JPS584833B2 - Method for manufacturing G↓aA↓s light emitting diode - Google Patents

Method for manufacturing G↓aA↓s light emitting diode

Info

Publication number
JPS584833B2
JPS584833B2 JP50139126A JP13912675A JPS584833B2 JP S584833 B2 JPS584833 B2 JP S584833B2 JP 50139126 A JP50139126 A JP 50139126A JP 13912675 A JP13912675 A JP 13912675A JP S584833 B2 JPS584833 B2 JP S584833B2
Authority
JP
Japan
Prior art keywords
gaas
layer
doped
light emitting
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50139126A
Other languages
Japanese (ja)
Other versions
JPS5263088A (en
Inventor
柿本昇一
宮内順治
十河敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP50139126A priority Critical patent/JPS584833B2/en
Publication of JPS5263088A publication Critical patent/JPS5263088A/en
Publication of JPS584833B2 publication Critical patent/JPS584833B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】 本発明はGaAs発光ダイオードの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a GaAs light emitting diode.

従来GaAs結晶を用いた高出力発光ダイオードの製造
方法においては、p−n接合を形成するにあたり、Ga
As結晶中において両性不純物であるSiを含んだGa
メルト(Ga溶媒にGaAsまたAsを含んだもの)を
用いて、液相エピタキシアル法によりn形GaAs結晶
及びp形GaAs結晶の連続成長を行なっている。
In the conventional manufacturing method of high-power light emitting diodes using GaAs crystal, Ga
Ga containing Si, an amphoteric impurity, in As crystal
Using a melt (Ga solvent containing GaAs or As), n-type GaAs crystals and p-type GaAs crystals are continuously grown by a liquid phase epitaxial method.

このようにして製造されたn層のドーパントもp層のド
ーパントもSiであるGaAs発光ダイオードの外部量
子効率は通常3〜4%と大きい。
The external quantum efficiency of a GaAs light emitting diode manufactured in this manner, in which both the n-layer dopant and the p-layer dopant are Si, is usually as high as 3 to 4%.

しかしながらこのSiドープGaAs発光ダイオードの
発光の立ち上り時間は、その電流密度により異なるが、
決して速いものではない。
However, the rise time of light emission from this Si-doped GaAs light emitting diode varies depending on its current density;
It's not fast at all.

例えば、電流密度6A/cm2で発光の立ち上時間は約
2.0μsec60A/cm2で約0.5μsecであ
る。
For example, the rise time of light emission is approximately 2.0 μsec at a current density of 6 A/cm 2 and approximately 0.5 μsec at 60 A/cm 2 .

本発明のGaAs発光ダイオードの製造方法は、高出力
で、しかも立ち上り時間の速い発光ダイオードを提供す
るものである。
The method of manufacturing a GaAs light emitting diode of the present invention provides a light emitting diode with high output and fast rise time.

以下図を用いて本発明のGaAs発光ダイオードの製造
方法を詳細に説明する。
The method for manufacturing a GaAs light emitting diode according to the present invention will be explained in detail below with reference to the drawings.

第1図は本発明のGaAs発光ダイオードの製造におい
て使用した結晶成長装置の一例を示したものである。
FIG. 1 shows an example of a crystal growth apparatus used in manufacturing the GaAs light emitting diode of the present invention.

図において10は結晶成長用ボートである。In the figure, 10 is a boat for crystal growth.

11は基板ホルダーであり、この基板ホルダー11の溝
12にはn形GaAs結晶基板1が設置されている。
11 is a substrate holder, and an n-type GaAs crystal substrate 1 is placed in a groove 12 of this substrate holder 11.

一方13はメルトホルダーであり、メルト溜め14には
、Siを含んだGaメルト(Ga溶媒にGaAsまたは
Asを含んだもの)16が、またメルト溜め15にはp
形不純物、例えばZnを含んだGaメルト(Ga溶媒に
GaAsまたはAsを含んだもの)17が用意されてい
る。
On the other hand, 13 is a melt holder, a melt reservoir 14 contains a Ga melt containing Si (Ga solvent containing GaAs or As) 16, and a melt reservoir 15 contains a p
A Ga melt (containing GaAs or As in a Ga solvent) 17 containing a form impurity such as Zn is prepared.

