TW569472B - Multi-color luminous lamp and its light source - Google Patents

Multi-color luminous lamp and its light source Download PDF

Info

Publication number
TW569472B
TW569472B TW91118661A TW91118661A TW569472B TW 569472 B TW569472 B TW 569472B TW 91118661 A TW91118661 A TW 91118661A TW 91118661 A TW91118661 A TW 91118661A TW 569472 B TW569472 B TW 569472B
Authority
TW
Taiwan
Prior art keywords
light
layer
emitting
boron
substrate
Prior art date
Application number
TW91118661A
Other languages
Chinese (zh)
Inventor
Takashi Udagawa
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Application granted granted Critical
Publication of TW569472B publication Critical patent/TW569472B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

A technology for constructing a multi-color luminous lamp is provided, which makes use of LEDs of blue series and can avoid the complication of the tangle-lines. The multi-color luminous lamp is constructed by parallel arranging several LEDs including light-emitting diodes of blue-series, which emit the light in blue band and include: low temperature buffer-layers, made from amorphous or polycrystal III-V group compound-semiconductors containing boron (B) and mounted on the surface of a conductive substrate; barrier-layers, made from BP series III-V-group compound-semiconductor containing B and P and mounted on said low temperature buffer-layer; luminous layers, made from III-V group compound semiconductor and mounted on said barrier layer. The conductivity of the substrate of several LED is made identical.

Description

569472569472

五、發明說明(2) III-V族化合物半導體」,1 994年5月20日,(股)培 風館初版發行,第25 3至261頁)此外,在紅色系LED中 ,係具有砷化鋁鎵混晶(AUGa^As : 0< X< 1 )或磷化鋁 鎵銦((AlxGa^J yIn卜 yP : 0SXS1,〇< Y< 1 )等 III-V 族化合物半導體作爲發光層之LED (參照寺本嚴著,「半 導體裝置槪論」,1 995年3月30日,(股)培風館發行 ,第116至118頁)。 此外,有關於補色關係方面,已知係例如藉由藍色帶光 與黃色帶光之間的混色而獲得白色光(參照「光之鉛筆-光技術者所需之應用光學_」,1 989年6月20日,(股 )新技術通訊發行第7版,第51頁)。在適於與藍色系 LED組裝之黃色系LED方面,係可利用具備有將發光波長 設爲約590nm之砷化磷鎵(GaAs^Pz: 0<Z<1)發光層 的同質接合型GaAsP系LED、以及磷化鋁鎵銦混晶(( AlxGa卜x) yln^yP: 0SXS1,0<Y<1 中,一般係爲 Y与 0.5)異質接合型 LED ( J· Crystal Growth,22 1 ( 2000 ) ,參照652至656頁)。 構成多色發光燈具之氮化鎵銦(GaJiM.xNCOSXSl)) 系LED,一般係以電氣絕緣性之藍寶石(α -A 1 203單結晶 )來構成基板材料(參照上述之「111族窒化物半導體」 ,243至252頁)。在絕緣性結晶基板中,因無法流通用 以驅動LED之電流(驅動電流),因此,正負兩電極係被 設置在基板之同一表面側上。另一方面,同質接合型GaP 569472 五、 發明說明( 4) 強 度 若與 Gax Ιι^.χΝ ( 1 )雙異質(DH)接合 型 LED 比 較 下係 爲較 低,無法達到在發光強度均衡取得下 之 多色 發 光 燈具 。若 是爲在引起發光或是放射再結合之載 子 中可 發 揮 「封 閉」 效果的異質(hetero)接合型之構成時 ,則 期 待 可獲 得更 高強度之發光。 本 發明 係爲 提供一種技術,爲利用由可迴避打線 之 繁雜 化 之 構成所形成之藍色系LED而用以構成多色發光 燈 具。 特 別 是提 供一 種可將綠色光以高強度射出之異質 接 合型 GaP 系LED之 .多色發光燈具。又例如爲提供一種技 術 ,係 由 藍 色系 LED 與黃色系LED構成多色發光燈具,且 4nr ΙΙΙΓ 須於 打 線 中造 成繁 雜化之藍色系LED、以及利用由帶來 筒 發光 強 度 之發 光之 異質接合性GaASl_zPz系黃色系LED 所 構成 之 多 色發 光燈 具。此外,係提供一種由關於本發明 之 多色 發 光 燈具 所構 成之光源。 【解 決問 題之手段】 亦即, 本發 明係提供一種具有下述(1 )至(5 ) 項 所記 載 之特徵 的多 色發光燈具。 ( 1 )- -種多色發光燈具,爲倂設、配置多數之 LED所 構 成 ,其 特徵 在於,具備有一種藍色系發光二極體(LED) •, 其 係射 出藍 色帶光,且具有:低溫緩衝層,爲設 於 導電 性 之 基板 表面 上,且由非晶質或多結晶之包含硼< :B )之 II I - V族 化合物半導體(含硼III-V族化合物半導 體 )所 形 成 :障 壁層 ,爲設於低溫緩衝層上,且由包含硼< -6- 〔B) 569472 五、發明說明(5) 與磷(P)之磷化硼(BP)系III-V族化合物半導體所形 成;發光層,係由設於障壁層上之111 -V族化合物半導體 所形成。 (2 )如上述(1 )所記載之多色發光燈具,其中係包含 有一種射出黃色帶光之異質接合型黃色系LED,爲具備有 :發光層,爲設於基板上;上部障壁層,爲由設於發光層 上之磷化硼系111 _ V族化合物半導體層所形成。 (3)如上述(1)或(2)所記載之多色發光燈具,其 中係包含有一種射出綠色帶光之異質接合型綠色系LED, 爲具備有:發光層,爲設於基板上;上部障壁層,爲由設 於發光層上之磷化硼系111 - V族化合物半導體層所形成。 (4 )如上述(1 )至(3 )中任一項所記載之多色發光 燈具,其中係包含有一種射出紅色帶光之異質接合型紅色 系LED,爲具備有:發光層,爲設於基板上;上部障壁層 ,爲由設於發光層上之磷化硼系III-V族化合物半導體層 所形成。 (5 )如上述(1 )至(4 )中任一項所記載之多色發光 燈具’其中基板係由相同之傳導形之單結晶所構成。 此外,本發明係爲, (6 ) —種光源,係爲使用上述(1 )至(5 )中任一項 所記載之多色發光燈具。 【本發明較佳實施例之詳細說明】 將有關本發明第1實施例之藍色系LED1 A之斷面構造呈 569472 五、發明說明(6 ) 模式性的例示於第1圖中。在基板101上,於利用η型或 Ρ型傳導性之導電性單結晶後,因可將歐姆(ohmi c )性之 裏面電極1 06設置在基板1 0 1之裏面,故可呈簡便地構成 藍色系LED1A。在作爲導電性基板101爲較佳之單結晶材 料方面,係具有矽單結晶(silicon )、磷化鎵(GaP)、 砷化鎵(GaAs)、碳化矽(SiC)、或是磷化硼(BP)( 參照① J. Electrochem. Soc·, 120(1973) ,Ρ·Ρ·802 至806,以及②美國專利公報5042043號)等之半導體單 結晶。特別是將電阻率設爲1 0毫歐姆(m Ω )以下、較佳 爲1 m Ω以下之低比電阻(電阻率)之導電性單結晶基板, 係可將順方向電壓(所謂的Vf )之低LED帶來貢獻。 在單結晶基板101上係設有緩衝層102,爲由含硼III-V族化合物半導體所形成,且用以形成在結晶性方面優越 之下部障壁層103。緩衝層102係例如爲,較佳可由以一 般式 ΒαΑ1点GaTlnmqPuAs^ ( 0< ,〇‘冷< 1,0 sr<i,〇<a+;e+rsi,ο^δ<ι)所表記之磷化硼 系半導體所構成。此外,可由例如以一般式BaAbGarIni. ai-rPul (0< α$1 , 0‘/3<1 , 0$r<l , 〇< α + 冷 + r‘1,0^5<1)所表記之包含氮(Ν)之磷化硼系半 導體所構成。較佳爲,減少構成元素,而可由2元結晶或 3元結晶呈簡便地構成。例如,單體磷化硼(ΒΡ )、磷化 鋁、硼混晶(3,八1/^:0<〇$1,以+沒=1)、磷化硼鎵 混晶(Β α Ga , Ρ : 0 < a S 1,a + 5 = 1 )、或是磷化硼銦混 569472 五、發明說明(7) 晶(ΒαΙη^Ρ : 0< α )等所構成。V. Description of the invention (2) III-V compound semiconductors ", May 20, 994, the first edition of the Peifeng Museum, pages 25 3 to 261) In addition, the red LEDs have aluminum arsenide Group III-V compound semiconductors such as gallium mixed crystals (AUGa ^ As: 0 < X < 1) or aluminum gallium indium phosphide ((AlxGa ^ J yInbuyP: 0SXS1, 〇 < Y < 1)) as light emitting layers (Refer to Taramoto Yoshimoto, "Semiconductor Device Theory", March 30, 995, issued by Peifeng Museum, pp. 116-118.) In addition, it is known that the relationship between complementary colors is, for example, blue White light is obtained by mixing the light with yellow light (refer to "Pencil of Light-Applied Optics for Light Technicians_", June 20, 1989, New Technology Newsletter Issue 7th Edition , Page 51). For yellow-type LEDs suitable for assembly with blue-type LEDs, it is possible to use gallium arsenide (GaAs ^ Pz: 0 < Z < 1) with a light emission wavelength of about 590 nm. Layer of homo-junction GaAsP-based LED, and aluminum gallium indium phosphide mixed crystal ((AlxGabux) yln ^ yP: 0SXS1, 0 < Y < 1, generally Y And 0.5) Heterojunction LED (J. Crystal Growth, 22 1 (2000), refer to pages 652 to 656). Indium gallium nitride (GaJiM.xNCOSXSl)), which is a multi-color light-emitting lamp, is an LED, which is generally electrically insulated Sapphire (α-A 1 203 single crystal) to form the substrate material (refer to the above-mentioned "111-group phosgene semiconductor", pages 243 to 252). In an insulating crystal substrate, a current (driving current) that can be used to drive an LED cannot be used. Therefore, two positive and negative electrodes are provided on the same surface side of the substrate. On the other hand, homojunction GaP 569472 V. Description of the invention (4) If the intensity is lower than that of Gax Ιι ^ .χΝ (1) double heterojunction (DH) junction LED, it cannot be achieved under the balance of light intensity Multi-colored luminous lamps. If it is a hetero-junction structure capable of exerting a "sealing" effect in a carrier that causes light emission or radiation recombination, it is expected that higher intensity light emission can be obtained. The present invention is to provide a technology for constructing a multi-color light-emitting lamp by using a blue LED formed by a structure that can avoid the complexity of wire bonding. In particular, it provides a heterogeneous GaP series LED multi-color light-emitting lamp that can emit green light with high intensity. For another example, in order to provide a technology, a multi-color light-emitting lamp is composed of blue LEDs and yellow LEDs, and 4nr ΙΙΙΓ must create complicated blue LEDs in the wiring, and use the luminous intensity of the tube to emit light. Heterojunction GaASl_zPz is a multi-color light-emitting lamp composed of yellow LEDs. In addition, a light source constituted by the multi-color light emitting lamp according to the present invention is provided. [Means for solving the problem] That is, the present invention provides a multi-color light-emitting lamp having the characteristics described in items (1) to (5) below. (1)--Multi-color light-emitting lamps, which are composed of a large number of LEDs, are equipped with a blue light-emitting diode (LED), which emits blue band light, and It has: a low-temperature buffer layer, which is provided on the surface of a conductive substrate and is composed of an amorphous or polycrystalline group II-V compound semiconductor containing boron <: B) (a boron-containing III-V compound semiconductor) Formed: Barrier layer, which is provided on the low-temperature buffer layer, and consists of boron phosphide (BP) series III-V containing boron < -6- [B] 569472 5. Description of the invention (5) and phosphorus (P) The light-emitting layer is formed of a 111-V compound semiconductor provided on the barrier layer. (2) The multi-color light-emitting lamp according to the above (1), which includes a heterojunction type yellow LED that emits yellow band light, and includes: a light-emitting layer provided on a substrate; and an upper barrier layer, It is formed of a boron phosphide-based 111_V compound semiconductor layer provided on the light-emitting layer. (3) The multi-color light-emitting lamp according to the above (1) or (2), which includes a heterojunction type green LED that emits green band light, and includes: a light-emitting layer provided on a substrate; The upper barrier layer is formed of a boron phosphide-based 111-V compound semiconductor layer provided on the light-emitting layer. (4) The multi-color light-emitting lamp according to any one of the above (1) to (3), which includes a heterojunction type red LED that emits a red band with light. On the substrate; the upper barrier layer is formed by a boron phosphide-based III-V compound semiconductor layer provided on the light-emitting layer. (5) The multicolor light-emitting lamp 'according to any one of (1) to (4) above, wherein the substrate is composed of the same conductive single crystal. In addition, the present invention relates to (6) a light source using a multicolor light-emitting lamp according to any one of (1) to (5). [Detailed description of the preferred embodiment of the present invention] The cross-sectional structure of the blue LED1 A related to the first embodiment of the present invention is 569472 V. Description of the invention (6) A schematic example is shown in the first figure. On the substrate 101, after using a conductive single crystal of η-type or P-type conductivity, an ohmic inner electrode 1 06 can be provided inside the substrate 1 01, so it can be easily constructed. Blue LED1A. In terms of the preferred single crystal material as the conductive substrate 101, it has silicon single crystal (silicon), gallium phosphide (GaP), gallium arsenide (GaAs), silicon carbide (SiC), or boron phosphide (BP ) (See ① J. Electrochem. Soc ·, 120 (1973), PPP · 802 to 806, and ② US Patent Publication No. 5042043) and the like. In particular, a conductive single crystal substrate having a low specific resistance (resistivity) of 10 milliohms (m Ω) or less, and preferably 1 m Ω or less, can forward voltage (so-called Vf) Low LED contributes. A buffer layer 102 is formed on the single crystal substrate 101. The buffer layer 102 is formed of a boron-containing III-V compound semiconductor and is used to form a lower barrier layer 103 which is superior in crystallinity. The buffer layer 102 is, for example, preferably represented by the general formula BαA1 point GaTlnmqPuAs ^ (0 <, 〇 'cold < 1.0 sr < i, 〇 < a +; e + rsi, ο ^ δ < ι) It is composed of a boron phosphide-based semiconductor. In addition, it can be expressed by, for example, the general formula BaAbGarIni. Ai-rPul (0 < α $ 1, 0 '/ 3 < 1, 0 $ r < l, 〇 < α + cold + r'1, 0 ^ 5 < 1) It consists of a boron phosphide-based semiconductor containing nitrogen (N). Preferably, the constituent elements are reduced, and the constituent elements can be simply formed from a binary crystal or a ternary crystal. For example, boron phosphide (BP), aluminum phosphide, boron mixed crystal (3, 8 1 / ^: 0 < 00 $ 1, ++ = 1), boron gallium phosphide mixed crystal (B α Ga, P : 0 < a S 1, a + 5 = 1), or boron indium phosphide mixed 569472 V. Description of the invention (7) Crystal (BαΙη ^ P: 0 < α).

