JPS606552B2 - Gallium phosphide green light emitting device - Google Patents
Gallium phosphide green light emitting deviceInfo
- Publication number
- JPS606552B2 JPS606552B2 JP54015451A JP1545179A JPS606552B2 JP S606552 B2 JPS606552 B2 JP S606552B2 JP 54015451 A JP54015451 A JP 54015451A JP 1545179 A JP1545179 A JP 1545179A JP S606552 B2 JPS606552 B2 JP S606552B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- gallium phosphide
- type gallium
- type gap
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Led Devices (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
【発明の詳細な説明】
本発明は半導体発光素子に係り、特にリン化ガリウム(
GaP)結晶を用いた緑色発光素子に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor light emitting device, and particularly relates to a semiconductor light emitting device using gallium phosphide (
The present invention relates to a green light emitting device using GaP) crystal.
従来のGaP緑色発光素子は、一般にn型Gap基板上
にn型Gap層及びp型GaP層を設けた構成であって
、通常その不純物濃度分布は第1図aに示す点線の如く
なっている。A conventional GaP green light-emitting device generally has a structure in which an n-type Gap layer and a p-type GaP layer are provided on an n-type Gap substrate, and the impurity concentration distribution is usually as shown by the dotted line in Figure 1a. .
例えば1973王に発行されたAppl.phの.Le
tt.Vol.22の第227頁〜第229頁(文献)
の記載によれば、n型Gap層及びp型Gap層の少数
キャリアの寿命と発光効率は、上記夫々の層の不純物濃
度が夫々約1×1び7/地、約1×1び8/地の時に最
大になっている。このような事実を基にし、p−n接合
近傍における少数キャリアの注入効率を考慮すると、比
較的高い発光効率の得られる素子構成を考えることがで
きる。実際n型GaP層及びp型GaP層の不純物濃度
を上記した濃度にすると、0.1%程度(モールド有り
)の発光効率を示すようになる。ところで発光素子を作
る際の基板となる高圧引き上げGap結晶(LEC結晶
)の育成技術が近年著しく進歩し、結晶欠陥、残留歪み
等の低い高品質GaP結晶が得られるようになった。For example, Appl. ph. Le
tt. Vol. 22, pages 227 to 229 (literature)
According to the description, the minority carrier lifetime and luminous efficiency of the n-type Gap layer and the p-type Gap layer are determined when the impurity concentrations of the respective layers are approximately 1×1 and 7/2 and approximately 1×1 and 8/2, respectively. It is at its maximum during the earth. Based on these facts and considering the injection efficiency of minority carriers in the vicinity of the pn junction, it is possible to consider a device configuration that provides relatively high luminous efficiency. In fact, when the impurity concentrations of the n-type GaP layer and the p-type GaP layer are set to the above-mentioned concentrations, a luminous efficiency of about 0.1% (with mold) will be exhibited. Incidentally, the technology for growing high-pressure pulled Gap crystals (LEC crystals), which serve as substrates for manufacturing light-emitting devices, has advanced significantly in recent years, and high-quality GaP crystals with low crystal defects, residual strain, etc. can now be obtained.
このような高品質のGaP結晶を基板として用いた場合
、その上に形成(液相ェピタキシャル成長)するGaP
層(n型及びp型)の結晶も向上することが考えられ、
上記した素子構成(不純物濃度を含めて)を再検討する
必要がある。そこで本発明者は、上記した高品質のGa
P基板上に液相ヱピタキシヤル成長により形成するn型
GaP層の、少数キャリアの寿命とドナ−濃度との関係
を詳しく調べたところ、従来よりも特に低ドナー濃度側
で少数キャリアの寿命の改善が見られ、さらに第1図b
に示す実線の如く成長方向側に階段状にドナー濃度を減
少せしめると特に顕著であることが判明した。When such a high-quality GaP crystal is used as a substrate, the GaP formed on it (liquid phase epitaxial growth)
It is thought that the crystallization of the layers (n-type and p-type) also improves,
It is necessary to reconsider the above-mentioned element configuration (including impurity concentration). Therefore, the present inventor has developed the above-mentioned high-quality Ga.
A detailed study of the relationship between minority carrier lifetime and donor concentration in an n-type GaP layer formed by liquid-phase epitaxial growth on a P substrate revealed that the minority carrier lifetime was improved, especially at lower donor concentrations than in the past. As shown in Figure 1b
It has been found that this is particularly noticeable when the donor concentration is reduced stepwise in the growth direction as shown by the solid line.
この様子貝0ちn型Gap層のドナー濃度に対する少数
キャリアの寿命を第2図aに示し、比較の為にドナー濃
度分布が階段状でない場合をbに、上記文献の場合をc
に示す。この結果を基に発光素子を作成したところ、平
均発光効率0.4%以上(モールド有り、2私/めの場
合)の発光素子が得られるようになった。そこで本発明
者等は先にこの事実を特許出願(特願昭52−1200
3す号)した。しかしながら上記の高発光効率のGap
緑色発光素子の構成においては、p型Gap層について
何等の改善を施していなかった。Figure 2a shows the lifetime of minority carriers with respect to the donor concentration in the n-type Gap layer.For comparison, b shows the case where the donor concentration distribution is not step-like, and c shows the case in the above literature.
