JPS599983A - Manufacture of gallium phosphide green light emitting diode - Google Patents

Manufacture of gallium phosphide green light emitting diode

Info

Publication number
JPS599983A
JPS599983A JP57119207A JP11920782A JPS599983A JP S599983 A JPS599983 A JP S599983A JP 57119207 A JP57119207 A JP 57119207A JP 11920782 A JP11920782 A JP 11920782A JP S599983 A JPS599983 A JP S599983A
Authority
JP
Japan
Prior art keywords
layer
melt
concentration
substrate
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57119207A
Other languages
Japanese (ja)
Other versions
JPH0550154B2 (en
Inventor
Tadanobu Yamazawa
山沢 忠信
Kentaro Inoue
健太郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP57119207A priority Critical patent/JPS599983A/en
Priority to US06/509,186 priority patent/US4562378A/en
Priority to DE19833324220 priority patent/DE3324220A1/en
Publication of JPS599983A publication Critical patent/JPS599983A/en
Publication of JPH0550154B2 publication Critical patent/JPH0550154B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain an LED having high luminance, by laminating a plurality of N layers on an N type GaP substrate by a liquid phase epitaxial method with a rest period being provided, introducing N2 in a gaseous phase into the melt at a final stage, providing an N layer, and laminating a P layer. CONSTITUTION:GaP polycrystal and N type impurities are mixed in a Ga melt, and the melt is kept at a temperature of 1,030 deg.C. The surface of a substrate is wetted at a time A. A minute amount of Si is added to the melt. At a time B, H2S with high concentration is flowed for a short time. The temperature is decreased at a low speed. Growing 12 of an N layer is performed at a concentration 2 that is higher than the concentration 1 of the substrate. Then N layer growing 14 is performed with the rest period of 45-120min being provided during the growth. Since the rest period (with constant temperature being kept) is provided, the N layer, whose impurity concentration is gradually lowered in correspondence with the decrease in dislocation density, is obtained. Finally, in the N type growth layer 14, Si3N4 is deposited by NH3 and Si in the melt. The Si in the melt is decreased to 1/4-1/10. An N layer, wherein the concentration 4 of the N2 is about 10<16>cm<-3>, which is very low, is formed. At a time D, Zn is introduced, and a P layer growth at a high concentration 5 is performed. In this constitution, an LED, which has high emitting efficiency and a long life, is obtained.

Description

【発明の詳細な説明】 本発明は高輝度な燐化ガリウム緑色発光ダイオードの製
造方法に関するっ 従来燐化ガリウム(又はガリウム燐; GaP )を用
いた発光グイオードにおいて緑色を高効率で発光させる
のにPn 接合のn層濃度を低くするとよい事が知られ
ていたつそして例えば特開昭56−24985号公報に
よれば単にn層濃度を低くすると窒素が多量に混入して
いるので色相が黄色側(長波長側)にずれると共に寿命
が短かくなるっ従って第1図(b)K示すように6段階
に分けたn層成長(社)(ハ)シ4を行ない、その2層
目のみアンモニアを導入(c)シて同図(a)における
低濃度nm(ト)(34)のうちpn接合に近いnMl
c34)には窒素を入れないのがよいと主張しているっ 然し乍ら実験を繰り返し検討した所、寿命や発光効率は
pn接合付近の窒素が影響を与えているのではなく、む
しろpn接合付近の窒素は高発光効率に寄与し、n基板
からpn接合までの結晶性や他の不純物が寿命や発光効
率に影響していると判断した。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high-brightness gallium phosphide green light emitting diode. It is known that it is good to lower the n-layer concentration of a Pn junction, and for example, according to JP-A-56-24985, if the n-layer concentration is simply lowered, the hue will be on the yellow side (because a large amount of nitrogen is mixed in). Therefore, as shown in Fig. 1(b)K, the n-layer growth is divided into six stages (c)4, and ammonia is added only to the second layer. Introducing (c) nMl near the p-n junction among the low concentration nm (g) (34) in Figure (a).
Although some claim that it is better not to add nitrogen to c34), after repeated experiments, we found that the lifetime and luminous efficiency are not affected by the nitrogen near the p-n junction, but rather by the nitrogen near the p-n junction. It was determined that nitrogen contributes to high luminous efficiency, and that the crystallinity from the n-substrate to the pn junction and other impurities affect the lifetime and luminous efficiency.