特別是以低溫所形成之非晶質或多結晶之含硼Π I -V族 化合物半導體層所構成之緩衝層(低溫緩衝層)1 02係爲 ,緩和基板101與下部障壁層1〇3之間格子不整合性,發 揮帶來錯位差排(m i s f i t d i s 1 〇 c a t i ο η )等結晶缺陷密度 小之下部障壁層103之作用(參照上述之美國專利 602902 1號)。此外,將低溫緩衝層102藉由含硼III-V 族化合物半導體(係包含構成形成下部障壁層103之含硼 I I I -V族化合物半導體之元素(構成元素))構成後,藉 由作爲其構成元素之「成長核」之作用,而具有促進具連 續性之下部障壁層103之形成的優點。例如,非晶質或多 結晶之 BaAhGarli^mPuAss ( 0< a SI,OS /3 < 1, 0Sr<l,0<a+/3+r$l,0$5<1)係藉由 MOCVD 法 (參照 Inst. Phys. Con f. Ser., No. 129 ( I OPIn particular, a buffer layer (low-temperature buffer layer) 102 composed of an amorphous or polycrystalline boron-containing Π I -V group compound semiconductor layer formed at a low temperature is used to relax the substrate 101 and the lower barrier layer 10. The inter-lattice unconformity plays a role in bringing down the barrier layer 103 with a low density of crystal defects such as misfitdis 1 occat ο η (refer to the aforementioned US Patent No. 602902 1). In addition, the low-temperature buffer layer 102 is composed of a boron-containing III-V compound semiconductor (including elements (constituting elements) that constitute a boron-containing III-V compound semiconductor forming the lower barrier layer 103), and is then used as its composition. The role of the element's "growth nucleus" has the advantage of promoting the formation of the lower barrier layer 103 with continuity. For example, amorphous or polycrystalline BaAhGarli ^ mPuAss (0 < a SI, OS / 3 < 1, 0Sr < l, 0 < a + / 3 + r $ l, 0 $ 5 < 1) is by MOCVD method (See Inst. Phys. Con f. Ser., No. 129 (I OP