Shown below. When a light emitting device was created based on this result, a light emitting device with an average luminous efficiency of 0.4% or more (with mold, 2nd/second case) could be obtained. Therefore, the inventors of the present invention first disclosed this fact in a patent application (Japanese Patent Application No. 1200-1980)
No. 3) I did it. However, the above-mentioned high luminous efficiency gap
In the configuration of the green light-emitting element, no improvements were made to the p-type Gap layer.
そこで本発明者等は少数キャリアの寿命の長いn型Ga
p層上に成長させたp型Gap層に対して、ァクセプタ
濃度がn型Gap層及びp型Gap層の少数キャリアの
寿命に及ぼす影響について検討した。Therefore, the present inventors investigated n-type Ga, which has a long minority carrier life.
With respect to the p-type Gap layer grown on the p-layer, the influence of acceptor concentration on the lifetime of minority carriers in the n-type Gap layer and the p-type Gap layer was studied.
その結果、p型GaP層についてはアクセプタ濃度が低
い例えば2×1び7/が以下で改善が見られ、40仇s
ec以上得られることを見し、出した。さらにアクセプ
タ濃度がp型Gap層のみならずn型Gap層にも影響
しており、上記則ち先に出願した特嬢昭52−1200
3y号のように低濃度にした場合特にp−n接合近傍の
n型Gap層の少数キャリアの寿命が向上することも見
し、出した。本発明は上記実験事実に鑑みなされたもの
で、平均発光効率で約0.5%(モールド有り、25A
′係)以上得ることの可能なGap緑色発光素子を提供
するものである。As a result, for the p-type GaP layer, an improvement was seen when the acceptor concentration was low, for example, 2 × 1 and 7 / 40 seconds.
I saw that I could get more than EC and issued it. Furthermore, the acceptor concentration affects not only the p-type Gap layer but also the n-type Gap layer.
It was also found that when the concentration is low as in No. 3y, the lifetime of minority carriers in the n-type gap layer near the p-n junction is improved. The present invention was made in view of the above experimental facts, and has an average luminous efficiency of approximately 0.5% (with mold, 25A
1) A Gap green light emitting device which can be obtained as described above is provided.
以下図面を参照して本発明の一実施例を説明する。An embodiment of the present invention will be described below with reference to the drawings.
まず第3図に示すような液相ェピタキシャル成長装置を
用いて、n型GaP基板上にドナー濃度(N。First, using a liquid phase epitaxial growth apparatus as shown in FIG. 3, a donor concentration (N) is grown on an n-type GaP substrate.
)が階段状に変化するn型GaP層を形成し、その上に
同様にアクセプタ濃度(N^)が階段状に変化するp型
Gap層を形成して、Gap緑色発光素子を得る。この
ようにn型GaP層のNo及びp型GaP層のN^が階
段状に変化するように構成すると、極めて高い発光効率
のものが得られる。これは発光領域の発光中心濃度(N
T)が約2×1び8/地と高い状態でなおかつn型Ga
p層及びp型GaP層の少数キャリアのライフタイムが
きわめて長くなったことによる。以下具体的に説明する
。まず第3図に示す成長装置は、石英製の反応炉11内
に成長用ボート12が配置され、反応炉11の外側に2
つの加熱装置13a,13bが設けられたもので、成長
用ボート12はn型Gap基板14を収容する凹部14
aを有するスライダー15と、溶液16を収容する部分
を有し且つ不純物をドープするための小孔17を有する
溶液収容ポ−ト18とで構成されており、n型GaP基
板上及び溶液16上には例えば石英からなる蓋14b,
16bが設けられている。そしてこの成長用ボート12
と少し離れた部分に例えば亜鉛(Zn)からなる不純物
蒸発源19が備えられている。) is formed in a stepwise manner, and a p-type Gap layer in which the acceptor concentration (N^) similarly changes in a stepwise manner is formed thereon to obtain a Gap green light emitting device. If No of the n-type GaP layer and N^ of the p-type GaP layer are configured to change stepwise in this way, extremely high luminous efficiency can be obtained. This is the emission center concentration (N
T) is as high as approximately 2×18/ground and is n-type Ga.
This is because the lifetime of minority carriers in the p-layer and p-type GaP layer has become extremely long. This will be explained in detail below. First, in the growth apparatus shown in FIG. 3, a growth boat 12 is arranged inside a reactor 11 made of quartz, and two
The growth boat 12 has a recess 14 that accommodates the n-type Gap substrate 14.
The slider 15 is composed of a slider 15 having a diameter of 15 mm and a solution accommodating port 18 having a portion for accommodating the solution 16 and a small hole 17 for doping with impurities. For example, a lid 14b made of quartz,
16b is provided. And this growth boat 12
An impurity evaporation source 19 made of, for example, zinc (Zn) is provided at a portion a little apart from the above.