本発明は上述の点を考慮してなされたもので、以下本発
明を実施例に基づいて詳細に説明する。
The present invention has been made in consideration of the above points, and will be described in detail below based on examples.

第2図は木発FIA実施例の燐化ガリウム緑色発光ダイ
オードの液相エピタキシャル成長の温度工程図で、第6
図はそれによって形成された緑色発光ダイオードの不純
物濃度分布図であるっまずGaのメルトにGaP多結晶
とn型不純物を混入して融液をつくり、半導体基板と別
途保持した上で高温に保持する。1030″Cでしばら
く保持した後時点(3)で半導体基板上に融液を配置し
て基板表面をぬらすっその後1分あたり2乃至65゛C
で降温してエピタキシャル成長を行なう75玉、基板ボ
ートを板状にするなどして融液厚みを2. I J1J
至2.8聾とし、しかも上方をすのこ状の蓋等にするこ
とで融液が雰凹気と接しているのが好ましい。
Figure 2 is a temperature process diagram of liquid phase epitaxial growth of a gallium phosphide green light emitting diode of the wood-based FIA example.
The figure shows the impurity concentration distribution diagram of the green light emitting diode formed by this process. First, GaP polycrystals and n-type impurities are mixed into the Ga melt to create a melt, which is held separately from the semiconductor substrate and then held at high temperature. do. After holding at 1030"C for a while, at time point (3), the melt is placed on the semiconductor substrate to wet the substrate surface, and then heated at 2 to 65°C per minute.
The temperature is lowered to perform epitaxial growth at 75 balls, and the substrate boat is made into a plate shape to reduce the melt thickness to 2. I J1J
It is preferable that the height be 2.8 to 2.8 mm, and that the upper part be provided with a slatted lid so that the melt is in contact with the atmosphere.

尚融液厚みが上述の如く薄いと成長層び〕みが薄くなる
傾向があるが、pn接合を基板から遠ざけると寿命が長
くなるので、メルト中に入れるGaP多結晶を4.0重
量パーセント以上と飽和状台>cl、ておくと戎長量を
短時間で増大する事ができるつまずエピタキシャル成長
に先立ち微量のシリコンをメルト中に付加すると共に降
温的時点FB)において硫化水素ガスを5.0呻砧nと
高ck度に短時間雰囲気中に流し、融液の不純物濃度を
高める。そして低速度で降温して基板の不純物濃度(1
〜5ン10”!l )(1)より高い5〜8ylO’証
5の濃度m (2)のn層成長@を行なう。その後エピタキシャル成
長の休止時間を45分乃至120分ずつもたせながらn
層成長u31を行ない最後にアンモニアガス雰囲気の中
(C)でn層成長([IOを行なう。休止時間(即ち定
温保持時間)を設ける事で結晶内の転位密度が低くなる
が、同時に融液中の不純物濃度も低下するので順次低不
純物濃度のn層が得られる。
If the thickness of the melt is thin as mentioned above, the growth layer tends to become thinner, but if the pn junction is moved away from the substrate, the life will be longer, so the GaP polycrystal to be added to the melt should be at least 4.0% by weight. If the saturated table >cl is maintained, the length can be increased in a short time.A small amount of silicon is added to the melt prior to epitaxial growth, and hydrogen sulfide gas is added to 5.0% at the cooling point FB). The impurity concentration of the melt is increased by flowing it into the atmosphere at a high temperature for a short period of time. Then, the temperature is lowered at a low rate and the impurity concentration of the substrate (1
5 to 10"!l ) (2) N-layer growth is performed at a concentration of 5 to 8ylO'5 which is higher than (1). After that, the n layer is grown with a pause period of 45 to 120 minutes in epitaxial growth.
Layer growth u31 is performed, and finally, n-layer growth ([IO] is performed in an ammonia gas atmosphere (C). Providing a pause time (i.e., constant temperature holding time) lowers the dislocation density in the crystal, but at the same time Since the impurity concentration therein also decreases, n-layers with progressively lower impurity concentrations can be obtained.

そして特に最後のn層成長[14)では、アンモニアガ
スと融液中のSi が反応して5isNn  等の析出
を行ない、実質的に融液中のSi が1/4 乃至1イ
dに除去できるので、窒素は含まれるが1 o+ 6 
s程度の極めて低不純物濃度(4)のn層が形成される
In particular, in the final n-layer growth [14], ammonia gas and Si in the melt react to precipitate 5isNn, etc., and the Si in the melt can be substantially removed to 1/4 to 1 d. Therefore, nitrogen is included, but 1 o + 6
An n layer with an extremely low impurity concentration (4) of approximately s is formed.