Publishing Ltd·,1 993 ),第 157 至 162 頁)而可形成 約250°C至7 50°C。在約500°C以下之低溫中,係容易獲得 將非晶質作爲主體之含硼III-V族化合物半導體層。在高 於500°C至750°C之高溫區域中,係獲得將多結晶作爲主體 之含硼I I I - V族化合物半導體層。在a s - g r 〇 wm狀態中, 非晶質之低溫緩衝層102係爲,一般暴露在更高溫之 75CTC至約1 200°C之溫度環境後便被轉換成多結晶層。緩 衝層1 02係爲非晶質層或是多結晶層者,一般係例如依據 X射線折射法、電子線折射法而由折射影像之解析所得知 569472 五、發明說明(8) 。構成低溫緩衝層102之多晶質層或多結晶層之層厚較佳 爲約lnm以上、lOOnm以下,更佳爲2nm以上、50nm以下 〇 在緩衝層102上係設有由含硼III-V族化合物半導體層 所形成之下部障壁層103。形成發光層104之基底層(被 堆積層)的下部障壁層1 03較佳係由磷化硼(BP )系111 -V族化合物半體層所構成,係含有將3.0± 0.2eV之磷化硼 (BP)作爲在室溫內之禁止帶寬(band gap)之磷化硼 (BP)以構成母體材料之硼(B)與磷(P)。例如,係爲將 3.OeV作爲在室溫下之禁止帶寬的單體磷化硼(boron monoph osphide)與磷化鎵(GaP:室溫禁止帶寬与2.3eV )之混晶,而可由將在室溫下之禁止帶寬設爲約2.7eV之 氮化磷化鎵混晶(B^yGao.^P)構成所適合地下部障壁層 103。在室溫下具有較高禁止帶寬之磷化硼層係爲,可藉 由設定在規定成長速度與原料供給比率之雙方的範圍內所 形成。成長速度較佳係設爲每分鐘2nm以上、30nm以下。 此外,連同成長速度而將原料之V除原料與III族原料之 供給比率(所謂的V/1II比)規定在較佳爲1 5以上、60 以下之範圍內後,便可形成在室溫下具有高禁止帶寬之磷 化硼層。禁止帶寬係爲,例如藉由來自折射率(=n)與 消光係數(=k)所求得之複數介電率之虛數部(ε2=2 • η · k)之光能量依存性所求出。 此外,由在與緩衝層之間的接合界面下於緩.衝層1 02內 -10- 569472 五、發明說明(9) 進行格子整合、且在發光層104側之表面下於發光層104 進行格子整合之含硼III-V族化合物半導體層所形成之下 部障壁層103係爲,可帶來錯位差排(m1Sflt dislocation) 、積層缺陷等結晶缺陷密度爲低之良質發光層104的貢獻 。在緩衝層102及發光層104雙方之層上進行格子整合的 下部障壁層103係爲,例如可由搭配上在第III族或第V 族之構成元素組合中之變化率(gradient)含硼III-V族化 合物半導體層所構成(參照日本專利特開2000-2221 1號 公報)。構成元素之組成變化率係在層厚之增加方向上爲 一定,此外,係可搭配上階段性、或是非直線性增減之任 何樣式。例如,於由在矽基板1 0 1上進行格子整合之磷化 硼鎵混晶(Bo.^Gao.^P)所形成之緩衝層上,朝向由與緩 衝層102之間的接合面所形成之氮化鎵銦(Ga。.Min。.1()N :格子常數与4 ·557Α)所形成之發光層i〇4之間的接合面 ,而可由使硼組成比(=X )由0.02呈直線狀的增加0.98 之磷化硼鎵組成變化率(BaGa0P : α = 0.0 2 —0.98,對應 之 5 = 0·98->0·02)所構成。 發光層1 04係例如以可放射藍色帶之短波長可視光之氮 化鎵銦(GaxIni-xN : 0SXS1)等III-V族化合物半導體層 所構成(參照上述之日本專利特公昭55 - 3834號公報)。 此外,可由氮化鎵(GaxIi^.xP: 0SXS1)所構成(Appl. Phys. Lett·,60(20) (1992),第 2540 至 2542 頁) 。另外,可由砷化氮化鎵(GaUSx : 0SXS 1 )所構成。 -11 - 569472 五、發明說明(1〇) 發光層104係可由將該等III-V族化合物半導體層作爲井 (well)層之單一(single)或是多重(multi)量子井 (quantum well)構成所構成。 若在發光層104上設置上部障壁層105,則可形成雙異 質(DH)構造型之發光部。上部障壁層105係可由將上述 室溫下之禁止帶寬作爲3.0±0.2eV之單體磷化硼(boron monophosphide)、以及將其作爲基材之憐化硼(BP)系 I I I - V族化合物半導體所構成。此外,可由氮化鎵(G a N ) 或氮化鋁鎵混晶(AlxGa^N : 0< X< 1)等III-V族化合 物半導體層所構成。 有關本發明之雙異質接合(DH)構造型之LED1A係爲, 例如在上部障壁層1 05上設置歐姆性之表面電極1 06,此 外,將歐姆性之裏面電極1 07配置在基板1 0 1之裏面而構 呈。在將上部障壁層105由含硼III-V族化合物半導體所 構成的情況下,p型歐姆電極係可由例如由金鋅(Au · Zn) 合金、金鈹(Au · Be )合金等所構成。此外,可由金鍺( Au· Ge)合金、金銦(Au· In)合金及金錫(Au· Sn)合 金等金合金來形成η型歐姆電極。爲了形成發揮良好歐姆 接觸性之電極,設將表面電極1 06設置在良導性之接觸層 上。由有關本發明之高禁止帶寬之含硼III-V族化合物半 導體層’係可構成適用於兼用透過於發光取出方向之表面 歐姆電極106用途之接觸層。 將有關本發明第2實施例之異質接合型黃色系LED2A之 -12- 569472 五、發明說明(11) 斷面構造呈模式性的例示於第2圖中。在第2圖中,於與 第1圖所記載者爲相同構成要素處係付與相同符號。 異質接合型黃色系LED2A係爲,將η型或p型傳導性之 砷化鎵(GaAs)單結晶作爲基板而構成。在基板1〇1與發 光層104之中間處上,係緩和基板1〇1與發光層1〇4之間 的格子不整合性,例如,設置由GaASl.zPz所形成之組成 變化率層1 08。依據緩和此種格子不整合性之措施而可獲 得良好結晶性之發光層104。 發光層104係例如由η型或p型之砷化磷鎵(GaASl_zPz )所構成。特別是由將氮(N )作爲等價電子阱 (isoelectronic trap)而包含GaASi_zPz,可構成具有高強 度發光而形成較佳便利性之發光層1 04。例如,大部分由 將砷(As)組成比(=1-Z)作爲 0.25 之 GaAsQ.25PG.75, 可構成波長爲約580nm之射出黃色帶光之發光層。 有關本發明之異質接合型黃色系LED2A之特徵係爲,於 發光層104上設置由含硼III-V族化合物半導體所形成之 上部障壁層105而構成。上部障壁層105係爲,將上述室 溫下之禁止帶寬作爲3.0± 0.2eV之單體磷化硼(BP)或 是將其作爲基材之磷化硼(BP)系III _V族化合物半導體 所構成者特別爲佳。此外,由此種較高禁止帶寬之含硼 III-V族化合物半導體所形成之上部障壁層105係爲,即 使適於發光透過外部之發光透過層(窗層)亦可作用。因 此,依據上部障壁層105發揮之載體(carrier)的「封 -13- 569472 五、發明說明(12) 閉」作用、以及將發光有效率地朝外部透過之作用,亦可 獲得較高發光強度之異質接合型黃色系LED2A。 特別是在發光層104上,若使以250°C以上750°C以下之 較低溫所形成之非晶質作爲主體之磷化硼系I 11 -V族化合 物半導體所形成之上部障壁層105依據異質接合之手段時 ,則可達到抑制因被熱而使發光層104之熱性劣化之效果 。亦即,因可將發光層1 04之結晶性維持呈良好狀態,故 可提供帶來高強度發光之發光層104。 將有關本發明第3實施例之異質接合型綠色系LED3A之 斷面構造呈模式性的例示於第3圖中。在第3圖中,於與 第1圖或第2圖所記載者爲相同構成要素處係付與相同符 號。 綠色系LED3A係爲,將η型或p型之傳導性之磷化鎵 (GaP)單結晶作爲基板101而構成。在基板101上,爲依 據例如液相外延(LPE)成長法而設置η型或p型之第1 磷化鎵(GaP)層109。在第1磷化鎵(GaP)層109上, 係例如依據LPE法,而設置有與第1磷化鎵(GaP)層109 之傳導形成相反之第2磷化鎵(GaP)層110。由第1及第 2磷化鎵(GaP)層109、110構成pn接合型之發光部。形 成發光層係例如爲,將第2磷化鎵(GaP)層110由以添 加有將氮(N)作爲等價電子阱之GaP而構成後,係提供 具有較高強度發光之發光層。 有關本發明之異質接合型綠色系LED3A係爲,其特徵在 -14- 569472 五、發明說明(13) 於爲一種異質接合型LED爲在形成發光層之第2GaP層1 1 〇 上設置由磷化硼系I I I -V族化合物半導體所形成之上部障 壁層105。異質接合型構造係爲可在發光層上藉由設置上 部障壁層105而構成。上部障壁層105係爲,將上述室溫 下之禁止帶寬作爲3. 0± 0.2 eV之單體磷化硼(BP)或是 將其作爲基材之磷化硼系111 - V族化合物半導體所構成者 特別爲佳。此外,由此種較高禁止帶寬之磷化硼系III-V 族化合物半導體所形成之上部障壁層105係爲,發光層上 發揮封閉載體(c a r r i e r )之作用的同時,亦作用適於將 發光透過外部之發光透過層(窗層)。因此,可獲得較高 發光強度之異質接合型綠色系LED3A。 特別是在發光層上,若使以250t以上750°C以下之較低 溫所形成之非晶質作爲主體之磷化硼系III-V族化合物半 導體所形成之上部障壁層105依據異質接合之手段時,則 可達到抑制因被熱而使發光層之熱性劣化之效果。亦即, 因可將發光層之結晶性維持呈良好狀態,故可提供帶來高 強度發光之發光層等效果。 有關本發明第4實施例之異質接合型紅色系LED4A係可 由如第4圖所例示之斷面構造而由GaP系LED所構成。在 第4圖中,於與第1圖至第3圖所記載者爲相同構成要素 處係付與相同符號。 異質接合型紅色系LED4A係爲,將發光層104作爲例如 連同鋅(Zn)與氧(0)而添加p型GaP層所構成。異質 -15- 569472Publishing Ltd., 1 993), pp. 157 to 162) and can form about 250 ° C to 750 ° C. At a low temperature of about 500 ° C or lower, a boron-containing III-V compound semiconductor layer containing amorphous as a main component is easily obtained. In a high temperature region higher than 500 ° C to 750 ° C, a boron-containing I I I-V compound semiconductor layer having polycrystals as a main body is obtained. In the as-grwm state, the amorphous low-temperature buffer layer 102 is generally converted to a polycrystalline layer after being exposed to a higher temperature environment of 75CTC to about 1 200 ° C. The buffer layer 102 is an amorphous layer or a polycrystalline layer, and is generally known from the analysis of a refracted image according to the X-ray refraction method and the electron beam refraction method, for example. 569472 5. Description of the invention (8). The thickness of the polycrystalline layer or the polycrystalline layer constituting the low-temperature buffer layer 102 is preferably about 1 nm to 100 nm, more preferably 2 nm to 50 nm. On the buffer layer 102, a boron-containing III-V is provided. The lower barrier layer 103 is formed by a group compound semiconductor layer. The lower barrier layer 103, which forms the base layer (stacked layer) of the light-emitting layer 104, is preferably composed of a boron phosphide (BP) series 111-V group compound half body layer, which contains boron phosphide of 3.0 ± 0.2eV (BP) Boron phosphide (BP), which is a forbidden band gap at room temperature, to form the boron (B) and phosphorus (P) of the parent material. For example, it is 3.OeV as a mixed crystal of boron monophosphide (boron monoph osphide) and gallium phosphide (GaP: room temperature forbidden bandwidth and 2.3eV) at room temperature. A gallium phosphide mixed crystal (B ^ yGao. ^ P) having a forbidden bandwidth at room temperature set to about 2.7 eV constitutes a suitable lower barrier layer 103. A boron phosphide layer having a relatively high forbidden bandwidth at room temperature can be formed by setting it within the range of both the predetermined growth rate and the raw material supply ratio. The growth rate is preferably set to 2 nm or more and 30 nm or less per minute. In addition, the supply ratio of the raw material V divided by the raw material to the group III raw material (the so-called V / 1II ratio) is set to a range of preferably 15 or more and 60 or less together with the growth rate, and then it can be formed at room temperature. Boron phosphide layer with high forbidden bandwidth. The forbidden bandwidth is, for example, obtained from the light energy dependency of the imaginary part (ε2 = 2 • η · k) of the complex permittivity obtained from the refractive index (= n) and the extinction coefficient (= k). . In addition, under the interface between the buffer layer and the buffer layer. In the red layer 102 02-10-569472 V. Description of the invention (9) Grid integration, and the light emitting layer 104 under the surface of the light emitting layer 104 side The lower barrier layer 103 formed by the lattice-integrated boron-containing III-V compound semiconductor layer is to contribute to a good light-emitting layer 104 having a low crystal defect density such as m1Sflt dislocation and build-up defects. The lower barrier layer 103 that is lattice-integrated on both the buffer layer 102 and the light-emitting layer 104 is, for example, a boron-containing III- Composition of a group V compound semiconductor layer (refer to Japanese Patent Laid-Open No. 2000-2221 1). The rate of change of the composition of the constituent elements is constant in the direction of increasing the layer thickness. In addition, it can be matched with any pattern that is stepwise or non-linear. For example, on a buffer layer formed of a boron gallium phosphide mixed crystal (Bo. ^ Gao. ^ P) that is lattice-integrated on a silicon substrate 101, the buffer layer 102 is formed to face the junction surface with the buffer layer 102. The indium gallium nitride (Ga..Min..1 () N: lattice constant and the light emitting layer i04 formed by 4 · 557A), and the boron composition ratio (= X) can be changed from 0.02 It is composed of linearly increasing the composition change rate of boron gallium phosphide (BaGa0P: α = 0.0 2 —0.98, corresponding to 5 = 0 · 98- > 0 · 02). The light emitting layer 104 is composed of, for example, a group III-V compound semiconductor layer such as gallium indium nitride (GaxIni-xN: 0SXS1) that emits short-wave visible light with a blue band (see Japanese Patent Publication No. 55-3834 mentioned above). Bulletin). In addition, it can be composed of gallium nitride (GaxIi ^ .xP: 0SXS1) (Appl. Phys. Lett., 60 (20) (1992), pages 2540 to 2542). In addition, it may be made of gallium arsenide (GaUSx: 0SXS 1). -11-569472 V. Description of the invention (10) The light-emitting layer 104 can be a single or multiple quantum well using the III-V compound semiconductor layer as a well layer. Make up. If the upper barrier layer 105 is provided on the light emitting layer 104, a light emitting portion having a double heterostructure (DH) structure can be formed. The upper barrier layer 105 is composed of a boron monophosphide having a forbidden bandwidth at room temperature of 3.0 ± 0.2 eV, and a boron phosphide (BP) group III-V compound semiconductor using the same as a substrate. Made up. In addition, it may be composed of a III-V compound semiconductor layer such as gallium nitride (G a N) or aluminum gallium nitride mixed crystal (AlxGa ^ N: 0 < X < 1). The LED 1A of the double heterojunction (DH) structure of the present invention is, for example, an ohmic surface electrode 1 06 is provided on the upper barrier layer 105, and an ohmic inner electrode 1 07 is disposed on the substrate 1 0 1 Inside it. When the upper barrier layer 105 is made of a boron-containing III-V compound semiconductor, the p-type ohmic electrode system may be made of, for example, gold-zinc (Au · Zn) alloy, gold-beryllium (Au · Be) alloy, or the like. In addition, the n-type ohmic electrode may be formed of a gold alloy such as a gold germanium (Au · Ge) alloy, a gold indium (Au · In) alloy, and a gold tin (Au · Sn) alloy. In order to form an electrode exhibiting good ohmic contact, it is assumed that the surface electrode 106 is provided on a contact layer with good conductivity. The boron-containing III-V compound semiconductor layer with a high forbidden bandwidth according to the present invention is a contact layer suitable for the use of the surface ohmic electrode 106 which also transmits in the direction of light emission extraction. -12- 569472 of the heterojunction type yellow LED2A related to the second embodiment of the present invention V. Description of the invention (11) An example of the cross-sectional structure is shown in the second figure. In Fig. 2, the same components as those described in Fig. 1 are assigned the same reference numerals. The heterojunction type yellow LED2A system is configured by using a n-type or p-type conductive gallium arsenide (GaAs) single crystal as a substrate. On the middle of the substrate 101 and the light emitting layer 104, the lattice inconsistency between the substrate 101 and the light emitting layer 104 is alleviated. For example, a composition change rate layer 1 08 formed by GaASl.zPz is provided. . The light-emitting layer 104 having good crystallinity can be obtained in accordance with a measure for alleviating such lattice inconsistency. The light emitting layer 104 is made of, for example, n-type or p-type gallium arsenide (GaASl_zPz). In particular, the use of nitrogen (N) as an isoelectronic trap and the inclusion of GaASi_zPz can constitute a light emitting layer 104 having high intensity light emission and better convenience. For example, most of the GaAsQ.25PG.75 uses the arsenic (As) composition ratio (= 1-Z) as 0.25, which can constitute a light emitting layer with a wavelength of about 580 nm that emits yellow band light. A feature of the heterojunction type yellow LED 2A of the present invention is that an upper barrier layer 105 made of a boron-containing III-V compound semiconductor is provided on the light emitting layer 104. The upper barrier layer 105 is a boron phosphide (BP) monomer with a forbidden bandwidth at room temperature of 3.0 ± 0.2eV, or a boron phosphide (BP) compound III_V compound semiconductor using the substrate as a base material. Constructors are particularly preferred. In addition, the upper barrier layer 105 formed of such a boron-containing III-V compound semiconductor having a relatively high forbidden bandwidth is such that even a light-transmitting layer (window layer) suitable for emitting light to the outside can function. Therefore, higher luminous intensity can also be obtained based on the "seal-13-569472 V. Description of the invention (12) closing" effect of the carrier played by the upper barrier layer 105 and the effect of efficiently transmitting light to the outside. Heterogeneous junction type yellow LED2A. In particular, on the light-emitting layer 104, if the upper barrier layer 105 formed of a boron phosphide-based I 11 -V group compound semiconductor having an amorphous body formed at a relatively low temperature of 250 ° C. to 750 ° C. is used as a basis, In the case of heterogeneous bonding, the effect of suppressing thermal degradation of the light emitting layer 104 due to being heated can be achieved. That is, since the crystallinity of the light-emitting layer 104 can be maintained in a good state, the light-emitting layer 104 which brings about high-intensity light emission can be provided. A schematic example of the cross-sectional structure of the heterojunction green LED 3A according to the third embodiment of the present invention is shown in FIG. 3. In Fig. 3, the same components as those described in Fig. 1 or 2 are given the same symbols. The green LED 3A is configured by using n-type or p-type conductive gallium phosphide (GaP) single crystal as the substrate 101. A first gallium phosphide (GaP) layer 109 of n-type or p-type is provided on the substrate 101 in accordance with, for example, a liquid phase epitaxy (LPE) growth method. A second gallium phosphide (GaP) layer 110 is provided on the first gallium phosphide (GaP) layer 109 in accordance with the LPE method, for example, which is opposite to the conductive formation of the first gallium phosphide (GaP) layer 109. The first and second gallium phosphide (GaP) layers 109 and 110 constitute a pn junction type light emitting portion. The light-emitting layer is formed by, for example, forming the second gallium phosphide (GaP) layer 110 with GaP added with nitrogen (N) as an equivalent electron trap, and then providing a light-emitting layer having high intensity light emission. The heterojunction type green LED 3A system according to the present invention is characterized by -14-569472 V. Description of the invention (13) A heterojunction type LED is provided with phosphorous on the second GaP layer 1 1 〇 forming a light emitting layer. The upper barrier layer 105 is formed of a boron-based group III-V compound semiconductor. The heterojunction type structure is constituted by providing an upper barrier layer 105 on the light emitting layer. The upper barrier layer 105 is a boron phosphide-based 111-V compound semiconductor using the above-mentioned forbidden bandwidth at room temperature as a monomer of boron phosphide (BP) of 3.0 ± 0.2 eV or as a substrate. Constructors are particularly preferred. In addition, the upper barrier layer 105 formed of such a boron phosphide-based III-V compound semiconductor with a relatively high forbidden bandwidth is such that the light-emitting layer functions as a closed carrier and also functions to emit light. Luminous transmission layer (window layer) that passes through the outside. Therefore, a heterojunction type green LED 3A having a high light emission intensity can be obtained. Especially on the light-emitting layer, if the upper barrier layer 105 formed of a boron phosphide-based III-V compound semiconductor having an amorphous body formed at a relatively low temperature of 250t or higher and 750 ° C or lower as a main body is formed by heterojunction In this case, the effect of suppressing thermal deterioration of the light-emitting layer due to being heated can be achieved. That is, since the crystallinity of the light-emitting layer can be maintained in a good state, it is possible to provide effects such as a light-emitting layer which brings about high-intensity light emission. The hetero-junction red LED 4A system according to the fourth embodiment of the present invention may be composed of a GaP-based LED having a cross-sectional structure as illustrated in FIG. 4. In FIG. 4, the same reference numerals are assigned to the components that are the same as those described in FIGS. 1 to 3. The heterojunction red LED 4A system is configured by adding a light emitting layer 104 as, for example, a p-type GaP layer together with zinc (Zn) and oxygen (0). Heterogeneous -15- 569472

