に1/8、下面に1/8のlE
tMJ−を持たない強誘電体層(容鰍値に関与しない部
分)を構成することが考えられる。
Inside in cross-sectional direction! Itt! 111aa is 1/8 in the center
The thickness is 1/8 on the top surface and 1/8 on the bottom surface.
It is conceivable to configure a ferroelectric layer that does not have tMJ- (a portion that does not contribute to the electromagnetic value).

この積層チップ状強誘電体基板の表面に一定厚みの元素
を表面から拡散させる。その元素としては熱拡散が起シ
易いことと低誘電率化することに効果の大きいことが要
求される。又−ロ記拡散は金属イオンを無電解メッキし
、誘電体の表面に析出さ  □せ、斯かる後金属イオン
として或いは金属酸化物として積層誘電体基板へ拡散す
る温度で熱処理を行なう、これらは上記条件に最適な金
属としてニッケル、銅が有効であることが分っtコ、熱
処理温度としてはsoトtaoa°Cが最適である。こ
れは800°C以下では熱拡散が起シにくいことと、金
属が金属酸化物とならずにそのまま残シ、絶縁抵抗を下
げるtこめであj5.1800°C以上では誘電体層の
特性を劣化させるためである。熱処理するときの雰囲気
としては大気中、或いは酸化雰囲気中にて行なうことが
好ましい、このように本発明方法で番よ熱拡散という技
術を用いることによって表層部1こ均一に、素子の寸法
ばらつき、列に関係なく低誘電体層を構成できるtこめ
に、分布容態を実用範囲内に下げて8次元的に回路構成
できる素子の製造が可能になった。この基板を用いて一
方に導体、抵抗パターンを厚膜技術、薄膜技術等によ多
構成し、片面には半導体素子を装着して機能回路が得ら
れ、Q にCRジュール、LCモジュールとしてモ実現
可能で用途は電子回路全搬に考えることができる。
A certain thickness of elements is diffused from the surface of this laminated chip-shaped ferroelectric substrate. The element is required to be easily thermally diffused and to be highly effective in lowering the dielectric constant. In addition, the diffusion described in (b) involves electroless plating of metal ions, depositing them on the surface of the dielectric, and then heat-treating them at a temperature at which they diffuse into the laminated dielectric substrate as metal ions or metal oxides. It has been found that nickel and copper are effective metals suitable for the above-mentioned conditions, and the optimum heat treatment temperature is 50°C. This is because thermal diffusion is difficult to occur below 800°C, and the metal does not become a metal oxide but remains as it is, reducing insulation resistance. This is to cause deterioration. It is preferable that the heat treatment be carried out in the air or in an oxidizing atmosphere.By using the technique of thermal diffusion in the method of the present invention, the surface layer can be uniformly treated, and the dimensional variations of the element can be eliminated. In addition to being able to configure a low dielectric layer regardless of the rows, it has become possible to lower the distribution state to within a practical range and manufacture an element that can have an eight-dimensional circuit configuration. Using this board, conductors and resistance patterns are constructed using thick film technology, thin film technology, etc. on one side, and a functional circuit is obtained by mounting a semiconductor element on one side, and a module is realized as a CR module and LC module on the Q side. Possible applications can be considered for all electronic circuits.

この機能回路は小型、高密度実装に有効であシ、機能回
路ブロックとして作るtこめに設計の標準化。
This functional circuit is effective for compact, high-density packaging, and the design is standardized once it is created as a functional circuit block.

星産化に対しても効果的である。It is also effective against star production.

以下具体例について説明する。A specific example will be explained below.

〔具体例1〕 誘電率4600  の特性を有するチタ酸ノ(リウムク
゛リーンシートと内部電極材としてのI(ラジウムを交
互に積層し、12X12m、厚み1.2flのチップ状
に打ち抜く、このようにして積層した誘電体チップを焼
成温度1850℃、焼成時間2時間の焼成条件にて焼結
した。一体焼結された積層コンデンサーは9×9闘、厚
み0.9順となった。内部電極層は厚み方向に8等分し
た中央部に介在し、複数個のコンデンサーを構成する電
極パターンとなっている。
[Specific Example 1] A titanic acid (lium) clean sheet having a dielectric constant of 4600 and I (radium) as an internal electrode material are alternately laminated and punched into a chip shape of 12 x 12 m and 1.2 fl thick. The laminated dielectric chips were sintered under the conditions of a firing temperature of 1850°C and a firing time of 2 hours.The integrally sintered multilayer capacitor was 9×9 in size and had a thickness of 0.9.The internal electrode layers were The electrode pattern is interposed in the center of eight equal parts in the thickness direction and forms a plurality of capacitors.

