JPS5980981A - Gallium phosphorus green color emitting diode and manufacture thereof - Google Patents

Gallium phosphorus green color emitting diode and manufacture thereof

Info

Publication number
JPS5980981A
JPS5980981A JP57192678A JP19267882A JPS5980981A JP S5980981 A JPS5980981 A JP S5980981A JP 57192678 A JP57192678 A JP 57192678A JP 19267882 A JP19267882 A JP 19267882A JP S5980981 A JPS5980981 A JP S5980981A
Authority
JP
Japan
Prior art keywords
layer
impurity concentration
substrate
melt
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57192678A
Other languages
Japanese (ja)
Other versions
JPH0547996B2 (en
Inventor
Kentaro Inoue
健太郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP57192678A priority Critical patent/JPS5980981A/en
Publication of JPS5980981A publication Critical patent/JPS5980981A/en
Priority to JP5001109A priority patent/JPH05335621A/en
Publication of JPH0547996B2 publication Critical patent/JPH0547996B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve the light emitting efficiency of the titled diode by a method wherein the first n-layer with the impurity concentration almost similar to that of a substrate, the second n-layer with the impurity concentration lower than that of the first layer by one figure or more and less thickness and a p-layer formed on the second layer are provided on a substrate. CONSTITUTION:An n type gallium phosphorus substrate 1 with impurity concentration of 1-3X10<17>cm<-3> is contained in a carbon boat together with melt in hydrogen atmosphere at high temperature (11). At this time, after mixing hydrogen sulfide within the hydrogen atmosphere for about one minute and introducing sulfur to be the main donor impurity into the melt the melt is cooled down to epitaxially grow the first n- layer 12. At this time, the impurity concentration of the first n-layer 2 30-50mum thick is almost similar to that of substrate 1 i.e. 1-5X10<17>cm<-3>. Then the melt is left for a long time (13). Finally the atmosphere converted from hydrogen to argon is cooled down after nitrogen is dissipated to epitaxially grow the second n-layer 14. The second n-layer 4 with the impurity concentration of 0.5-5X10<16>cm<-3> is 10-20mum thick. Then zinc vapor is successively introduced to liquid epitaxially grow a layer with impurity concentration of 5-10X10<18>cm<-5>.

Description

【発明の詳細な説明】 本発明は窒素及びシリコンのほとんど含まれない高輝度
短波長緑色発光をするガリウム燐緑色発光ダイオードお
よびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gallium phosphorus green light-emitting diode that contains almost no nitrogen and silicon and emits high-intensity short-wavelength green light, and a method for manufacturing the same.

従来ガリウム燐(GaP)を用し1て発光波長555j
nmの純緑色を発光する発光ダイオードとしてはPn接
合近傍に窒素を混入しない事とn層重度を低くする必要
かめるとされてきた。そして例えば特公昭57−111
84時公報においては窒素を含むn層上に窒素を含まな
いn層を積層してPn接合をつくるとして第1 Ii!
J(a) (b)に示すように2回のn層エビタ牛シャ
ル成長@(2)を施こし不純物濃度は1016♂臂が基
板側では窒素が多(接合側では窒素の含まれないn1l
(至)を形成している。
Conventionally, using gallium phosphorus (GaP), the emission wavelength was 555j.
It has been said that for a light emitting diode that emits pure green light of nm wavelength, it is necessary not to mix nitrogen near the Pn junction and to reduce the density of the N layer. For example, the special public official court Sho 57-111
In the 1984 publication, the first Ii!
As shown in J(a) and (b), the impurity concentration was 1016♂ after two times of n-layer growth @(2), the substrate side was rich in nitrogen (the bonding side was n1l containing no nitrogen).
(to) is formed.

しかし乍ら発明者の研究ではこのようにPn接合の数+
μm近傍に窒素か存在すると壜波長光の吸収が起きやす
い事、また基板からすぐ低不純物層を成長させると界面
で結晶性かくずれ、発光iこ寄与しない電流や発熱現象
か生じやすいこと、および上記文献では主たるドナー不
純物にシリコンを用いているが、ガリウム燐中のシリコ
ンは扱いにくく一寸した事で発光層の結晶性をこわし寿
命か短かくなる事から好ましくないとの結論を得た。
However, in the inventor's research, the number of Pn junctions +
The presence of nitrogen in the vicinity of μm tends to cause absorption of wavelength light, and if a low impurity layer is grown immediately from the substrate, the crystallinity deteriorates at the interface, and currents and heat generation phenomena that do not contribute to light emission are likely to occur. Although silicon is used as the main donor impurity in the above literature, it was concluded that silicon in gallium phosphorus is undesirable because it is difficult to handle and a small amount of silicon destroys the crystallinity of the light emitting layer and shortens its life.