上述のようにして準備された結晶成長用ボード10を石
英管21の均熱部22に押し込む。
The crystal growth board 10 prepared as described above is pushed into the soaking section 22 of the quartz tube 21.

結晶成長用ボード10全体が一定温度に落ち着いた後、
GaAs結晶基板1表面にGaメルト16を接触して降
温する。
After the entire crystal growth board 10 has settled down to a constant temperature,
A Ga melt 16 is brought into contact with the surface of the GaAs crystal substrate 1 to lower its temperature.

温度の降下に伴ない、GaAs結晶基板1表面上にSi
ドープn形GaAs結晶層2が成長する(第2図a)。
As the temperature decreases, Si is deposited on the surface of the GaAs crystal substrate 1.
A doped n-type GaAs crystal layer 2 is grown (FIG. 2a).

(なおこの際、結晶成長温度範囲を充分に高くする事に
より、GaAs結晶基板1表面上に折出するSiドープ
GaAs結晶の導電形がn形となるように注意する。
(At this time, care must be taken to ensure that the conductivity type of the Si-doped GaAs crystal deposited on the surface of the GaAs crystal substrate 1 is n-type by setting the crystal growth temperature range sufficiently high.

)Siドープn形GaAs結晶層2が適当な厚さまで成
長した段階で、Gaメルト16をSiドープn形GaA
s結晶層2上から取り除く。
) At the stage when the Si-doped n-type GaAs crystal layer 2 has grown to an appropriate thickness, the Ga melt 16 is
s Remove from above the crystal layer 2.

次にSiドープのn形GaAs結晶層2表面にGaメル
ト17を接触させる。
Next, a Ga melt 17 is brought into contact with the surface of the Si-doped n-type GaAs crystal layer 2.

石英管の均熱部22の温度を一定忙保ち、この状態を保
持する。
The temperature of the soaking section 22 of the quartz tube is kept constant and this state is maintained.

この間にGaメルト17に含まれたZnはSiドープn
形GaAs結晶層2内へ拡散し、Znドープp形GaA
s拡散層3が形成される(第2図b)。
During this period, the Zn contained in the Ga melt 17 was Si-doped.
Zn-doped p-type GaAs diffuses into the crystal layer 2.
An s-diffusion layer 3 is formed (FIG. 2b).

拡散の深さが適当な値になるまでこの状態を保持した後
、温度を降下して、Znドープp形GaAs拡散層3上
にZnドープp形GaAs結晶層4を形成して成長を終
える(第2図C)。
After maintaining this state until the depth of diffusion reaches an appropriate value, the temperature is lowered and a Zn-doped p-type GaAs crystal layer 4 is formed on the Zn-doped p-type GaAs diffusion layer 3 to finish the growth ( Figure 2C).

n形GaAs結晶基板1表面及びp形GaAs結晶層4
表面にそれぞれ電極6,7を形成してGaAs発光ダイ
オード8の製造を完了する(第2図d)。
Surface of n-type GaAs crystal substrate 1 and p-type GaAs crystal layer 4
Electrodes 6 and 7 are formed on the surface, respectively, to complete the production of the GaAs light emitting diode 8 (FIG. 2d).

GaAs発光ダイオード8のp−n接合近傍の様子を第
3図に示す。
FIG. 3 shows the vicinity of the pn junction of the GaAs light emitting diode 8.

第3図における各番号のものは第2図におけるそれに対
応する。
Each number in FIG. 3 corresponds to that in FIG. 2.

GaAs発光ダイオード80発光領域は、Znドープp
形GaAs拡散層3及びZnドープp形GaAs成長層
4の一部、すなわちZnドープp形GaAs拡散層3に
接する部分である。
GaAs light emitting diode 80 light emitting region is Zn doped p
This is a part of the Zn-doped p-type GaAs diffusion layer 3 and the Zn-doped p-type GaAs growth layer 4, that is, a portion in contact with the Zn-doped p-type GaAs diffusion layer 3.