又、コンデンサー用内部電極の引出線は焼結されtこ積
層体の周辺部に設けである。このようにして得られtこ
積層コンデンサーに第1表に示すところの金属を無電解
メッキし、第1表に示す熱処理温度、雰囲気で熱拡散を
行なう。このようにして処理されtこ積層コンデンサー
の拡散面にAg/4′d導体ペーストを用いてW7L極
幅0.5MM 、長さ4朋、電極間隔0.4mの電極パ
ターンを印刷し、850 ’C−10分で焼付を行なう
、このようにして拡散面上に構成した電極間の容量をキ
ャパシタンスブリッジを用いて測定しtこ結果も第1表
に示す、この結果より拡散層が低誘電率化していること
が分る。又拡散層の厚みはX線マイクロアナライザーに
て0.1〜0.2151〕範囲で起っていることを確認
し1こ。尚、端子電極を設けている縁端部は60μm程
度研摩することにぼって新しいパラジウム内部電極が露
出してくる。このように本発明方法にて高誘電率の表層
部に8次元的に均一な低誘電率層を構成でき、コンデン
サーを基板としtコ高密度回路部品が得られ1こ。
Further, the lead wire of the internal electrode for the capacitor is sintered and provided around the periphery of the laminate. The multilayer capacitor thus obtained was electrolessly plated with the metals shown in Table 1, and thermal diffusion was carried out at the heat treatment temperature and atmosphere shown in Table 1. An electrode pattern of W7L width 0.5 mm, length 4 mm, and electrode spacing 0.4 m was printed on the diffusion surface of the laminated capacitor treated in this way using Ag/4'd conductor paste, and 850' The capacitance between the electrodes formed on the diffusion surface was measured using a capacitance bridge. I can see that it has changed. In addition, the thickness of the diffusion layer was confirmed to be within the range of 0.1 to 0.2151 using an X-ray microanalyzer. Note that the edge portion where the terminal electrode is provided is polished by approximately 60 μm to expose the new palladium internal electrode. As described above, by the method of the present invention, it is possible to form an eight-dimensionally uniform low dielectric constant layer on the high dielectric constant surface layer, and a high density circuit component can be obtained using a capacitor as a substrate.

第1表 〔具体例2〕 誘−1率100の特性を有する酸化チタンを用いてグリ
ーンシートを作成し、内部電極として白金−パラジウム
を交互に積層し、  1lxllffl、 厚み111
1のチップ状に切断する。このようにして切断されrコ
誘電体チップを焼成温度1400°C1焼成時間2時間
の焼成条件にて焼成した。一体焼結されtコ積層コンデ
ンサーは9×9M1K、厚み0.9朋となつtこ。
Table 1 [Specific Example 2] A green sheet was created using titanium oxide having a dielectric constant of 100, and platinum and palladium were alternately laminated as internal electrodes, 1lxllffl, thickness 111.
Cut into 1 chip. The thus cut r-co dielectric chips were fired at a firing temperature of 1400° C. and a firing time of 2 hours. The monolithically sintered multilayer capacitor is 9 x 9M1K, 0.9mm thick and 0.9mm thick.

内部電極は厚み方向に8等分した中央部に介在し、複数
個のコンデンサーを構成している。又コンデンサー用内
部Wlt極の引出は具体例1と同じである。
The internal electrodes are interposed at the center of eight equal parts in the thickness direction, forming a plurality of capacitors. Further, the extraction of the internal Wlt pole for the capacitor is the same as in the first embodiment.

このようにして得られた酸化チタンfillilコンデ
ンサーに第2表に示すところの金属を用いて無電解メッ
キ法によシ表層部に析出させtこ後、@2表に示す条件
で熱処理を行なった。このようにして処理された酸化チ
タン積層コンデンサーの拡散面に具体例1で用いr、:
 g極パター′ンを構成し、tt極間容量を測定しtコ
。そのときの結果を第2表に示す。
The titanium oxide fill capacitor thus obtained was deposited on the surface layer by electroless plating using the metals shown in Table 2, and then heat treated under the conditions shown in Table 2. . The diffusion surface of the titanium oxide multilayer capacitor treated in this way was used in Example 1:
Configure a g-pole pattern, measure the capacitance between the tt and tt. The results are shown in Table 2.

又拡散層の確認はX線マイクロアナライザーによって行
ない、内部電極層まで達していないことを確認し1こ、
このようにして酸化チタン積層コンデンサーの表層部を
低誘電率化し、電極、抵抗を厚膜構成し、半導体素子を
実装する高密度回路部品が実現できた。
In addition, the diffusion layer was confirmed using an X-ray microanalyzer, and it was confirmed that it did not reach the internal electrode layer.
In this way, the surface layer of the titanium oxide multilayer capacitor was made to have a low dielectric constant, the electrodes and resistors were constructed with thick films, and a high-density circuit component that mounted semiconductor elements was realized.