本発明は上述の点を考慮してなされたもので、短波長の
光を高発光効率で安定蚤こ発光するガリウム燐緑色発光
ダイオードおよびその製造方法に関するもので、以F本
発明を実施例に基づいて詳細に説明する。
The present invention has been made in consideration of the above points, and relates to a gallium phosphorus green light emitting diode that stably emits short wavelength light with high luminous efficiency, and a method for manufacturing the same. This will be explained in detail based on the following.

第2図は本発明実施例のガリウム燐緑色発光ダイオード
の製造方法を説明するための液相エピタキシャル成長の
T!A度工程図で、第3図はそのようにして製造された
ガリウム燐緑色発光ダイオードの不純物濃度図である。
FIG. 2 shows the T! FIG. 3 is an impurity concentration diagram of a gallium phosphorous green light emitting diode manufactured in this way.

まずカーボンボートを用い1乃至5W、 10+7国−
5の不純V/1m度を有するn型ガリウム燐基板Il+
を融液と共に水素雰囲気中で高温保持するXtU、この
時硫化水素を約1分間水素雰囲気中に混ぜて、融液中に
主ドナー不純物となるイオウを導入したあと、降温して
第1のn−のLピタ牛シfル成長をするd2゜この時形
成された第1のnM1121は1乃至5 X 10 ”
a+−’と、基板+11と同程度の不純物温度で、厚み
は60乃至50μmである。その後長時間保持J31す
るか、その前手番こおいては上述の段階で導入したイオ
ウか飛散し、後半のj&切においてアンモニアガス全0
.1乃至0.4液中薔こシリコン窒化物(Sill N
りが析出して、そのM果融液のイオウ1度およびシリコ
ン濃度が低ドする。好ましくはシリコンはlPPm1.
]ドとなる様に窒化物を析出させるのがよい。そして最
後番こ雰囲気を水素からアルゴンがス番こ切換えて、反
応賞等からのシリコンの混入を防ぎ、アンモニアガスか
ら導入された窒素の飛散をまプて降温し、第2のn層を
エピタキシャル成長させるu410このようにして形成
された第2のn ffl +41は0.5乃至5×10
”cm−寸C厚みは10乃至2L)Pm  でゐる。続
いて亜鉛蒸気を導入して5乃至10 X 10”am 
’のP層(5)を液相エピタキシャル成長させるu51
0以上の如く本発明はn型のガリウム燐基板上に形成さ
れた基板と略等しい不純物#[の第1のnl−と、第1
のn層上60形成されfこ不純物濃度が第1のn1il
より1桁以上低く、厚みもうすい第2のn層と、第2の
n層上(こ形成されたP層とを具備したガリウム燐緑色
発光ダイオードであるから、各層の結晶性を荒らす事な
(Pn接合近傍の0層1度をドげる事かできるから高発
光効率となり、窒素かほとんどどの晴にもないので純緑
色の発光となる。具体的薔こはチップコート後の状態で
発光効率0.12%、平均輝度115 mcd、発光波
長与555 nm で高温多湿寿命試験でも従来の約1
0倍の長時間にわたり輝度低ドがなかった。
First, using a carbon boat, 1 to 5W, 10+7 countries-
n-type gallium phosphide substrate Il+ with impurity V/1m degree of 5
XtU is held at high temperature in a hydrogen atmosphere together with the melt. At this time, hydrogen sulfide is mixed in the hydrogen atmosphere for about 1 minute to introduce sulfur, which becomes the main donor impurity, into the melt, and then the temperature is lowered and the first - The L pita cow grows d2゜The first nM1121 formed at this time is 1 to 5 x 10''
a+-', the impurity temperature is about the same as that of the substrate +11, and the thickness is 60 to 50 μm. After that, hold J31 for a long time, or in the previous turn, the sulfur introduced in the above step will scatter, and in the second half, in J & cut, the ammonia gas will be completely 0.
.. 1 to 0.4 Sill N
As a result, the sulfur and silicon concentrations of the M fruit melt decrease. Preferably the silicon is lPPm1.
] It is preferable to precipitate the nitride so that it becomes . Finally, the atmosphere is switched from hydrogen to argon to prevent silicon from being mixed in from the reaction mixture, and the temperature is lowered while avoiding the scattering of nitrogen introduced from ammonia gas, and the second n-layer is epitaxially grown. The second n ffl +41 thus formed is 0.5 to 5×10
The thickness in cm is 10 to 2 L) Pm. Then, zinc vapor is introduced and the thickness is 5 to 10 x 10" Pm.
u51 to grow the P layer (5) of ' by liquid phase epitaxial growth
As described above, the present invention is characterized in that the first nl- of impurity #
The impurity concentration of f is formed on the first n layer 60.
Since this is a gallium phosphorous green light-emitting diode with a second n-layer that is one order of magnitude lower and thinner, and a p-layer formed on the second n-layer, the crystallinity of each layer is not disturbed. (The 0 layer near the Pn junction can be lowered by 1 degree, resulting in high luminous efficiency, and since there is almost no nitrogen in the atmosphere, pure green light is emitted.Specifically, Barako emits light after chip coating. With an efficiency of 0.12%, an average brightness of 115 mcd, and an emission wavelength of 555 nm, it is about 1 times faster than conventional products even in high-temperature and high-humidity life tests.
There was no low brightness for a long period of time.