第3図で、発光ダイオードに電流を流すと、Siドープ
n形GaAs結晶層2から注入された電子はZnドープ
p形GaAs拡散層3で一部発光再結合し、他はこの層
を通り抜けZnドープn形GaAs成長層4K到達して
、ここで発光再結合する。
In Fig. 3, when a current is applied to the light emitting diode, some of the electrons injected from the Si-doped n-type GaAs crystal layer 2 are radiatively recombined in the Zn-doped p-type GaAs diffusion layer 3, and the rest pass through this layer and are transferred to the Zn The light reaches the doped n-type GaAs growth layer 4K and undergoes radiative recombination there.

一般に電子注入により、p層で光を発生する発光ダイオ
ードにおいて、p層の内部量子効率はp層のキャリアー
濃度に依存し、キャリアー濃度が高いほど内部量子効率
は大きくなる。
Generally, in a light emitting diode that generates light in the p layer by electron injection, the internal quantum efficiency of the p layer depends on the carrier concentration of the p layer, and the higher the carrier concentration, the higher the internal quantum efficiency.

しかしn層のキャリアー濃度を大きくすると、電子のp
層への注入効率が悪くなり、発光ダイオードの外部景子
効率は大きくならない。
However, if the carrier concentration in the n layer is increased, the electron p
The injection efficiency into the layer will be poor, and the external light efficiency of the light emitting diode will not be large.

そこでp層のキヤリヤー濃度を大きくし、同時にn層の
キャリアー濃度を大きくすると、今度は結晶欠陥の増加
や不純物自身の効果によるダイオードのリーク電流が増
加し、外部量子効率を大きくする事が出来ない。
Therefore, if you increase the carrier concentration in the p-layer and at the same time increase the carrier concentration in the n-layer, the leakage current of the diode increases due to the increase in crystal defects and the effects of the impurities themselves, making it impossible to increase the external quantum efficiency. .

第3図においては,p−n接合5に隣接するp層はSi
ドープGaAs結晶成長層のZn拡散層3である。
In FIG. 3, the p layer adjacent to the p-n junction 5 is made of Si.
This is a Zn diffusion layer 3 of a doped GaAs crystal growth layer.

SiドープGaAsエピタキシアル層は結結晶性が非常
に良く、非発光性再結合中心も少ない。
The Si-doped GaAs epitaxial layer has very good crystallinity and has few non-radiative recombination centers.

SiドープGaAs成長層2から注入された電子は、S
iドープQaAs成長層のZn拡散層3で一部発光再結
合するが、他はこの層を通り抜け、Znドープp形Ga
As成長層4に到達し、ここで発光再結合、非発光性の
再結合をする。
The electrons injected from the Si-doped GaAs growth layer 2
Part of the radiative recombination occurs in the Zn diffusion layer 3 of the i-doped QaAs growth layer, but the rest passes through this layer and the Zn-doped p-type Ga
The light reaches the As growth layer 4, where radiative recombination and non-radiative recombination occur.

p形GaAs拡散層3のキャリアー濃度はZnドープp
形GaAs成長層4のキャリアー濃度よりも小さいので
、Znドープp形GaAs成長層4が直接p−n接合に
接する場合よりも電子のp層への注入効率が良くなる。
The carrier concentration of the p-type GaAs diffusion layer 3 is Zn-doped p
Since the carrier concentration is lower than the carrier concentration of the Zn-doped p-type GaAs growth layer 4, the injection efficiency of electrons into the p-layer becomes better than when the Zn-doped p-type GaAs growth layer 4 is in direct contact with the p-n junction.

従って、p形拡散層3とp形成長層4のZnドープ量及
びp形GaAs拡散層3の厚さを制御する事により、外
部量子効率の大きいGaAs発光ダイオードを製作する
事が出来る。
Therefore, by controlling the Zn doping amount of the p-type diffusion layer 3 and the p-type growth layer 4 and the thickness of the p-type GaAs diffusion layer 3, a GaAs light emitting diode with high external quantum efficiency can be manufactured.