また反応炉11の両側には、ガスを供給するための閉口
11a,11をと、ガスを排出するための閉口11bが
設けられている。このような成長装置で、n型Gap基
板上にn型GaP層及びp型Gap層を形成する場合、
第4図a,b,cのように成長用ボート12を駆動して
行う。まず第4図aに示すように例えばグラフアィトか
らなるスライダー25の凹部24aに硫黄(S)ドープ
の良質な(Dislocationpitが1×1び/
係以下、平均的には5〜8×1び/塊程度)n型Gap
基板24を設置し、溶液収容ボート28の溶液収容溜に
Gaを5タ収容し、ガス供給ロー 1をから日2ガスを
流入しながら加熱装置を動作させ成長用ボート12を1
010qoまで上昇せしめてドナー不純物を含まない(
自然的に入るドナー不純物例えばシリコン等は入ってい
る)Ga溶液26を作る。このように101000に達
してから15分後、スライダー25を可動せしめ、第4
図bに示すようにGap基板24上に溶液26の一部を
載せたまま多数の小孔27を有する部分まで移動せしめ
る。この時Gap基板24上の溶液26の厚さが例えば
1.3肋となるように前記スライダー25の凹部24a
の深さを設置しておく。この状態で例えば10分間保持
して、Gap基板24表面が溶液26に溶け込み、この
後一定の冷却速度例えば1.yo/分で所定の温度例え
ば980つ0迄冷却する。この冷却によりGaP基板2
4上に後に説明する第6図の窒素を含まないn型GaP
層(第ln層と称する)が15山川程度成長する。この
状態迄で成長した第ln層のN。はn型Gap基板のN
oより少し少ない。例えば第6図の如く第ln層のNo
が1.8×1び7/め位である。Further, on both sides of the reactor 11, there are provided closures 11a and 11 for supplying gas, and a closure 11b for discharging gas. When forming an n-type GaP layer and a p-type Gap layer on an n-type Gap substrate using such a growth apparatus,
This is done by driving the growth boat 12 as shown in FIGS. 4a, b, and c. First, as shown in FIG. 4a, a high-quality sulfur (S)-doped material (Dislocation pit: 1 x 1 /
n-type Gap (on average, about 5 to 8
The substrate 24 is installed, 5 tons of Ga is stored in the solution storage tank of the solution storage boat 28, and the heating device is operated while gas is supplied from the gas supply row 1 to the growth boat 12.
010qo and does not contain donor impurities (
A Ga solution 26 (containing naturally occurring donor impurities such as silicon) is prepared. 15 minutes after reaching 101000 in this way, the slider 25 is moved and the fourth
As shown in FIG. b, a portion of the solution 26 is placed on the Gap substrate 24 and moved to a portion having a large number of small holes 27. At this time, the recess 24a of the slider 25 is adjusted so that the thickness of the solution 26 on the Gap substrate 24 is, for example, 1.3 ribs.
Set the depth. This state is maintained for 10 minutes, for example, so that the surface of the Gap substrate 24 dissolves into the solution 26, and then the cooling rate is maintained at a constant rate, for example 1. It is cooled down to a predetermined temperature, for example, 980 yo/min. Due to this cooling, the GaP substrate 2
4. Nitrogen-free n-type GaP shown in FIG. 6, which will be explained later on.
A layer (referred to as the ln-th layer) grows to about 15 layers. N of the ln-th layer that has grown to this state. is the N of the n-type Gap substrate.
A little less than o. For example, as shown in FIG.
is 1.8 x 1 to 7/digits.
この第ln層のN。が後にも説明するが、成長炉を構成
する石英製反応管の表面が水素ガスで還元される為、溶
液中に多くのSjが混入され、例えば基板よりも高くな
る場合もある。引続き980ooに達してから所定の時
間例えば60分間温度を一定に保ち、保持開始と同時に
ガス供給口11aからアンモニア(NH3)を含むアル
ゴン(〜)ガスを流入する。このようにすると、後にも
説明するが流入されたアンモニアは、第4図cに示す状
態で多数の小孔を介して、Gap基板上のガリウム溶液
26と反応し、飽和状態迄窒素原子が添加されると共に
、一部ガリウム溶液26中に例えば炉内の石英から入る
シリコン(Si)と反応しSi3N4を作る。又溶液2
6中のSはこの保持時間で一部蒸発される。次に60分
経過後、溶液を再び例えば1.5oo/分の冷却速度で
94000迄冷却する。N of this lnth layer. As will be explained later, since the surface of the quartz reaction tube constituting the growth furnace is reduced by hydrogen gas, a large amount of Sj is mixed into the solution, and the concentration may be higher than that of the substrate, for example. Subsequently, after reaching 980 oo, the temperature is kept constant for a predetermined period of time, for example, 60 minutes, and at the same time as the holding starts, argon (~) gas containing ammonia (NH3) is flowed in from the gas supply port 11a. In this way, as will be explained later, the injected ammonia reacts with the gallium solution 26 on the Gap substrate through a large number of small holes in the state shown in FIG. At the same time, a portion of the gallium solution 26 reacts with silicon (Si), which comes from quartz in the furnace, to form Si3N4. Also solution 2
S in 6 is partially evaporated during this holding time. Then, after 60 minutes have elapsed, the solution is cooled again to 94,000 at a cooling rate of, for example, 1.5 oo/min.