また上述のよう1L発光ダイオードをn型のグリ、 ラ
ム燐基板上番こ1@1のn層を液相エピタキシャル成長
させた後、融液内憂こSlの窒化物を析出させ、その後
アルゴン雰囲気中で第2のnt@を液相エピタキシャル
成長させ、その後にpHを形成するので、Pれ接合附近
のn 44こおいC特にシリコンを谷筋をこ除去し、生
産しやすい方法となった。
In addition, as mentioned above, a 1L light emitting diode was grown by liquid phase epitaxial growth of an n layer on an n-type phosphorus substrate, and then a nitride of sl in the melt was precipitated, and then in an argon atmosphere. Since the second nt@ is grown by liquid phase epitaxial growth and then pH is formed, the valleys of the N44 layer C, especially silicon, near the P-rejunction are removed, making it easy to produce.

第2EAは本発明実施例のガリウム燐緑色発光ダイオー
ドの液相エピタキシドル成長の温度工程図、第3図は本
発明実施例のガリウム燐緑色発光ダイオードの不純物濃
度図である。
2. EA is a temperature process diagram of liquid phase epitaxial growth of a gallium phosphorous green light emitting diode according to an embodiment of the present invention, and FIG. 3 is an impurity concentration diagram of a gallium phosphorous green light emitting diode according to an embodiment of the present invention.

11ト・・基板、+2トIJ 1のn層、(4F−jB
2のn層、15)・・・Pm。
11th board, +2th IJ 1 n layer, (4F-jB
2 n-layer, 15)...Pm.

Claims (1)

【特許請求の範囲】 ill  n型のガリウム燐基板上に形成された基板と
略等しい不純物濃度の第1のn層と、WSlのn層上に
形成された不純物濃度が第1のn層より1桁以上低く厚
みもうすい第2のn−と、第2のn層上に形成された2
層とを具備した事を特徴とするガリウム燐緑色発光ダイ
オード。 (2) n型のガリウム燐基板上に第1のn層を液相エ
ピタ牛シャル成長させた後、融液11’91こSlの窒
化物を析出させ、その後アルゴン零囲気中で第2のn1
iiを液相エピタキシャル成長させ、その後にPlii
を形成した事を特徴とするガリウム燐緑色発光ダイオー
ドの製造方法。
[Claims] ill The first n layer formed on the n-type gallium phosphorus substrate has an impurity concentration substantially equal to that of the substrate, and the impurity concentration formed on the WSl n layer is higher than that of the first n layer. The second n- layer is more than an order of magnitude lower and the thickness is thinner, and the second n- layer is formed on the second n layer.
A gallium phosphorus green light emitting diode characterized by comprising a layer. (2) After growing a first n-layer in liquid phase epitaxially on an n-type gallium phosphorus substrate, depositing 11'91 of Sl nitride in the melt, and then growing a second n-layer in an argon atmosphere. n1
Plii is grown by liquid phase epitaxial growth, and then Plii is grown by liquid phase epitaxial growth.
A method for manufacturing a gallium phosphorus green light emitting diode, characterized in that it forms a gallium phosphorus green light emitting diode.
JP57192678A 1982-11-01 1982-11-01 Gallium phosphorus green color emitting diode and manufacture thereof Granted JPS5980981A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57192678A JPS5980981A (en) 1982-11-01 1982-11-01 Gallium phosphorus green color emitting diode and manufacture thereof
JP5001109A JPH05335621A (en) 1982-11-01 1993-01-07 Gallium phosphide green light emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP57192678A JPS5980981A (en) 1982-11-01 1982-11-01 Gallium phosphorus green color emitting diode and manufacture thereof
JP5001109A JPH05335621A (en) 1982-11-01 1993-01-07 Gallium phosphide green light emitting diode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5001109A Division JPH05335621A (en) 1982-11-01 1993-01-07 Gallium phosphide green light emitting diode