五、發明說明(14) 接合型紅色系LED4A係在藉由LPE法或MOCVD法等氣相成 長手段所得之發光層104上,構呈設置有與發光層1〇4相 反傳導形之磷化硼系III-V族化合物半導體所形成之上部 障壁層105。形成爲與發光層104異質接合之上部障壁層 105係爲,將上述室溫下之禁止帶寬作爲3 . 0± 0 . 2eV之單 體磷化硼(BP)或是將其作爲基材之磷化硼(BP)系III-V族化合物半導體所構成者特別爲佳。此外,由此種較高 禁止帶寬之含硼III-V族化合物半導體所形成之上部障壁 層105係爲,在發光層104中發揮載體之封閉作用的同時 ,亦可適於將發光透過外部之發光透過層(窗層)而進行 作用。因此可獲得較高發光強度之異質接合型紅色系 LED4A ° 特別是在發光層104上,若使以25(TC以上750°C以下之 較低溫所形成之非晶質作爲主體之磷化硼系111 - V族化合 物半導體所形成之上部障壁層105依據異質接合之手段時 ,則可達到抑制因被熱而使發光層之熱性劣化之效果。亦 即,因可將發光層之結晶性維持呈良好狀態,故可提供帶 來高強度發光之發光層104等效果。 另外,異質接合型紅色系LED4A亦可例如由將磷化鋁鎵 銦混晶((AUGah ) ylr^.yP : 0 < X < 1,〇 < Y < 1 )作爲 發光層之磷化鋁鎵銦(AlGalnP)系LED所構成(參照上 述 J. Crystal Growth,221 (2000),參照 652 至 656 頁 )。在磷化鋁鎵銦系混晶LED中,相較於GaP紅色系LED -16- 569472 五、發明說明(15) 爲具有獲得較高強度之發光之優點。特別是由將表面電極 在上部障壁層上分散、配置之歐姆電極分散型AlGalnP系 混晶LED,爲了在發光層之整面上略呈均等地流通元件驅 動電流而射出高強度之紅色光(參照上述〗.Crystal Growth,22 1 ( 2000 ) ) 〇 將具有藍色系LED、異質接合型之黃色系、綠色系及紅 色系LED1A至4B爲相同傳導性之導電性基板101所構成 後,係可在基板1 0 1之裏面上舖設相同極性之歐姆電極 1 07。從而,使極性接地於呈共通之台座上,而可呈簡便 地構成多色發光燈具。此外,亦可統一 LED之表面電極 106之極性,僅對於任何一極性之表面電極進行打線操作 便可呈簡便地構成多色發光燈具。作爲本發明第5實施例 之較佳例,係列舉有將硼(B )添加 p型矽單結晶 (silicon)作爲基板101之藍色系LED1A、將鋅(Zn)添加 P型磷化鎵(GaP )單結晶作爲基板1 〇 1之異質接合型綠色 系LED3A、將、鋅(Zn)添加p型砷化鎵(GaAs)單結晶 作爲基板之異質接合型紅色系LED4A集合、進而構成多色 發光燈具之例。此外,例如將磷(P )或銻(Sb )添加η 型矽作爲基板101之藍色系LED1A、將矽(Si )添加η型 砷化鎵作爲基板101之異質接合黃色系LED2A集合、進而 構成多色發光燈具。亦即,若利用統一呈通稱爲η導向 (side up)型或ρ導向型之任一方的LED時,則可迴避習 知繁雜之打線操作而可呈簡便地獲得多色發光燈具。 -1 7 - 569472 五、發明說明(17) (第1實施例) 組合將矽作爲基板之藍色系led與GaAs^Pz系黃色系 LED而構成之多色發光燈具以作爲例子,具體說明本發明 〇 將有關第1實施例之多色發光燈具20之斷面模式圖揭 示於第6圖。多色發光燈具20係構成爲,爲達到藍色帶 光與黃色帶光之發光強度的均衡,而集合1個藍色系 LED1A與2個黃色系LED2A。 在藍色系LED1A方面,係爲使用於下列(1 )項所記載 之基板1 0 1上依次積層(2 )至(5 )項所記載之機能層的 積層構造體中,配置(6)至(7)項所記載之歐姆性之表 面及裏面電極而構成之η導向型LED。 (1 )硼(B )摻雜p型(1 1 1 ) - S i單結晶基板1 0 1。 (2) 藉由三乙基硼((C2H5) 3B) /磷化氫(pH3) / 氫(H2)系常壓MOCVD法而在3 50°C下成長,將層厚作爲 5nm,由磷化硼(BP)所形成之緩衝層102。 (3) 利用上述M0CVD氣相成長手段而在850°C下摻雜鎂 (Mg ),由略呈平行地配列在基板101表面之{ 1 1〇 }結 晶面爲主而形成之p型磷化硼(BP )來形成下部障壁層 1〇3(載體濃度 #4xl018cnr3、層厚 #7〇〇nm)。 (4) 主要由立方晶之n型Gao.^IiiQ^N層(格子定數 =4.5 38A)所形成之發光層104 (載體濃度与3x 1017cnr3 、層厚 #180nm)。 -19- 569472 五、發明說明(18) (5) 藉由上述MOCVD反應系而在400°C下成長,將在室 溫下的禁止帶寬設爲3. leV,由將非晶質作爲主體之n型 磷化硼(ΒΡ)層而形成之上部障壁層105 (載體濃度与3χ 1 〇16 c πΓ3、層厚与 4 8 0 n m )。 (6) 配置在上部障壁層1〇5中央之金鍺(Au · Ge)圓 形電極(直徑==120//01)而形成歐姆性之表面電極106。 (7 )設置在p形矽基板1 〇 1裏面之略整面,由鋁(A 1 ) 所形成歐姆性之裏面電極107。 此外,在藍色系LED1A方面,係利用於下述之(a)至 (d )項之記載所呈現之特性的LED。 (a )發光中心波長:430nm。 (b)亮度:6毫燭光(mcd)。 (c )順向電壓:3伏特(V)(順向電流=20毫安培(mA))。 (d)逆向電壓:8伏特(V)(逆向電流= ι〇μΑ)。 在黃色系LED2A方面,係爲使用於下列(1 )項所記載 之基板1 0 1上依次積層(2 )至(4 )項所記載之機能層的 積層構造體中,配置(5 )與(6 )項所記載之歐姆性之表 面及裏面電極而構成之η導向型LED。 (1 )鋅(Zn)摻雜p型(100)-GaAs單結晶基板101。 (2)藉由鎵(Ga) /氫化砷(AsH3) /氫(H2)系氫化 物氣相成長法(VPE)而在720°C下成長,Zn摻雜P型 GaASl.zPz混合梯度層(載體濃度与lx 、層厚与15 // m ) 1 80 0 -20- 569472 五、發明說明(19) (3)利用上述氫化物氣相成長(VPE)手段而在720°C 下成長,將氮(N)作爲等價電子阱(isoelectron ic t rap )而添加有砂摻雜η型GaAs〇.25PQ 75發光層104。 (4 )藉由(C2H5 ) 3B/ PH3/ H2系M0CVD反應系而在 400°C下成長,將在室溫下的禁止帶寬設爲2.7eV,由將非 晶質作爲主體之η型砷化磷硼(BPq.^As^^)層而形成上 部障壁層105 (載體濃度与4x 10ucm·3、層厚与750nm)。 (5 )配置在上部障壁層1〇5中央之金鍺(Au · Ge )圓 形電極(直徑=120#m)而形成歐姆性之表面電極106。 (6)設置在P形矽基板1〇1裏面之略整面,由金鋅(Au • Zn)所形成歐姆性之裏面電極1〇7。 此外,在黃色系LED2A方面,係利用於下述之(a )至 (d )項之記載所呈現之特性的LED。 (a )發光中心波長:580nm。 (b)亮度:3毫燭光(mcd)。 (c )順向電壓:2伏特(V)(順向電流=20毫安培(mA))。 (d)逆向電壓:5伏特(V)(逆向電流=1〇//Α)。 集合有將一般作爲300 //m之正方形藍色系LED及黃色 系LED2A之多色發光燈具20係經由下列之(A)至(C) 所記載之程序而構成。 (A)在LED1A、2A之p型各裏面電極107的台座15爲 例,爲使用導電性之接著材料,藉由晶片直接組裝(chi ροή - b.o a r d ) 方法 而進行 固定之 程序。 -21 - 569472 五、發明說明(21) (2) 藉由三乙基硼((C2H5) 3B) /磷化氫(pH3) / 氫(H2)系常壓MOCVD法而在400°C下成長,將層厚作爲 15nm,由在構成基板101之Si單結晶(格子常數与 5.431A )中進行格子整合之η型磷化硼銦混晶( B0.33IW.67P)來形成緩衝層102。 (3) 利用上述M0CVD氣相成長手段而在850°C下摻雜矽 (S i ),由略呈平行地配列在基板1 0 1表面之{ 1 1 〇 }結 晶面爲主而形成之η型磷化硼銦(BJn^P : X = 0.33 — 0.98) 混合梯度層(composition gradient)來形成下 部障壁層103 (載體濃度与lx 1018cm·3、層厚与56 0nm)。 磷化硼銦(ΒχΙηι.χΡ)混合梯度層之硼(B)組成比(=X )係爲,在與緩衝層102之間的接合界面作爲X = 0.33, 而在與發光層104接合之表面則爲0.98。 (4) 主要由立方晶之η型GaQ.901110.1QN層(格子定數 =4.557A)所形成之發光層1〇4 (載體濃度与4x 1017cnr3 、層厚与150nm)。 (5) 藉由上述M0CVD反應系而在40CTC下成長,將在室 溫下的禁止帶寬設爲3. leV,由將非晶質作爲主體之鎂(Mg) 摻雜P型磷化硼銦(Bo.98liio.o2P:格子定數与4.5 5 7A)層 而形成之上部障壁層105 (載體濃度与2x 1019cm·3、層厚与 400nm) 0 (6) 配置在上部障壁層105中央之金鋅(Au · Ζη)圓 形電極(直徑=130//m)而形成歐姆性之表面電極1〇6。 -23- 569472 五、發明說明(22 ) (7 )設置在η形矽基板1 0 1裏面之略整面,由鋁(A 1 ) 所形成歐姆性之裏面電極107。 作爲異質接合型GaP系綠色系LED3A,係爲使用於下列 (1 )項所記載之基板101上依次積層(2)及(3)項所 記載之機能層的積層構造體中,配置(4 )及(5 )項所記 載之歐姆性之表面及裏面電極而構成使用P導向型單一異 質(single hetero: SH)接合型 LED。 (1 )矽(Si )摻雜 η 型(100) 2° 關閉(off) -GaP 單 結晶基板101。 (2 )藉由一般性地外延液晶(LPE )法(參照上述之「 III-V族化合物半導體」,第253至256頁),以800 °C 成長,在6x 1018cm_3之原子濃度下添加作爲同質易構電子 阱(iso-electronic trap)之氮(N),而由矽(Si)摻 雜η型GaP形成發光層104。 (3)利用上述M0CVD反應系而在380°C下成長,將將在 室溫下的禁止帶寬設爲3. OeV,由將非晶質作爲主體之p 型磷化硼(BP)而形成上部障壁層105 (載體濃度与3x 1 019 c πΓ3、層厚与 4 0 0 n m )。 (4 )配置在上部障壁層1〇5中央之金鈹(Au · Be )圓 形電極(直徑=Π 0 # m )而形成歐姆性之表面電極1 〇 6。 (5)設置在η形矽基板101裏面之略整面,由金鍺合 金(Au95重量% · Ge5重量% )所形成歐姆性之裏面電極 107 ° -24- 569472 五、發明說明(23) 此外,在異質接合型GaP綠色系LED3A方面,係利用於 下述之(a )至(d )項之記載所呈現之特性的LED。 (a) 發光中心波長:555nm ° (b )亮度:5毫燭光(mcd ) ° (c )順向電壓:2伏特(V順向電流=2 0毫安培(m A )) ο (d)逆向電壓:5伏特(V)(逆向電流=10//Α)。 而異質接合型紅色系LED4A係爲將矽(Si)摻雜η型 (100)-Si單結晶作爲基板1〇1,且利用η型砷化鋁鎵 (AlGaAs)發光層104與Ρ型之磷化硼(ΒΡ)層所形成與上 壁障壁層105之pn接合型之LED。p導向型之紅色系 LED4A之主要特性係記述如下' (a )發光中心波長:660nm。 (b) 亮度:8毫燭光(mcd)。 (c )順向電壓:2伏特(V)(順向電流=20毫安培(mA)) 〇 (d)逆向電壓:5伏特(V)(逆向電流=10/zA)。 將一邊爲約250 //m之正方形藍色系LED1A、異質接合型 綠色系LED3A、以及異質接合型紅色系LED4A經由下述(A) 至(C)之程序而集合,進而構成RGB型之多色發光燈具 30 ° (A)在LED1A、3A、4A之η型各裏面電極107的台座 1 5爲例,爲使用導電性之接著材料,藉由晶片直接組裝 -25- 569472 五、發明說明(24) (chip-on-board)方法而進行固定之程序。 (B) 將ΙΑ、3A、4A之p型各表面電極106藉由與台座 1 5呈電氣性絕緣之2個端子1 7至1 9而以個別性地藉由楔 形(wedgie)打線手段或是藉由球焊(ball)手段而進行 打線之程序。 (C) 多色發光燈具30係將各LED1A、3A、4A呈個別性 地實施打線而構成,因此,亦可作爲藍色帶、綠色帶或是 紅色帶之單一光之燈具來利用。特別是,第2實施例之燈 具3 0係爲,利用有已利用含硼I 11 _ V族化合物半導體層 之異質接型GaP系LED3A,因此,亦可作爲發出高亮度綠 色帶之單一光的燈具來利用。此外,LED1A、3A、4A係因 呈個別性地實施打線,因此可個別地調整流通於各LED順 向電流,故使產生RGB各發光色之混色光。另外,藉由將 各LED1A、3A、4A同時點亮而形成爲提供用以發出白色光 之RGB型多色發光燈具30。 (第3實施例) 將集合於上述第2實施例所記載之RGB型多色發光燈具 30而構成光源之情況爲例來說明本發明之內容。 有關本發明之光源40係爲,將RGB型多色發光燈具30 之平面圖如第8圖中呈模式性地揭示,例如,爲構成配列 呈規則性地等間隔狀。若分別於已配列之各燈具30之端 子1 8控制順向電流、且實施可流通之配線時,便可調節 彩度,而可構成顯示(顯示器)用途等之多色燈具。 -26- 569472 五、發明說明(25) 【發明之效果】 倘若依據本發明時,因利用具備有將磷化硼系III-V族 化合物半導體層作爲障壁層之異質接合型發光元件(例如 ’異質接合型GaP系綠色系LED、或是異質接合型GaASl. ZPZ系LED)而構成多色發光燈具及光源,因此,可帶來較 高強度之發光,且可提供例如RGB混色型之多色發光燈具 〇 此外,若依據本發明時,特別是使用導電性之基板材料 ’射出於基板之裏面設置電極而構成之藍色帶光的發光元 件,例如爲利用具備有含硼III-V族化合物半導體層之藍 色系LED而構成多色發光燈具及光源,因此,具有容易進 行打線(bonding )操作,而可提供高強度之多色發光燈 具及光源。 圖式簡單說明 第1圖所示係有關本發明之藍色系LED之斷面模式圖。 第2圖所示係有關本發明之異質接合型黃色系LED之斷 面模式圖。 第3圖所示係有關本發明之異質接合型綠色系LED之斷 面模式。 第4圖所示係有關本發明之異質接合型紅色系LED之斷 面模式。 第5圖所示係有關本發明之多色發光燈具之斷面模式圖 -27- 569472 五、發明說明(26) 第6圖所示係有關第1實施例之多色發光燈具之斷面模 式圖。 第7圖所示係有關第2實施例之多色發光燈具之斷面模 式圖。 第8圖所示係有關使用第3實施例之多色發光燈具之光 源構成的平面圖。 【圖式符號說明】 1A、2A、3A、4A : LED 10、20、30 :多色發光燈具 40 :光源 1 1 :基板 1 2 :上部障壁層 1 3 :表面電極 1 4 :裏面電極 1 5 :台座 1 6 :金屬被覆膜 1 7、1 8、1 9 :端子 1 0 1 :單結晶基板 102 :緩衝層 103 :上部障壁層 104 :發光層 105 :上部障壁層 1 06 :表面電極 -28 - 569472 五、發明說明(27) 107 :裏面電極 1〇8 :混合梯度層 109 :第 IGaP 層 110 :第 2GaP 層 -29-V. Description of the invention (14) The bonding red LED4A is formed on the light-emitting layer 104 obtained by vapor phase growth means such as LPE method or MOCVD method, and is provided with boron phosphide having a conductive shape opposite to that of the light-emitting layer 104. The upper barrier layer 105 is a group III-V compound semiconductor. The upper barrier layer 105 formed to be heterogeneously bonded to the light-emitting layer 104 is such that the forbidden bandwidth at room temperature is taken as a monomer boron phosphide (BP) of 3.0 ± 0.2 eV or as a base phosphor. Boron (BP) -based III-V compound semiconductors are particularly preferred. In addition, the upper barrier layer 105 formed of such a boron-containing III-V compound semiconductor having a relatively high forbidden bandwidth is such that, while exerting the sealing function of the carrier in the light-emitting layer 104, it can also be suitable for transmitting light through the outside. The light transmission layer (window layer) functions. Therefore, a heterojunction red LED 4A with higher luminous intensity can be obtained. Especially on the light-emitting layer 104, if a boron phosphide based on an amorphous formed at a low temperature of 25 (TC to 750 ° C) is used as the main body 111-When the upper barrier layer 105 formed of a group V compound semiconductor is formed by heterojunction, the effect of suppressing the thermal degradation of the light-emitting layer due to heat can be suppressed. That is, the crystallinity of the light-emitting layer