この冷却により上記一部成長した第ln層上にn型Ga
p層(第か層と称する)が成長される。この状態は第6
図において、n層全体で30仏の成長した状態である。
なおこの成長された第か層は、窒素が非常に多く入った
状態になると共に、NDが極めて少ない例えば第6図か
ら明らかの如く2×1び6/地位になる。引続き940
つ0に達してから、所定の時間例えば30分間一定に保
ち、温度保持と同時に第3図に示す例えばZnからなる
不純物蒸発源1 9の加熱装置13bを動作させ、例え
ば460qo迄昇温せしめ、その温度で保温する。この
ように保温すると蒸気圧の高いZnは蒸発し、第3図に
示すガス供給口11′aからのArガスと共に多数の小
孔27を介してn型Gap層(第1及び第か屑共)が成
長した基板上の溶液26中に入る。この後、溶液を再び
1.5qo/分の冷却速度で機0℃迄冷却する。このよ
うにすると、n型GaP層が成長した基板上にZnが7
×1び6/球位添加されたp型Gap層(第lp層と称
する)が成長する。引続き総0℃において例えば3雌ご
間一定に保ち温度保持と同時に不純物蒸発源19の温度
を560doまで昇温せしめ、ガスの供給を停止する。
この後溶液を再び1.5℃/分の冷却速度で800qo
迄冷却する。このようにすると2×lび8/地位Znの
添加された窒素濃度の低いp型GaP層(第地層と称す
る)が約15rm成長する。この後は加熱装置13a及
び13bの電源(図示しない)を切り、自然冷却させる
。By this cooling, n-type Ga is formed on the partially grown ln layer.
A p-layer (referred to as the first layer) is grown. This state is the 6th
In the figure, 30 layers are grown in the entire n layer.
The grown second layer contains a very large amount of nitrogen and has very little ND, for example, as shown in FIG. Continued 940
After the temperature reaches 0, the temperature is kept constant for a predetermined period of time, for example, 30 minutes, and at the same time, the heating device 13b of the impurity evaporation source 19 made of, for example, Zn shown in FIG. 3 is operated to raise the temperature to, for example, 460 qo. Keep warm at that temperature. When kept warm in this way, Zn with a high vapor pressure evaporates and flows into the n-type Gap layer (both the first and second ) enters the solution 26 on the substrate on which it is grown. After this, the solution is again cooled to 0° C. at a cooling rate of 1.5 qo/min. In this way, Zn is grown on the substrate on which the n-type GaP layer is grown.
A p-type Gap layer (referred to as lp layer) doped with x1 and 6/sphere is grown. Subsequently, the temperature is kept constant at 0° C., for example, for three batches, and at the same time the temperature of the impurity evaporation source 19 is raised to 560 do, and the gas supply is stopped.
After this, the solution was cooled again to 800 qo at a cooling rate of 1.5°C/min.
Cool until In this way, a p-type GaP layer (referred to as the "first layer") with a low nitrogen concentration and doped with 2×l and 8/Zn is grown to a thickness of about 15 rm. After this, the heating devices 13a and 13b are turned off (not shown) and allowed to cool naturally.
ところで以上の成長用ボート12及び不純物蒸発源19
の温度プログラムは、上述した点からも明らかであるが
、図示すると第5図a,bに示すような分布である。こ
のようにして得られたn型Gap基板上のn型Gap層
のドナー濃度及びp型GaP層のアクセプタ濃度の分布
は、第6図の実線で示すように成長方向に対して階段状
に変化するようになった。By the way, the above growth boat 12 and impurity evaporation source 19
As is clear from the above-mentioned points, the temperature program has a distribution as shown in FIGS. 5a and 5b. The distribution of the donor concentration of the n-type Gap layer and the acceptor concentration of the p-type GaP layer on the n-type Gap substrate thus obtained changes stepwise in the growth direction, as shown by the solid line in FIG. It was way.
これは上記実施例中でも少し説明したが、第ln層の成
長の際には、Gap未飽和で且つドナー不純物を含まな
い溶液でGaP基板表面を一旦溶解させて行う為、No
は第6図から明らかの如く1.8×1び7/地位の1び
7/塊オーダである。なおこの第ln層の成長時、成長
炉を構成する石英製反応管の表面が水素ガスで還元され
る為に、溶液中に多くのSiが混入することになり、こ
れを反映して第ln層の主要ドナー不純物がSjとなる
(Noは上記の値)。一方後半で成長される第か層では
、アンモニアを含む〜ガス雰囲気下で行われる為、ガリ
ウム溶液中に多量の窒素が添加され、その窒素の一部と
溶液中のSiとが安定な化合物を作り、溶液中の主要ド
ナ−不純物であるSiが減少する。このため第か層のド
ナー濃度は主に基板から溶け出したドナー不純物(本実
施例ではS)によって決まることになり、第初層Noは
第6図に示すように第ln層に比較して1桁位低くなる
。このように第ln層のN。と第か層のN。とが階段状
に変化(成長方向に対し減少)すると、後に説明するが
第ln層及び第ln層と第か層の階段状のドナ−分布構
造により基板からの結晶欠陥を除去し、第か層での結晶
性を良くする則ち窒素を高濃度添加した場合でも第が層
での少数キャリアのライフタイムを長くできる為に、発
光効率を向上せしめるようになる。更に、結晶性の良好
なn型Gap層の上にp型GaP層をェピタキシャル成
長させた場合、第7図aに示すようにp型GaP層(第
lp層)のアクセプタ濃度に対する少数キャリアの寿命
の依存性も「cに示す従来例に比べ低濃度側で増大する
ようになる。This was explained briefly in the above example, but when growing the ln-th layer, the GaP substrate surface is once dissolved in a solution that is unsaturated with Gap and does not contain donor impurities, so the No.