その後時点(D)で融液に亜鉛を導入してP層成長aつ
を行なう。このようなP層は0.8〜1.7 X 1 
(]crn−3の高不純物濃度(5)で制御できるが、
あまり高濃0度にすると結晶性がくずれ、光吸収等を生
じるので好ましくないっ 通常上述の如<pn接合で1018−3から1016c
′rnc′rn −3までの濃度差があると寿命が短かかったりスイッチ
ング動作を起こすが、上述の如く結晶性(特に濃度差の
ある部分の格子整合や転位)を整えながら複数のn層を
形成する事と、pn接合近傍のSi  不純物を低減さ
せた事でスイッチング動作は生じないっまたpn接合近
傍のn層に上述した検討結果を加味する事で従来(02
%)よりはるかに高い045%の発光効率を得る事がで
き、しかも80%輝度低下に1500時間以上(高温大
電流試験)という長寿命な素子が得られた。尚、基板の
すぐあとの高不純物濃度層を設けたことで。
Thereafter, at time point (D), zinc is introduced into the melt to grow a P layer. Such a P layer is 0.8 to 1.7 X 1
(]Can be controlled by high impurity concentration of crn-3 (5),
If the concentration is too high, the crystallinity will be destroyed and light absorption will occur, so it is not preferable.
If there is a concentration difference of up to 'rnc'rn -3, the lifetime will be shortened or switching operation will occur, but as mentioned above, it is possible to form multiple n-layers while adjusting the crystallinity (especially lattice matching and dislocation in areas with concentration differences). By forming the Si impurity near the pn junction and reducing the Si impurity, switching operation does not occur.
It was possible to obtain a luminous efficiency of 0.45%, which is much higher than 0.45%), and a long-life device that lasted more than 1,500 hours (high temperature and large current test) before the luminance decreased by 80%. Furthermore, by providing a high impurity concentration layer immediately after the substrate.

上記結晶性がより安定して整のい、しかも融液厚みがう
すいので一板の基板でのエピタキシャル成長厚みが略均
−となるので電極付などの後工程が容易となり生産性が
よいっ 以上の如く本発明は、n型の燐化ガリウム基板に融液を
接触させる第1の工程と、休止期間を設けながら複数の
n層をエピタキシャル成長させ最後に気相から融液中に
窒素を導入してn層をエピタキシャル成長させる第2の
工程と、P層をエピタキシャル成長させてpn接合を形
成させる第6の工程とを具備しているので安定した結晶
性の高発光効率長寿命の燐化ガリウム緑色発光ダイオー
ドを製造できる。
The above-mentioned crystallinity is more stable and well-ordered, and the melt thickness is thinner, so the epitaxial growth thickness on a single substrate becomes approximately uniform, which facilitates post-processes such as attaching electrodes and improves productivity. Thus, the present invention includes a first step of bringing a melt into contact with an n-type gallium phosphide substrate, epitaxially growing a plurality of n-layers while providing a rest period, and finally introducing nitrogen into the melt from the gas phase. A gallium phosphide green light-emitting diode with stable crystallinity, high luminous efficiency, and long life because it includes the second step of epitaxially growing the n-layer and the sixth step of epitaxially growing the p-layer to form a pn junction. can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の発光ダイオードの不純物濃度分布図(a
)と温度工程図(b)、第2図は本発明実施例の燐化ガ
リウム緑色発光ダイオードの液相エピキシャル成長の温
度工程図で、第6図はそれによって形成された緑色発光
ダイオードの不純物濃度分布図である。
Figure 1 is an impurity concentration distribution diagram of a conventional light emitting diode (a
) and temperature process diagram (b), Figure 2 is a temperature process diagram of liquid phase epiaxial growth of a gallium phosphide green light-emitting diode according to an example of the present invention, and Figure 6 shows the impurity concentration of the green light-emitting diode formed thereby. It is a distribution map.