can be maintained as In good condition, it can provide effects such as the light emitting layer 104 that brings high intensity light emission. In addition, the heterojunction red LED 4A can also be made of, for example, mixed aluminum gallium indium phosphide ((AUGah) ylr ^ .yP: 0 < X < 1.0 < Y < 1) AlGalnP (AlGalnP) LED as light emitting layer (see J. Crystal Growth, 221 (2000) above, see pages 652 to 656). Compared with GaP red LEDs -16- 569472, aluminum gallium indium-based mixed crystal LEDs 5. Description of the invention (15) It has the advantage of obtaining higher intensity light emission. In particular, the surface electrode is on the upper barrier layer Dispersed ohmic electrode dispersion type AlGalnP Mixed-crystal LEDs emit high-intensity red light in order to flow element drive currents evenly across the entire surface of the light-emitting layer (see above). Crystal Growth, 22 1 (2000)) 〇 Will have blue LEDs, heterogeneous The junction type yellow, green and red LEDs 1A to 4B are composed of the conductive substrate 101 having the same conductivity, and an ohmic electrode 107 having the same polarity can be laid on the substrate 1 01 to thereby make the polarity Multi-color light-emitting lamps can be easily constructed by grounding on a common base. In addition, the polarity of the surface electrode 106 of the LED can also be unified, and only the surface electrodes of any polarity can be wired to easily constitute multiple lights. Color luminous lamps. As a preferred example of the fifth embodiment of the present invention, a series of blue LEDs 1A with boron (B) added p-type silicon single crystal (silicon) as substrate 101, and zinc (Zn) added P-type Heterojunction green LED3A with single crystal of gallium phosphide (GaP) as substrate 101, heterojunction red LED4A with p-type gallium arsenide (GaAs) added with zinc (Zn) as substrate, and Constitutes much An example of a color light-emitting lamp. In addition, for example, phosphorous (P) or antimony (Sb) is added to n-type silicon as the blue LED 1A of the substrate 101, and silicon (Si) is added to n-type gallium arsenide as the heterojunction yellow of the substrate 101 It is a collection of LED2A, and thus constitutes a multi-color light-emitting lamp. That is, if one of the LEDs commonly referred to as a side-up type or a ρ-direction type is used, it can avoid the complicated and complicated wiring operation and can be presented. Easily obtain multi-color lighting fixtures. -1 7-569472 V. Description of the invention (17) (First embodiment) A multi-color light-emitting lamp composed of blue LEDs and GaAs ^ Pz yellow LEDs using silicon as a substrate is used as an example. Invention 0 The cross-sectional schematic diagram of the multi-color light emitting lamp 20 according to the first embodiment is disclosed in FIG. 6. The multi-color light emitting lamp 20 is configured to integrate one blue LED 1A and two yellow LED 2A in order to achieve a balance of the luminous intensity of the blue band light and the yellow band light. In terms of blue LED1A, it is a laminated structure using the functional layers described in (2) to (5) in order to be laminated on the substrate 1101 described in the following (1), in which (6) to (7) η-oriented LED with ohmic surface and back electrode as described in item (7). (1) Boron (B) doped p-type (1 1 1) -S i single crystal substrate 1 0 1. (2) Triethyl boron ((C2H5) 3B) / phosphine (pH3) / hydrogen (H2) is grown at 3 50 ° C under normal pressure MOCVD method, and the layer thickness is 5nm. The buffer layer 102 is formed of boron (BP). (3) P-type phosphatization formed by doping magnesium (Mg) at 850 ° C by the above-mentioned M0CVD vapor phase growth method, consisting mainly of {1 1〇} crystal planes arranged in parallel on the surface of the substrate 101 Boron (BP) was used to form the lower barrier layer 103 (carrier concentration # 4 × 1018cnr3, layer thickness # 700 nm). (4) A light-emitting layer 104 (carrier concentration and 3x 1017cnr3, layer thickness # 180nm) mainly formed by cubic n-type Gao. ^ IiiQ ^ N layers (lattice number = 4.5 38A). -19- 569472 V. Description of the invention (18) (5) By the above MOCVD reaction system and growing at 400 ° C, the forbidden bandwidth at room temperature is set to 3. leV, by the amorphous as the main An n-type boron phosphide (BP) layer is used to form the upper barrier layer 105 (the carrier concentration is 3 × 1016 c πΓ3, and the layer thickness is 480 nm). (6) A gold-germanium (Au · Ge) circular electrode (diameter == 120 // 01) arranged in the center of the upper barrier layer 105 to form an ohmic surface electrode 106. (7) An ohmic inner electrode 107 is formed on the entire surface of the p-shaped silicon substrate 101, and is made of aluminum (A1). In addition, the blue LED1A is an LED that utilizes the characteristics exhibited in the description of the following items (a) to (d). (a) Light emission center wavelength: 430 nm. (b) Brightness: 6 mcd. (c) Forward voltage: 3 Volts (V) (forward current = 20 milliamps (mA)). (d) Reverse voltage: 8 volts (V) (reverse current = ιΟμΑ). For the yellow LED2A, it is a laminated structure using the functional layers described in (2) to (4) on the substrate 1101 described in the following (1), in which (5) and ( 6) η-oriented LED with ohmic surface and inner electrode as described in item (6). (1) Zinc (Zn) doped p-type (100) -GaAs single crystal substrate 101. (2) Growth at 720 ° C by gallium (Ga) / arsenic hydride (AsH3) / hydrogen (H2) -based hydride vapor phase growth method (VPE), Zn-doped P-type GaASl.zPz mixed gradient layer ( Carrier concentration and lx, layer thickness and 15 // m) 1 80 0 -20- 569472 V. Description of the invention (19) (3) Using the above hydride vapor phase growth (VPE) method to grow at 720 ° C, Nitrogen (N) is added as an isoelectron ic trap to the sand-doped n-type GaAs 0.25PQ 75 light-emitting layer 104. (4) Grow at 400 ° C by (C2H5) 3B / PH3 / H2 based MCVD reaction system, set the forbidden bandwidth at room temperature to 2.7eV, and use n-type arsenization with amorphous as the main body Phosphorous boron (BPq. ^ As ^^) layer to form the upper barrier layer 105 (carrier concentration and 4x 10ucm · 3, layer thickness and 750nm). (5) A gold-germanium (Au · Ge) circular electrode (diameter = 120 # m) arranged in the center of the upper barrier layer 105 to form an ohmic surface electrode 106. (6) An ohmic inner electrode 107 formed on the entire surface of the P-shaped silicon substrate 101 and formed of gold zinc (Au • Zn). In addition, the yellow LED 2A is an LED using characteristics exhibited in the description of the following items (a) to (d). (a) Light emission center wavelength: 580 nm. (b) Brightness: 3 mcd. (c) Forward voltage: 2 Volts (V) (forward current = 20 milliamps (mA)). (d) Reverse voltage: 5 volts (V) (reverse current = 10 // Α). The multi-color light emitting lamp 20, which is generally a square blue LED and a yellow LED 2A, each having a length of 300 // m, is assembled through the procedures described in the following (A) to (C). (A) As an example, the pedestal 15 of each of the p-type inner electrodes 107 of the LEDs 1A and 2A is a procedure for fixing using a conductive bonding material and a direct chip assembly (chi ρο-b.o a r d) method. -21-569472 V. Description of the invention (21) (2) Growth at 400 ° C by triethylboron ((C2H5) 3B) / phosphine (pH3) / hydrogen (H2) system at normal pressure MOCVD method The buffer layer 102 was formed with a layer thickness of 15 nm and an n-type boron indium phosphide mixed crystal (B0.33IW.67P) that was lattice-integrated in the Si single crystal (lattice constant and 5.431A) constituting the substrate 101. (3) Doped silicon (S i) at 850 ° C by the above-mentioned MOCVD vapor phase growth method, formed mainly by the {1 1 〇} crystal planes arranged in parallel on the surface of the substrate 101 Indium boron phosphide (BJn ^ P: X = 0.33 — 0.98) was mixed with a composition gradient to form the lower barrier layer 103 (carrier concentration and lx 1018 cm · 3, layer thickness and 560 nm). The boron (B) composition ratio (= X) of the boron indium phosphide (ΒχΙηι.