As is clear from FIG. 6, the order is 1.8×1 and 7/position 1 and 7/lump order. Note that during the growth of this ln-th layer, the surface of the quartz reaction tube constituting the growth furnace is reduced by hydrogen gas, so a large amount of Si is mixed into the solution. The main donor impurity of the layer is Sj (No is the above value). On the other hand, the second layer grown in the second half is grown in a gas atmosphere containing ammonia, so a large amount of nitrogen is added to the gallium solution, and some of the nitrogen and Si in the solution form a stable compound. Si, the main donor impurity in the solution, is reduced. Therefore, the donor concentration of the first layer is mainly determined by the donor impurity (S in this example) dissolved from the substrate, and the first layer No. is compared to the ln layer as shown in FIG. It's about one digit lower. In this way, N of the lnth layer. and N of the first layer. As will be explained later, when the crystal defects from the substrate are removed by the step-like donor distribution structure of the ln-th layer and the ln-th layer and the second layer, as will be explained later, The crystallinity of the layer is improved, that is, even when nitrogen is added at a high concentration, the lifetime of minority carriers in the layer can be lengthened, thereby improving the luminous efficiency. Furthermore, when a p-type GaP layer is epitaxially grown on an n-type Gap layer with good crystallinity, the minority carrier ratio with respect to the acceptor concentration of the p-type GaP layer (lp layer) is as shown in Figure 7a. The dependence of lifetime also increases on the low concentration side compared to the conventional example shown in c.
なお比較の為に、bにドナー濃度のステップ状変化を持
たないn型GaP層上にp型Gap層を成長させた場合
(n型GaP層のドナ−濃度としては3×1び6/塊付
近に固定してある)を示す。この第7図から明らかなよ
うに、n型Gap層の結晶性が向上するにつれ、その上
に成長させるp型Gap層(第lp層)の少数キャリア
の寿命も改善され、特に低アクセプ夕濃度で、n型Ga
p層特性への依存性が著しい。またp型Gap層のァク
セプタ濃度を低濃度とした場合「 n型GaP層の結晶
性にも影響が現われ、第8図に示すようにn型Gap層
の少数キャリアの寿命が少し向上する。第8図において
、aはp型Gap層(第lp層)のアクセプタ濃度を7
×1016/塊付近とした場合、bは2×1018/洲
付近とした時のn型GaP層(第か層)のドナー濃度に
対する少数キャリアの寿命の関係を示したものである。
この第8図に示されるようなn型Gap層(第か層)特
性のp型Gap層(第lp層)アクセプタ濃度依存は、
p−n接合部での不純物濃度の急激な変化に伴う歪みに
よるものと思われる。For comparison, when a p-type Gap layer is grown on an n-type GaP layer that does not have a step change in the donor concentration in b (the donor concentration of the n-type GaP layer is 3 × 1 and 6/mass). (fixed nearby). As is clear from FIG. 7, as the crystallinity of the n-type Gap layer improves, the lifetime of minority carriers in the p-type Gap layer (lp layer) grown thereon also improves, especially at low acceptor concentration. So, n-type Ga
The dependence on the p-layer characteristics is significant. Furthermore, when the acceptor concentration of the p-type Gap layer is made low, the crystallinity of the n-type GaP layer is also affected, and as shown in Figure 8, the lifetime of minority carriers in the n-type Gap layer is slightly improved. In Figure 8, a represents the acceptor concentration of the p-type Gap layer (lp layer) by 7.
When the value is approximately ×10 16 /mass, b is approximately 2 × 10 18 /mass, and b represents the relationship between the donor concentration of the n-type GaP layer (second layer) and the lifetime of minority carriers.
As shown in FIG. 8, the dependence of the characteristics of the n-type gap layer (first layer) on the acceptor concentration of the p-type gap layer (first layer) is as follows:
This is thought to be due to distortion caused by a rapid change in impurity concentration at the pn junction.
このように基板及びその上に成長させたn型Gap層の
特性向上に伴いp型Gap層(第lp層)の特性も向上
し、特に従来に比べ低ァクセプタ濃度領域で著しくなる
ことが判明した。In this way, it was found that as the characteristics of the substrate and the n-type Gap layer grown on it improve, the characteristics of the p-type Gap layer (lp layer) also improve, and this is particularly noticeable in the low acceptor concentration region compared to the conventional one. .