一方、発光の立ち上り時間も、p形拡散層3とp形成長
層4のZnドープ量及びp形GaAs拡散層3の厚さに
依存する。
On the other hand, the rise time of light emission also depends on the Zn doping amount of the p-type diffusion layer 3 and the p-type growth layer 4 and the thickness of the p-type GaAs diffusion layer 3.

p形GaAs拡散層3の厚さを薄くすれば、発光の立ち
上り時間を速くする事が出来るが、あまり薄くすると外
部量子効率が極端に小さくなる。
If the p-type GaAs diffusion layer 3 is made thinner, the rise time of light emission can be made faster, but if it is made too thin, the external quantum efficiency becomes extremely small.

実際、我々は本発明の製造法により、Znドープ量及び
p形GaAs拡散層の厚さを制御する事により外部量子
効率がSiドープ(n層のドーパントも、p層のドーパ
ントもSiである)GaAs発光ダイオードの外部量子
効率とほぼ同程度であり、発光の立ち上り時間が約20
nsec(電流密度60/cm2)のGaAs発光ダイ
オードを得る事が出来た。
In fact, using the manufacturing method of the present invention, we have been able to improve the external quantum efficiency by controlling the Zn doping amount and the thickness of the p-type GaAs diffusion layer (both the n-layer dopant and the p-layer dopant are Si). The external quantum efficiency is approximately the same as that of a GaAs light emitting diode, and the rise time of light emission is approximately 20
A GaAs light emitting diode with a current density of 60/cm 2 could be obtained.

上述の説明においては、結晶成長をチイツピング法によ
り行なったが、他の液相結晶成長法、例えばテイツピン
グ法や温度差法にも本発明のGaAs発光ダイオードの
製造方法は適用される。
In the above description, crystal growth was performed by a tipping method, but the method for manufacturing a GaAs light emitting diode of the present invention can also be applied to other liquid phase crystal growth methods, such as a taping method or a temperature difference method.

また、第2のGaメルトにドープするアクセプター不純
物としてはZnのほかに、Cd,Ge,Hg,Li,N
a,Mg等を用いてもよいのは勿論である。
In addition to Zn, the acceptor impurities doped into the second Ga melt include Cd, Ge, Hg, Li, and N.
Of course, a, Mg, etc. may also be used.

【図面の簡単な説明】 第1図は本発明のGaAs発光ダイオードの製造方法に
用いる結晶成長装置の一例を示したものであり、第2図
はその製造プロセスの一例を説明する図、第3図は第2
図dに示したGaAs発光ダイオードのp−n接合付近
の様子を表わしたものである。 図中、1:n形GaAs結晶基板、2:Siドープn形
GaAs結晶層、3:p形GaAs拡散層、4:znド
ープp形GaAs成長層、5:p−n接合。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 shows an example of a crystal growth apparatus used in the method of manufacturing a GaAs light emitting diode of the present invention, FIG. 2 is a diagram illustrating an example of the manufacturing process, and FIG. The figure is the second
This figure shows the vicinity of the pn junction of the GaAs light emitting diode shown in Figure d. In the figure, 1: n-type GaAs crystal substrate, 2: Si-doped n-type GaAs crystal layer, 3: p-type GaAs diffusion layer, 4: Zn-doped p-type GaAs growth layer, 5: p-n junction.

Claims (1)