χΡ) mixed gradient layer is such that X = 0.33 at the bonding interface with the buffer layer 102 and on the surface bonded to the light emitting layer 104 It is 0.98. (4) The light-emitting layer 104 (carrier concentration and 4x 1017cnr3, layer thickness and 150nm) formed mainly by cubic η-type GaQ.901110.1QN layer (lattice number = 4.557A). (5) Grow at 40CTC by the above MOCVD reaction system, set the forbidden bandwidth at room temperature to 3. leV, and P-type boron indium phosphide (Mg) doped with amorphous as the main body (Mg) Bo.98liio.o2P: The upper barrier layer 105 (carrier concentration and 2x 1019cm3, layer thickness and 400nm) formed by the lattice constant and 4.5 5 7A) 0 (6) Gold and zinc arranged in the center of the upper barrier layer 105 (Au · Zη) circular electrode (diameter = 130 // m) to form an ohmic surface electrode 106. -23- 569472 V. Description of the invention (22) (7) The ohmic inner electrode 107 is formed on the whole surface of the n-shaped silicon substrate 101, and is made of aluminum (A1). As a hetero-junction GaP green LED 3A, it is arranged in a multilayer structure using the functional layers described in (2) and (3) on the substrate 101 described in (1) below in order (4) And the ohmic surface and back electrodes described in item (5) constitute a P-oriented single hetero: SH junction type LED. (1) Silicon (Si) -doped n-type (100) 2 ° off-GaP single crystal substrate 101. (2) By the general epitaxial liquid crystal (LPE) method (refer to the above-mentioned "Group III-V compound semiconductor", pages 253 to 256), grow at 800 ° C, add it as an homogeneous atom at a concentration of 6x 1018 cm_3 The light emitting layer 104 is formed by nitrogen (N) of an iso-electronic trap, and n-type GaP is doped with silicon (Si). (3) Using the above-mentioned MOCVD reaction system to grow at 380 ° C, and set the forbidden bandwidth at room temperature to 3. OeV, the upper part is formed by p-type boron phosphide (BP) with amorphous as the main body Barrier layer 105 (carrier concentration and 3x 1 019 c πΓ3, layer thickness and 4 0 nm). (4) A gold beryllium (Au · Be) circular electrode (diameter = Π 0 # m) arranged in the center of the upper barrier layer 105 to form an ohmic surface electrode 106. (5) An ohmic inner electrode formed on the entire surface of the η-shaped silicon substrate 101 and formed of a gold-germanium alloy (Au95% by weight · Ge5% by weight) 107 ° -24- 569472 V. Description of the invention (23) In addition In terms of the heterojunction GaP green LED 3A, it is an LED that utilizes the characteristics exhibited in the description of the following items (a) to (d). (a) Luminous center wavelength: 555nm ° (b) Brightness: 5 millicandles (mcd) ° (c) Forward voltage: 2 volts (V forward current = 20 milliamps (m A)) ο (d) reverse Voltage: 5 Volts (V) (reverse current = 10 // Α). The heterojunction red LED 4A is a silicon (Si) -doped n-type (100) -Si single crystal as the substrate 101, and uses an n-type aluminum gallium arsenide (AlGaAs) light-emitting layer 104 and a p-type phosphor. A pn junction type LED formed by a boron (B) layer and the upper barrier layer 105. The main characteristics of the p-guided red LED4A are described below. (a) Luminous center wavelength: 660 nm. (b) Brightness: 8 mcd. (c) Forward voltage: 2 volts (V) (forward current = 20 milliamperes (mA)). (d) Reverse voltage: 5 volts (V) (reverse current = 10 / zA). The square blue LED1A, hetero-junction green LED3A, and hetero-junction red LED4A with a side of about 250 // m are assembled through the following procedures (A) to (C) to form as many RGB types as possible. Color light fixture 30 ° (A) at the pedestal 15 of each of the η-type inner electrodes 107 of LED1A, 3A, 4A as an example. It is a conductive bonding material, which is directly assembled by a chip. -25- 569472 5. Description of the invention ( 24) (chip-on-board) method to perform the fixed procedure. (B) The p-type surface electrodes 106 of IA, 3A, and 4A are electrically insulated from the pedestal 15 by two terminals 17 to 19, and individually by means of a wedge wire or The wire bonding process is performed by a ball welding method. (C) The multi-color light emitting lamp 30 is constructed by individually wiring each of the LEDs 1A, 3A, and 4A. Therefore, it can also be used as a single light fixture with a blue band, a green band, or a red band. In particular, the lamp 30 of the second embodiment is a heterojunction type GaP LED3A using a boron-containing I 11 _ V group compound semiconductor layer. Therefore, it can also be used as a single light emitting high-brightness green band. Lights to take advantage. In addition, since the LEDs 1A, 3A, and 4A are individually wired, the forward current flowing through each LED can be individually adjusted, so that mixed-color light of each RGB emission color is generated. In addition, each of the LEDs 1A, 3A, and 4A is turned on at the same time to form an RGB type multicolor light-emitting lamp 30 for emitting white light. (Third embodiment) The content of the present invention will be described by taking as an example a case where the RGB-type multi-color light emitting lamp 30 described in the second embodiment is assembled to constitute a light source. In the light source 40 of the present invention, the plan view of the RGB-type multicolor light-emitting lamp 30 is disclosed schematically as shown in FIG. 8, for example, it is regularly spaced to form an arrangement. When the forward current is controlled at terminals 18 of each of the arranged lamps 30 and the flowable wiring is implemented, the chroma can be adjusted, and it can constitute a multi-color lamp for display (display) purposes. -26- 569472 V. Description of the invention (25) [Effects of the invention] According to the present invention, a heterojunction light-emitting device (for example, a device having a boron phosphide-based III-V compound semiconductor layer as a barrier layer is used) Heterojunction type GaP series green LED or heterojunction type GaASl. ZPZ series LED) constitutes multi-color light-emitting lamps and light sources. Therefore, it can bring high-intensity light emission, and can provide multi-color such as RGB mixed color Light-emitting lamps. In addition, according to the present invention, in particular, a blue light-emitting element composed of a conductive substrate material 'emitted from a substrate and provided with electrodes is provided by using a boron-containing III-V group compound, for example. The blue LED of the semiconductor layer constitutes a multi-color light-emitting lamp and a light source. Therefore, it is easy to perform a bonding operation and can provide a high-intensity multi-color light-emitting lamp and a light source. Brief Description of the Drawings Figure 1 is a schematic sectional view of the blue LED of the present invention. Fig. 2 is a schematic cross-sectional view of the heterojunction yellow LED of the present invention. Fig. 3 is a cross-sectional view of a heterojunction green LED according to the present invention. Fig. 4 shows a cross-sectional pattern of the heterojunction red LED of the present invention. Figure 5 shows the cross-sectional mode of the multi-color light-emitting lamp of the present invention. Figure -27- 569472 V. Description of the invention (26) Figure 6 shows the cross-sectional mode of the multi-color light-emitting lamp of the first embodiment. Illustration. Fig. 7 is a sectional view of the multi-color light-emitting lamp according to the second embodiment. Fig. 8 is a plan view showing the construction of a light source using the multi-color light-emitting lamp of the third embodiment. [Illustration of Symbols] 1A, 2A, 3A, 4A: LED 10, 20, 30: Multi-color light fixture 40: Light source 1 1: Substrate 1 2: Upper barrier layer 1 3: Surface electrode 1 4: Inside electrode 1 5 : Pedestal 16: metal coating 1 7, 18, 19: terminal 1 0 1: single crystal substrate 102: buffer layer 103: upper barrier layer 104: light emitting layer 105: upper barrier layer 1 06: surface electrode- 28-569472 V. Description of the invention (27) 107: Inside electrode 108: mixed gradient layer 109: IGaP layer 110: 2GaP layer-29-