この結果を基に発光素子を作製し、その発光効率を検討
した結果、n型Gap層のドナー濃度をステップ状に変
化させ、第ln層のドナー濃度を1〜5×1び7/地、
第か層のドナー濃度を1〜5×1び6ノのとし、且つp
型GaP層も同様にステップ状に変化させト第lp層の
アクセプタ濃度を2〜10×1び6ノ地、第沙層のァク
セプタ濃度を1.5〜20×1び7/桝に構成した時局
い発光効率が安定に得られることが判明した。Based on this result, a light emitting device was fabricated and its luminous efficiency was examined. As a result, the donor concentration of the n-type Gap layer was changed stepwise, and the donor concentration of the ln-th layer was set to 1 to 5 × 1 and 7 / ground,
The donor concentration of the first layer is 1 to 5×1 to 6, and p
The type GaP layer was also changed stepwise in the same way, and the acceptor concentration of the first lp layer was set to 2 to 10 × 1 and 6 squares, and the acceptor concentration of the first sand layer was set to 1.5 to 20 × 1 and 7 squares. It has been found that stable luminous efficiency can be obtained at certain times.
このときの平均発光効率は0.5%(モールド有り、2
松′の)以上となっていた。さらに上記不純物濃度を基
に第ln層、第か層及び第lp層の成長厚に対する発光
効率を調べたところ、第ln層厚が10仏の以上、第か
層及び第lp層厚が10ムの〜30〃仇のところで平均
発光効率0.5%(モールド有り、2私′の)以上であ
ることも判明した。The average luminous efficiency at this time was 0.5% (with mold, 2
pine tree) or more. Furthermore, based on the above impurity concentration, we investigated the luminous efficiency with respect to the growth thickness of the ln-th layer, the second layer, and the lp-th layer. It was also found that the average luminous efficiency was more than 0.5% (with mold, 2cm) at ~30mm.
以上の説明から明らかの如く、n型GaP基板上の第l
n層のNoを1〜5×1び7/地、第初層のNoを1〜
5×1び6/地に、しかもp塾Cap層の第lp層のN
^を2〜10×1び6/均、第沙層のN^を1.5〜2
0×1び7/地に構成し、第か層及び第lp層に窒素を
含有するように構成すれば、平均で0.5%以上の緑色
発光効率を示すようになる。As is clear from the above explanation, the lth
The number of the n layer is 1~5 x 1 and 7/ground, the number of the first layer is 1~
5 × 1 and 6 / ground, and N of the lp layer of the p cram school Cap layer
^ is 2 to 10 x 1 bi6/uniform, N^ of the first sand layer is 1.5 to 2
If the structure is such that nitrogen is contained in the first layer and the lp layer, green luminous efficiency of 0.5% or more will be exhibited on average.
なお上記で示したNTの測定は、lEEETransa
ctons on Electron Devices
.Vol.ED−2州o.7の第951頁〜第955頁
に示す方法で測定した値である。Note that the measurement of NT shown above is performed using lEEETransa.
CTons on Electron Devices
.. Vol. ED-2 state o. 7, pages 951 to 955.
また少数キャリアの寿命の測定はまずp型Gap層若し
くはn型Gap層のみが主として発光に寄与する素子に
おいて上記文献で示された方法により少数キャリアの寿
命を求めておき、次に任意の素子についてSEMを用い
拡散距離(L)を求め、それらの比からn型GaP層及
びp型Gap層の少数キャリアの寿命(ヶ)を求めた。
ここでキャリアの拡散定数は一定と仮定し、L20↑の
関係から求めている。また上記で示したNoとは、正味
のドナー濃度艮0ちNo−N^で、NAとは正味のアク
セプタ濃度貝0ちN^一Noである。To measure the lifetime of minority carriers, first calculate the lifetime of minority carriers in an element in which only the p-type Gap layer or n-type Gap layer mainly contributes to light emission by the method shown in the above literature, and then for any element. The diffusion length (L) was determined using SEM, and the lifetime (months) of minority carriers in the n-type GaP layer and the p-type Gap layer was determined from the ratio thereof.
Here, assuming that the carrier diffusion constant is constant, it is determined from the relationship L20↑. Further, No shown above is the net donor concentration 0, No-N^, and NA is the net acceptor concentration 0, N^1 No.
さらに上記実施例において、n型GaP基板のドナー不
純物として硫黄(S)を用いたが、テルル(Te)或い
はセレン(Se)であっても良く、p型GaP層のアク
セプタ不純物としてZnに限ることなくCdであっても
良い。Furthermore, in the above embodiments, sulfur (S) was used as the donor impurity of the n-type GaP substrate, but tellurium (Te) or selenium (Se) may also be used, and the acceptor impurity of the p-type GaP layer is limited to Zn. It may be Cd instead.
さらにまた上記実施例で説明した数値は、それに限るこ
となく種々変えることができる。Furthermore, the numerical values explained in the above embodiments are not limited thereto and can be changed in various ways.