本発明は以上述べたように実施し得るものであシJ酸化
チタン、チタン酸バリウム系積層コンデンサーの表層部
を熱拡散によって低誘電率化し、第2表 その上面に電極、抵抗を構成し、半導体素子を実装でき
る高密度回路部品が実現できた。
The present invention can be carried out as described above.The surface layer of a titanium oxide/barium titanate multilayer capacitor is made to have a low dielectric constant by thermal diffusion, and electrodes and resistors are formed on the upper surface of the layer as shown in Table 2. A high-density circuit component that can mount semiconductor elements has been realized.

【図面の簡単な説明】[Brief explanation of drawings]

llSx図は従来例を示す断面図、#I2図は本発明の
一実施例を示す断面図、第8図は同平面図である。 01・・・all:体層、斡・・・内部電極、(至)・
・・配線電極、Q、11゛・・・厚膜抵抗、帽・・半導
体域子、DI−・ワイヤ、Qη・・・拡散層 代理人 森本i弘 第1図 勺 2
Figure llSx is a cross-sectional view showing a conventional example, Figure #I2 is a cross-sectional view showing an embodiment of the present invention, and Figure 8 is a plan view thereof. 01...all: body layer, 斡...internal electrode, (to)...
・・Wiring electrode, Q, 11゛・・Thick film resistor, cap・・Semiconductor region, DI−・Wire, Qη・・Diffusion layer agent Ihiro Morimoto Figure 1 2

Claims (1)

【特許請求の範囲】 1、ニッケル、#!の内生なくとも1種の金塊を積層耐
磁−コンデンサーの表面に無電解メッキし、その後大気
中成いは酸化雰囲気中にて熱処理し、斯かる後磁気コン
デンサー上に電気部品を装着する積層回路部品の製造方
法。 2、 磁器コンデンサーを酸化チタン及びチタン酸バリ
ウム系磁気コンデンサーとした特許請求の範囲第1項記
載の積層回路部品の製造方法。 8、熱処理温度を800〜1800°Cとした特許請求
の範囲第1項記載の積層回路部品の製造方法。
[Claims] 1. Nickel, #! A multilayer circuit in which at least one kind of gold ingot is electrolessly plated on the surface of a multilayer antimagnetic capacitor, and then heat treated in the air or in an oxidizing atmosphere, and then electrical components are mounted on the magnetic capacitor. How the parts are manufactured. 2. The method for manufacturing a laminated circuit component according to claim 1, wherein the ceramic capacitor is a titanium oxide and barium titanate-based magnetic capacitor. 8. The method for manufacturing a laminated circuit component according to claim 1, wherein the heat treatment temperature is 800 to 1800°C.
JP11052482A 1982-06-25 1982-06-25 Method of producing laminated circuit part Granted JPS59915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11052482A JPS59915A (en) 1982-06-25 1982-06-25 Method of producing laminated circuit part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11052482A JPS59915A (en) 1982-06-25 1982-06-25 Method of producing laminated circuit part

Publications (2)

Publication Number Publication Date
JPS59915A true JPS59915A (en) 1984-01-06
JPH038573B2 JPH038573B2 (en) 1991-02-06

Family

ID=14537980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11052482A Granted JPS59915A (en) 1982-06-25 1982-06-25 Method of producing laminated circuit part

Country Status (1)

Country Link
JP (1) JPS59915A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171970A (en) * 2012-02-21 2013-09-02 Soshin Electric Co Ltd Capacitor module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171970A (en) * 2012-02-21 2013-09-02 Soshin Electric Co Ltd Capacitor module

Also Published As

Publication number Publication date
JPH038573B2 (en) 1991-02-06

Similar Documents

Publication Publication Date Title
KR930010076B1 (en) Multilayer hybrid integrated circuit
JPH07326536A (en) Ceramic capacitor
US11756989B2 (en) Capacitor integrated structure
JP2970334B2 (en) Chip type three-terminal capacitor
JPH10308584A (en) Ceramic multilayered board and its manufacture
JPH1167586A (en) Chip-type network electronic component
JPH0115164Y2 (en)
JPS59915A (en) Method of producing laminated circuit part
JP2003163559A (en) Circuit board with filter
JP2022166463A (en) Ceramic electronic component and mounting substrate
JP3246166B2 (en) Thin film capacitors
JPS5917227A (en) Method of producing composite laminated ceramic part
JP3248294B2 (en) Chip inductor and manufacturing method thereof
JPH11329845A (en) Electronic component and manufacture thereof
JPH0817675A (en) Chip type laminated ceramic capacitor
JPH05347227A (en) Laminated thin film capacitor
JP3597874B2 (en) Method of manufacturing composite integrated circuit component
JPH038572B2 (en)
JPH11345734A (en) Laminated ceramic capacitor
JPH08181445A (en) Ceramic multilayer board
JP2000150290A (en) Capacitor
JP3600734B2 (en) Thin film capacitors and substrates
JPS58225628A (en) Method of producing laminated circuit part
JPH0315329B2 (en)
JPS6092697A (en) Composite laminated ceramic part