Claims (1)

569472 ♦年,丨日1多止 一 補免·六、申請專利範圍 第91 1 1 8661號「多色發光燈具及其光源」專利案 (92年10月1日修正) 六申請專利範圍: 1 · 一種多色發光燈具,爲倂設、配置多數之LED所構成, 其特徵在於, 具備有一種藍色系發光二極體(LED),其係射出藍 色帶光,且具有··低溫緩衝層,爲設於導電性之基板表 面上,且由非晶質或多結晶之包含硼(B)之III-V族 化合物半導體(含硼111 -V族化合物半導體)所形成; 障壁層,爲設於低溫緩衝層上,且由包含硼(B)與磷 (P)之磷化硼(BP)系III-V族化合物半.導體所形成 ;發光層,係由設於障壁層上之III-V族化合物半導體 所形成。 2 .如申請專利範圍第1項之多色發光燈具,其中係包含有 一種射出黃色帶光之異質接合型黃色系LED,爲具備有 :發光層,爲設於基板上;上部障壁層,爲由設於發光 層上之磷化硼系111 -V族化合物半導體層所形成。 3 .如申請專利範圍第1項之多色發光燈具,其中係包含有 一種射出綠色帶光之異質接合型綠色系LED,爲具備有 :發光層,爲設於基板上;上部障壁層,爲由設於發光 層上之磷化硼系III-V族化合物半導體層所形成。 4 .如申請專利範圍第1項之多色發光燈具,其中係包含有 一種射出紅色帶光之異質接合型紅色系LED,爲具備有 一 1- 569472 4',小 V:,: - .— 1 - ; --- - y :/ . 六、申請專利範圍 :發光層’爲設於基板上;上部障壁層,爲由設於發光 層上之磷化硼系111 - V族化合物半導體層所形成。 5 ·如申請專利範圍第3項之多色發光燈具,其中係包含有 一種射出紅色帶光之異質接合型紅色系LED,爲具備有 :發光層,爲設於基板上;上部障壁層,爲由設於發光 層上之磷化硼系III-V族化合物半導體層所形成。 6 ·如申請專利範圍第1或5項之多色發光燈具,其中基板 係由相同之傳導形之單結晶所構成。 7 · —種光源,其特徵爲:使用申請專利範圍第1至5項中 任一項所記載之多色發光燈具。 -2 -569472 ♦ Year 1 and more than one supplementary exemption. VI. Patent Application No. 91 1 1 8661 "Multicolor Luminescent Lamps and Light Sources" Patent Case (Amended on October 1, 1992) Six Patent Application Scope: 1 · A multi-color light-emitting lamp, which is composed of a large number of LEDs, and is characterized by a blue light-emitting diode (LED) that emits blue band light and has a low-temperature buffer The layer is formed on the surface of a conductive substrate and is formed of an amorphous or polycrystalline III-V compound semiconductor (including a boron 111-V compound semiconductor) containing boron (B); a barrier layer is It is provided on the low-temperature buffer layer, and is formed of a semi-conductor of a group III-V compound of boron phosphide (BP) series containing boron (B) and phosphorus (P); a light-emitting layer is formed of III on the barrier layer -Group V compound semiconductor. 2. The multi-color light-emitting lamp according to item 1 of the scope of the patent application, which includes a heterojunction type yellow LED emitting yellow light with light, which includes: a light-emitting layer, which is provided on a substrate; and an upper barrier layer, which is It is formed by a boron phosphide-based 111 -V compound semiconductor layer provided on the light-emitting layer. 3. The multi-color light-emitting lamp according to item 1 of the scope of the patent application, which includes a heterojunction green LED that emits green with light. It includes: a light-emitting layer, which is provided on the substrate; and an upper barrier layer, which is It is formed of a boron phosphide-based III-V compound semiconductor layer provided on the light-emitting layer. 4. The multi-color light-emitting lamp according to item 1 of the scope of the patent application, which includes a heterojunction red LED that emits red with light, and has a 1-569472 4 ', small V :,---1 -; ----y: /. VI. Patent application scope: The light-emitting layer is provided on the substrate; the upper barrier layer is formed by a boron phosphide-based 111-V compound semiconductor layer provided on the light-emitting layer. . 5 · The multi-color light-emitting lamp according to item 3 of the patent application scope, which includes a heterojunction red LED that emits red with light. It has: a light-emitting layer, which is provided on the substrate; and an upper barrier layer, which is It is formed of a boron phosphide-based III-V compound semiconductor layer provided on the light-emitting layer. 6 · The multi-color light-emitting lamps according to item 1 or 5 of the patent application scope, wherein the substrate is composed of the same conductive single crystal. 7. A light source characterized by using a multi-color light-emitting lamp as described in any one of claims 1 to 5 of the scope of patent application. -2 -
TW91118661A 2001-08-20 2002-08-19 Multi-color luminous lamp and its light source TW569472B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001248455A JP3772708B2 (en) 2001-08-20 2001-08-20 Multicolor light emitting lamp and light source