第1図はGaP緑色発光素子の不純物濃度分布を示す曲
線図で、aは一般的なGap緑色発光素子の不純物濃度
分布を、bは持顕昭52−12003叫号‘こ示すGa
p緑色発光素子の不純物濃度分布を示したもので、第2
図はn型GaP層のNoに対する少数キャリアの寿命を
示す曲線図で、aは特磯昭52−12003y号‘こ示
すようにn型GaP層のドナー濃度が階段状に変化する
場合を、bはn型GaP層のドナー濃度が階段状に変化
しない場合を、cは一般的なGap緑色発光素子の場合
を示すもので、第3図は本発明の一実施例の方法に用い
た液相ヱピタキシャル成長装置の概略を示す断面図、第
4図a〜cは第1図装置の成長用ボートを駆動様態を示
す断面図、第5図a,bは第3図装置の成長用ボ−トと
不純物蒸発源の温度プロフアィルを示す曲線図、、第6
図は本発明の一実施例の方法によって得られた発光素子
の不純物プロフアィルを示す図、第7図は第lp層に対
する少数のキャリアのライフタイムの関係を示した曲線
図で、aは本発明の一実施例の場合を、bはn型Gap
層が階段状に変化しない場合を、cは一般的なGaP緑
色発光素子の場合を示すもので、第8図は第か層に対す
る少数キャリアのライフタイムの関係を示した曲線図で
、aは第lp層のN^が7×1び6/塊の場合、bは第
lp層が2×1び8/地の場合を示すもので、第9図は
成長厚に対する発光効率の関係を示した曲線図で、aは
第ln層の場合を、bは第か層の場合を、cは第lp層
の場合を示すものである。
第3図及び第4図において、11…・・・反応炉、12
…・・・成長用ボート、13a,13b・・…・加熱装
置、14,24・・・・・・n型GaP基板、14a,
24a・・・・・・基板を収容する凹部、14b,24
b,16b,26b……蓋、15,25……スライダー
、16,26……溶液、17,27……小孔、18,2
8…・・・溶液収容ボート、19・・・・・・不純物蒸
発源、11a,11′a…・・・ガスを供給するための
関口、11a……ガスを排出するための開□である。
第1図
第2図
第3図
第5図
第4図
第6図
第7図
第蟹図
第9図Figure 1 is a curve diagram showing the impurity concentration distribution of a GaP green light emitting device, where a shows the impurity concentration distribution of a general Gap green light emitting device, and b shows the GaP
This shows the impurity concentration distribution of a p-green light emitting element.
The figure is a curve diagram showing the lifetime of minority carriers for No in the n-type GaP layer, where a shows the case where the donor concentration of the n-type GaP layer changes stepwise as shown in Tokuiso Sho 52-12003y, and b 3 shows the case where the donor concentration of the n-type GaP layer does not change stepwise, and c shows the case of a general Gap green light emitting device. Figure 3 shows the liquid phase used in the method of one embodiment of the present invention. FIGS. 4a to 4c are sectional views showing how the growth boat of the apparatus shown in FIG. 1 is driven, and FIGS. Curve diagram showing the temperature profile of the impurity evaporation source and impurity evaporation source, 6th
The figure shows the impurity profile of a light emitting device obtained by the method of one embodiment of the present invention, and FIG. In one embodiment, b is n-type Gap
c shows the case of a general GaP green light-emitting device when the layers do not change in a stepwise manner; FIG. 8 is a curve diagram showing the relationship of the minority carrier lifetime with respect to the second layer; When N^ of the lp layer is 7 x 1 and 6/block, b shows the case where the lp layer is 2 x 1 and 8/block, and Figure 9 shows the relationship between luminous efficiency and growth thickness. In the curve diagram, a shows the case of the lnth layer, b shows the case of the first layer, and c shows the case of the lpth layer. In FIG. 3 and FIG. 4, 11... Reactor, 12
...Growth boat, 13a, 13b... Heating device, 14, 24... N-type GaP substrate, 14a,
24a... Concavity for accommodating the substrate, 14b, 24
b, 16b, 26b...Lid, 15,25...Slider, 16,26...Solution, 17,27...Small hole, 18,2
8... Solution storage boat, 19... Impurity evaporation source, 11a, 11'a... Sekiguchi for supplying gas, 11a... Opening □ for discharging gas. . Figure 1 Figure 2 Figure 3 Figure 5 Figure 4 Figure 6 Figure 7 Crab Figure 9
Claims (1)
及びp型リン化ガリウム層を設けてなるリン化ガリウム
緑色発光素子において、前記基板側のn型リン化ガリウ
ム層の正味のドナー濃度を1×10^1^7/cm^3
〜5×10^1^7/cm^3にし、前記p型リン化ガ
リウム層側のn型リン化ガリウム層の正味のドナー濃度
を1×10^1^6/cm^3〜5×10^1^6/c
m^3にして階段状に変化するように構成し、且つ前記
n型リン化ガリウム層側のp型リン化ガリウム層の正味
のアクセプタ濃度を2×10^1^6/cm^3〜1×
10^1^7/cm^3し、表面側のp型リン化ガリウ
ム層の正味のアクセプタ濃度を1.5×10^1^7/
cm^3〜2×10^1^8/cm^3にして階段状に
変化するように構成することを特徴とするリン化ガリウ
ム緑色発光素子。 2 基板側の高ドナー濃度となるn型リン化ガリウム層
の厚さを10μm以上、p型リン化ガリウム層側の低ド
ナー濃度となるn型リン化ガリウム層の厚さを10μm
〜30μmとし、且つn型リン化ガリウム層側の低アク
セプタ濃度となるp型リン化ガリウム層の厚さを10μ
m〜30μm、p型リン化ガリウム層の表面側の高さア
クセプタ濃度となるp型リン化ガリウム層の厚さを10
μm以上にすることを特徴とする前記特許請求の範囲第
1項記載のリン化ガリウム緑色発光素子。 3 p型リン化ガリウム層側の低ドナー濃度となるn型
リン化ガリウム層及びn型リン化ガリウム層側の低アク
セプタ濃度となるp型リン化ガリウム層のみに窒素を含
むように構成することを特徴とする前記特許請求の範囲
第1項記載のリン化ガリウム緑色発光素子。[Claims] 1. In a gallium phosphide green light-emitting device in which an n-type gallium phosphide layer and a p-type gallium phosphide layer are provided on an n-type gallium phosphide substrate, the n-type gallium phosphide layer on the substrate side Let the net donor concentration be 1×10^1^7/cm^3
~5×10^1^7/cm^3, and the net donor concentration of the n-type gallium phosphide layer on the p-type gallium phosphide layer side is 1×10^1^6/cm^3 to 5×10 ^1^6/c
The net acceptor concentration of the p-type gallium phosphide layer on the side of the n-type gallium phosphide layer is 2×10^1^6/cm^3 to 1. ×
10^1^7/cm^3, and the net acceptor concentration of the p-type gallium phosphide layer on the surface side is 1.5 × 10^1^7/
A gallium phosphide green light-emitting device characterized in that it is configured to change stepwise from cm^3 to 2 x 10^1^8/cm^3. 2. The thickness of the n-type gallium phosphide layer with high donor concentration on the substrate side is 10 μm or more, and the thickness of the n-type gallium phosphide layer with low donor concentration on the p-type gallium phosphide layer side is 10 μm.