【特許請求の範囲】[Claims] 1 n形GaAs結晶基板上に、Siを含む第1のGa
メルト(Ga溶媒にGaAsまたはAsを溶かし込んだ
もの)を用いてSiドープn形GaAs結晶中でアクセ
プターう工程、前記Siドープn形GaAs結晶成長層
表面に、Si以外のGaAs結晶中でアクセプターとな
る不純物を含む第2のGaメルト(Ga溶媒にGaAs
またはAsを溶かし込んだもの》を接触せしめ、一定時
間この状態を保つ事により、第2のGaメルト中に含ま
れたアクセプターとなる不純物を前記Siドープn形G
aAs結晶成長層内に内部拡散せしめ、該Siドープn
形GaAs結晶成長層内にp−n接合を形成する工程、
前記工程後、前記第2のGaメルトを用いて前記n形G
aAs晶成長層上にp形GaAs結晶の液相成長を行な
う工程を備えたCaAs発光ダイオードの製造方法。
1 A first Ga containing Si on an n-type GaAs crystal substrate.
A step of forming an acceptor in a Si-doped n-type GaAs crystal using a melt (GaAs or As dissolved in a Ga solvent); A second Ga melt containing impurities (GaAs in the Ga solvent)
By keeping this state in contact for a certain period of time, impurities that serve as acceptors contained in the second Ga melt are removed from the Si-doped n-type G.
The Si doped n is internally diffused into the aAs crystal growth layer.
forming a p-n junction in the GaAs crystal growth layer;
After the step, the second Ga melt is used to form the n-type G.
A method for manufacturing a CaAs light emitting diode, comprising a step of performing liquid phase growth of a p-type GaAs crystal on an aAs crystal growth layer.
JP50139126A 1975-11-19 1975-11-19 Method for manufacturing G↓aA↓s light emitting diode Expired JPS584833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50139126A JPS584833B2 (en) 1975-11-19 1975-11-19 Method for manufacturing G↓aA↓s light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50139126A JPS584833B2 (en) 1975-11-19 1975-11-19 Method for manufacturing G↓aA↓s light emitting diode

Publications (2)

Publication Number Publication Date
JPS5263088A JPS5263088A (en) 1977-05-25
JPS584833B2 true JPS584833B2 (en) 1983-01-27

Family

ID=15238108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50139126A Expired JPS584833B2 (en) 1975-11-19 1975-11-19 Method for manufacturing G↓aA↓s light emitting diode

Country Status (1)

Country Link
JP (1) JPS584833B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185921A (en) * 1985-02-13 1986-08-19 Matsushita Electric Ind Co Ltd Liquid-phase epitaxial growth method
JPS61225821A (en) * 1985-03-29 1986-10-07 Fujitsu Ltd Apparatus for liquid phase epitaxial growth
JPS61268023A (en) * 1985-05-13 1986-11-27 Stanley Electric Co Ltd Manufacture of semiconductor element

Also Published As

Publication number Publication date
JPS5263088A (en) 1977-05-25

Similar Documents

Publication Publication Date Title
US3690964A (en) Electroluminescent device
US4904618A (en) Process for doping crystals of wide band gap semiconductors
US3634872A (en) Light-emitting diode with built-in drift field
KR100433039B1 (en) Epitaxial wafer and manufacturing method thereof
US5529938A (en) Method for producing light-emitting diode
US3416047A (en) Opto-pn junction semiconductor having greater recombination in p-type region
JPS584833B2 (en) Method for manufacturing G↓aA↓s light emitting diode
US4268327A (en) Method for growing semiconductor epitaxial layers
JP3324102B2 (en) Manufacturing method of epitaxial wafer
JP2719870B2 (en) GaP-based light emitting device substrate and method of manufacturing the same
US3619304A (en) Method of manufacturing gallium phosphide electro luminescent diodes
JP2817577B2 (en) GaP pure green light emitting element substrate
JPH0897466A (en) Light emitting device
JP3104218B2 (en) Method for growing nitrogen-doped GaP epitaxial layer
JP3633806B2 (en) Epitaxial wafer and light-emitting diode manufactured using the same
JPH04328878A (en) Manufacture of light emitting diode epitaxial wafer
US4629519A (en) Forming magnesium-doped Group III-V semiconductor layers by liquid phase epitaxy
JP2666525B2 (en) GaAs light emitting diode and method of manufacturing the same
JPH098353A (en) Epitaxial wafer, production thereof and light emitting diode
JPS5831736B2 (en) Hatsukoudai-o-donoseizouhou
JP2001036137A (en) Epitaxial wafer and light emitting diode
JP3046161B2 (en) Semiconductor device including undoped layer
JPS5846876B2 (en) Method for manufacturing gallium phosphide light emitting device
JP2001031500A (en) Production of epitaxial wafer and light emitting diode
JPS6136396B2 (en)