Publications (2)

Publication Number Publication Date
JPS5980981A true JPS5980981A (en) 1984-05-10
JPH0547996B2 JPH0547996B2 (en) 1993-07-20

Family

ID=26334274

Family Applications (2)

Application Number Title Priority Date Filing Date
JP57192678A Granted JPS5980981A (en) 1982-11-01 1982-11-01 Gallium phosphorus green color emitting diode and manufacture thereof
JP5001109A Pending JPH05335621A (en) 1982-11-01 1993-01-07 Gallium phosphide green light emitting diode

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP5001109A Pending JPH05335621A (en) 1982-11-01 1993-01-07 Gallium phosphide green light emitting diode

Country Status (1)

Country Link
JP (2) JPS5980981A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671829A (en) * 1982-07-28 1987-06-09 Matsushita Electric Industrial Co., Ltd. Manufacturing green light emitting diodes
EP0685892A3 (en) * 1994-05-31 1998-04-01 Sharp Kabushiki Kaisha Method for producing light-emitting diode
WO2001033642A1 (en) * 1999-10-29 2001-05-10 Shin-Etsu Handotai Co., Ltd. Gallium phosphide luminescent device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453975A (en) * 1977-10-07 1979-04-27 Toshiba Corp Manufacture for gallium phosphide green light emitting element
JPS5513884A (en) * 1978-07-17 1980-01-31 Shionogi & Co Ltd Aggregation reacting antigen and its manufacture
JPS5694678A (en) * 1979-12-27 1981-07-31 Sanyo Electric Co Ltd Manufacture of lightemitting diode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945234B2 (en) * 1976-10-12 1984-11-05 サンケン電気株式会社 GaP light emitting diode
JPS606552B2 (en) * 1979-02-15 1985-02-19 株式会社東芝 Gallium phosphide green light emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453975A (en) * 1977-10-07 1979-04-27 Toshiba Corp Manufacture for gallium phosphide green light emitting element
JPS5513884A (en) * 1978-07-17 1980-01-31 Shionogi & Co Ltd Aggregation reacting antigen and its manufacture
JPS5694678A (en) * 1979-12-27 1981-07-31 Sanyo Electric Co Ltd Manufacture of lightemitting diode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671829A (en) * 1982-07-28 1987-06-09 Matsushita Electric Industrial Co., Ltd. Manufacturing green light emitting diodes
EP0685892A3 (en) * 1994-05-31 1998-04-01 Sharp Kabushiki Kaisha Method for producing light-emitting diode
WO2001033642A1 (en) * 1999-10-29 2001-05-10 Shin-Etsu Handotai Co., Ltd. Gallium phosphide luminescent device

Also Published As

Publication number Publication date
JPH0547996B2 (en) 1993-07-20
JPH05335621A (en) 1993-12-17

Similar Documents

Publication Publication Date Title
Craford LEDs challenge the incandescents
Akasaki Blue Light: A Fascinating Journey (Nobel Lecture).
JPS6055678A (en) Light emitting diode
JPS581539B2 (en) epitaxial wafer
JPS5980981A (en) Gallium phosphorus green color emitting diode and manufacture thereof
US5529938A (en) Method for producing light-emitting diode
JPH0940490A (en) Production of gallium nitride crystal
JP2579326B2 (en) Epitaxial wafer and light emitting diode
JP3792817B2 (en) GaAsP epitaxial wafer and manufacturing method thereof
JP3146874B2 (en) Light emitting diode
JPH10214993A (en) Epitaxial wafer and its manufacture as well as light-emitting diode
JPS5816535A (en) Semiconductor device and its manufacture
CN110010731A (en) A kind of long wavelength LED extension base chip, chip and preparation method
JPH1065211A (en) Light-emitting diode
JPH0220077A (en) Manufacture of green-light emitting diode
JPS62172766A (en) Semiconductor light emitting device and manufacture thereof
JPS61106497A (en) Method for growing epitaxial film of gallium phosphide and arsenide
JPH05335619A (en) Light-emitting diode and its manufacture
JPS599983A (en) Manufacture of gallium phosphide green light emitting diode
JP3326261B2 (en) Gallium phosphide green light emitting diode and method of manufacturing the same
JPH08264467A (en) Method of forming nitrogen-doped gap epitaxial layer
TW569472B (en) Multi-color luminous lamp and its light source
JPS62186576A (en) Manufacture of gallium arsenide diode emitting infrared rays
JPS5972717A (en) Manufacture of semiconductor single crystal
TWI244219B (en) Electromagnetic radiation-emitting semiconductor-chip and its production method