~30 μm, and the thickness of the p-type gallium phosphide layer, which has a low acceptor concentration on the n-type gallium phosphide layer side, is 10 μm.
m ~ 30 μm, the height of the p-type gallium phosphide layer on the surface side, the thickness of the p-type gallium phosphide layer that has the acceptor concentration is 10
The gallium phosphide green light-emitting device according to claim 1, wherein the gallium phosphide green light-emitting device has a diameter of μm or more. 3. Construct so that only the n-type gallium phosphide layer with a low donor concentration on the p-type gallium phosphide layer side and the p-type gallium phosphide layer with a low acceptor concentration on the n-type gallium phosphide layer side contain nitrogen. A gallium phosphide green light-emitting device according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54015451A JPS606552B2 (en) | 1979-02-15 | 1979-02-15 | Gallium phosphide green light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54015451A JPS606552B2 (en) | 1979-02-15 | 1979-02-15 | Gallium phosphide green light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55108785A JPS55108785A (en) | 1980-08-21 |
JPS606552B2 true JPS606552B2 (en) | 1985-02-19 |
Family
ID=11889159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54015451A Expired JPS606552B2 (en) | 1979-02-15 | 1979-02-15 | Gallium phosphide green light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS606552B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5980981A (en) * | 1982-11-01 | 1984-05-10 | Sanyo Electric Co Ltd | Gallium phosphorus green color emitting diode and manufacture thereof |
JPS59214277A (en) * | 1983-05-20 | 1984-12-04 | Showa Denko Kk | Gallium phosphide pure green light-emitting element |
JP2817577B2 (en) * | 1993-05-31 | 1998-10-30 | 信越半導体株式会社 | GaP pure green light emitting element substrate |
-
1979
- 1979-02-15 JP JP54015451A patent/JPS606552B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS55108785A (en) | 1980-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kaneko et al. | A new method of growing GaP crystals for light-emitting diodes | |
Münch et al. | Silicon carbide light-emitting diodes with epitaxial junctions | |
JPS6028800B2 (en) | Low defect density gallium phosphide single crystal | |
JPS606552B2 (en) | Gallium phosphide green light emitting device | |
US4004953A (en) | Method for growing crystals of III-V compound semiconductors | |
US3948693A (en) | Process for the production of yellow glowing gallium phosphide diodes | |
JPH07326792A (en) | Manufacture of light emitting diode | |
JPS6136395B2 (en) | ||
JPS6350851B2 (en) | ||
JP2817577B2 (en) | GaP pure green light emitting element substrate | |
JPS6136396B2 (en) | ||
JPS59214276A (en) | Manufacture of gallium phosphide green light-emitting element | |
JPS5924556B2 (en) | gallium phosphide green | |
TW451505B (en) | Epitaxial wafer for luminous semiconductor element and luminous semiconductor element | |
JPH01234400A (en) | Semiconductor crystal | |
JPH04328878A (en) | Manufacture of light emitting diode epitaxial wafer | |
JPS584833B2 (en) | Method for manufacturing G↓aA↓s light emitting diode | |
JPS60115271A (en) | Preparation of red light emitting element of gallium phosphide | |
JPH04328823A (en) | Manufacture of epitaxial wafer for light emitting diode | |
JPS6019675B2 (en) | Gallium phosphide green light emitting device | |
KR820002001B1 (en) | Method of manufacturing a galium phosphide light emitting device | |
JPS6136397B2 (en) | ||
JPH08264467A (en) | Method of forming nitrogen-doped gap epitaxial layer | |
KR820001725B1 (en) | Method of manufacturing a gallium phosphide light-emitting device | |
JPS6019676B2 (en) | semiconductor light emitting device |