Claims (1)

【特許請求の範囲】[Claims] 1)  n型の燐化ガリウム基板に融液を接触させる第
1の工程と、休止期間を設けながら複数のn層をエピタ
キシャル成長させ最後に気相から融液中に窒素を導入し
てn層をエピタキシャル成長させる第2の工程と、p層
をエピタキシギル成長させてpn接合を形成させる第6
の工程とを具備した事を特徴とする燐化ガリウム緑色発
光ダイオードの製造方法っ
1) The first step is to bring the melt into contact with an n-type gallium phosphide substrate, then epitaxially grow multiple n-layers while providing a rest period, and finally introduce nitrogen into the melt from the gas phase to grow the n-layers. a second step of epitaxial growth; and a sixth step of epitaxial growth of the p layer to form a pn junction.
A method for manufacturing a gallium phosphide green light emitting diode, characterized by comprising the steps of
JP57119207A 1982-07-08 1982-07-08 Manufacture of gallium phosphide green light emitting diode Granted JPS599983A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57119207A JPS599983A (en) 1982-07-08 1982-07-08 Manufacture of gallium phosphide green light emitting diode
US06/509,186 US4562378A (en) 1982-07-08 1983-06-29 Gallium phosphide light-emitting diode
DE19833324220 DE3324220A1 (en) 1982-07-08 1983-07-05 GALLIUM PHOSPHIDE LUMINAIRE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57119207A JPS599983A (en) 1982-07-08 1982-07-08 Manufacture of gallium phosphide green light emitting diode

Publications (2)

Publication Number Publication Date
JPS599983A true JPS599983A (en) 1984-01-19
JPH0550154B2 JPH0550154B2 (en) 1993-07-28

Family

ID=14755579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57119207A Granted JPS599983A (en) 1982-07-08 1982-07-08 Manufacture of gallium phosphide green light emitting diode

Country Status (1)

Country Link
JP (1) JPS599983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671829A (en) * 1982-07-28 1987-06-09 Matsushita Electric Industrial Co., Ltd. Manufacturing green light emitting diodes
JPH06219279A (en) * 1993-01-27 1994-08-09 Sankosha:Kk Multiple light color lamp signal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453975A (en) * 1977-10-07 1979-04-27 Toshiba Corp Manufacture for gallium phosphide green light emitting element
JPS5661182A (en) * 1979-10-24 1981-05-26 Toshiba Corp Gap green light-emitting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453975A (en) * 1977-10-07 1979-04-27 Toshiba Corp Manufacture for gallium phosphide green light emitting element
JPS5661182A (en) * 1979-10-24 1981-05-26 Toshiba Corp Gap green light-emitting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671829A (en) * 1982-07-28 1987-06-09 Matsushita Electric Industrial Co., Ltd. Manufacturing green light emitting diodes
JPH06219279A (en) * 1993-01-27 1994-08-09 Sankosha:Kk Multiple light color lamp signal

Also Published As

Publication number Publication date
JPH0550154B2 (en) 1993-07-28

Similar Documents

Publication Publication Date Title
US4378259A (en) Method for producing mixed crystal wafer using special temperature control for preliminary gradient and constant layer deposition suitable for fabricating light-emitting diode
JP3356041B2 (en) Gallium phosphide green light emitting device
JPS581539B2 (en) epitaxial wafer
JPH08335715A (en) Epitaxial wafer and its manufacture
US5529938A (en) Method for producing light-emitting diode
US4218270A (en) Method of fabricating electroluminescent element utilizing multi-stage epitaxial deposition and substrate removal techniques
JPS599983A (en) Manufacture of gallium phosphide green light emitting diode
JP3146874B2 (en) Light emitting diode
TWI405880B (en) Epitaxial substrate and liquid - phase epitaxy growth method
JPH08139358A (en) Epitaxial wafer
US20050124086A1 (en) Method for manufacturing a semiconductor device, and method for manufacturing a wafer
JPS5918686A (en) Gallium phosphide light emitting diode
JPH05343740A (en) Gallium arsenide phosphide epitaxial wafer
JPS61106497A (en) Method for growing epitaxial film of gallium phosphide and arsenide
JP2009212112A (en) Epitaxial wafer
JPH1065211A (en) Light-emitting diode
JP2587493B2 (en) Manufacturing method of GuP green light emitting diode
JPH05335621A (en) Gallium phosphide green light emitting diode
JP3326261B2 (en) Gallium phosphide green light emitting diode and method of manufacturing the same
JPS5918687A (en) Manufacture of gallium phosphide light emitting diode
JPH1197740A (en) Epitaxial wafer for gap light emitting diode and gap light emitting diode
JPS6012794B2 (en) Method for producing electroluminescent material
JP5862472B2 (en) Epitaxial wafer manufacturing method and epitaxial wafer
JPH03209883A (en) Gallium phosphide green light emitting element
JP2001036133A (en) Epitaxial wafer and light-emitting diode