Publications (1)

Publication Number Publication Date
TW569472B true TW569472B (en) 2004-01-01

Family

ID=32588011

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91118661A TW569472B (en) 2001-08-20 2002-08-19 Multi-color luminous lamp and its light source

Country Status (2)

Country Link
JP (1) JP3772708B2 (en)
TW (1) TW569472B (en)

Also Published As

Publication number Publication date
JP3772708B2 (en) 2006-05-10
JP2006024583A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
US7479731B2 (en) Multicolor light-emitting lamp and light source
CN1156028C (en) Double heterojunction light emitting diode with gallium nitride active layer
US20080111123A1 (en) High Efficiency Light-Emitting Diodes
JP2008544567A (en) Light emitting diode with nanorod array structure having nitride multiple quantum well, method for manufacturing the same, and nanorod
CN108389941A (en) It is aobvious to refer to adjustable unstressed configuration powder Single chip white light LED component and preparation method thereof
JP3700609B2 (en) COMPOUND SEMICONDUCTOR LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, LAMP AND LIGHT SOURCE
JPH0246779A (en) Pn junction type light emitting diode using silicon carbide semiconductor
US6835962B2 (en) Stacked layer structure, light-emitting device, lamp, and light source unit
JP3567926B2 (en) pn junction type boron phosphide-based semiconductor light emitting device, method for manufacturing the same, and light source for display device
CN104868027B (en) A kind of unstressed configuration powder GaN base white light LEDs epitaxial structure and preparation method thereof
US6831293B2 (en) P-n junction-type compound semiconductor light-emitting device, production method thereof, lamp and light source
TW569472B (en) Multi-color luminous lamp and its light source
US20030173573A1 (en) Pn-junction type compound semiconductor light-emitting device, production method thereof and white light-emitting diode
JP4799769B2 (en) GaP light emitting diode
JP3747867B2 (en) Pn junction type compound semiconductor light emitting device, manufacturing method thereof, lamp and light source
CN105226150A (en) A kind of N-B is two mixes efficient white light LED structure of the GaN base unstressed configuration powder of SiC substrate and its preparation method and application
JP2001068730A (en) AlGaInP LIGHT EMITTING DIODE
JP3614143B2 (en) Pn junction type compound semiconductor light emitting device, manufacturing method thereof, white light emitting diode
WO2012170280A1 (en) Light emitting devices with efficient wavelength conversion and associated methods
JP3557571B2 (en) Light-emitting element laminated structure, light-emitting element, lamp and light source
JP2002246643A (en) Group iii nitride semiconductor light emitting element and manufacturing method thereof
JP3646706B2 (en) Boron phosphide-based semiconductor light-emitting diode and manufacturing method thereof
JP3736401B2 (en) COMPOUND SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, LIGHT EMITTING DEVICE, LAMP, AND LIGHT SOURCE
JP3649170B2 (en) Laminated structure and light emitting element, lamp, and light source using the same
JP2003046122A (en) Light-emitting element, laminated structure body thereof, lamp, and light source

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees