JPS5831736B2 - Hatsukoudai-o-donoseizouhou - Google Patents

Hatsukoudai-o-donoseizouhou

Info

Publication number
JPS5831736B2
JPS5831736B2 JP50148848A JP14884875A JPS5831736B2 JP S5831736 B2 JPS5831736 B2 JP S5831736B2 JP 50148848 A JP50148848 A JP 50148848A JP 14884875 A JP14884875 A JP 14884875A JP S5831736 B2 JPS5831736 B2 JP S5831736B2
Authority
JP
Japan
Prior art keywords
layer
type gaas
doped
gaas crystal
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50148848A
Other languages
Japanese (ja)
Other versions
JPS5272192A (en
Inventor
昇一 柿本
順治 宮内
敏雄 十河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP50148848A priority Critical patent/JPS5831736B2/en
Publication of JPS5272192A publication Critical patent/JPS5272192A/en
Publication of JPS5831736B2 publication Critical patent/JPS5831736B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】 本発明はGaAs発光ダイオードの製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a GaAs light emitting diode.

この明細書で、rGaメルト」とは、Ga溶媒にGaA
sまたはAsを含んだものを意味する。
In this specification, "rGa melt" means GaA in Ga solvent.
It means something containing s or As.

従来、GaAs結晶を用いた高出力発光ダイオードの製
造においては、pn接合を形成するにあたり、Ga A
s結晶中において両性不純物であるSiを含んだGa
メルト’を用いて、液相エピタキシアル法によりn形G
aAs結晶及びP形GaAs結晶の連続成長を行なって
いる。
Conventionally, in the production of high-power light emitting diodes using GaAs crystals, GaA
Ga containing Si, an amphoteric impurity, in the s crystal
n-type G by liquid phase epitaxial method using melt'
Continuous growth of aAs crystal and P-type GaAs crystal is being carried out.

このようにして製造され、n層のドーパントもp層のド
ーパントもSiであるGaAs発光ダイオードの外部量
子効率は通常3〜4%と太きい。
The external quantum efficiency of a GaAs light emitting diode manufactured in this manner, in which both the n-layer dopant and the p-layer dopant are Si, is usually as high as 3 to 4%.

しかしながら、このSiトLプGaAs発光ダイオード
の発光の立ち上り時間は、その電流密度により異なるが
、決して短いものではない。
However, the rise time of light emission from this Si-based GaAs light emitting diode varies depending on its current density, but is by no means short.

例えば、電流密度6A/criで発光の立ち上り時間は
約2.0μsec、5Q八/citでは約0.5μSe
Cである。
For example, at a current density of 6A/cri, the rise time of light emission is approximately 2.0μsec, and at 5Q8/cit, the rise time of light emission is approximately 0.5μSec.
It is C.

本発明は高出力で、しかも立ち上り時間の短い発光ダイ
オードの製造法を提供することを目的としたものである
An object of the present invention is to provide a method for manufacturing a light emitting diode with high output and short rise time.

以下、図を用いて本発明のGaAs発光ダイオードの製
造法を詳細に説明する。
Hereinafter, a method for manufacturing a GaAs light emitting diode according to the present invention will be explained in detail with reference to the drawings.

第1図は本発明によるGaAs発光ダイオードの製造法
により、発光ダイオードを製造する手順の一例を表わし
たものである。
FIG. 1 shows an example of a procedure for manufacturing a light emitting diode using the GaAs light emitting diode manufacturing method according to the present invention.

まず、n形GaAs結晶基板1上に、Siをn形ドーパ
ントをして含む第1のGaメルトを用いてSi ドープ
n形GaAs結晶族長層2の液相成長を行なう〔第1図
a〕。
First, a Si-doped n-type GaAs crystal family leader layer 2 is grown in a liquid phase on an n-type GaAs crystal substrate 1 using a first Ga melt containing Si as an n-type dopant [FIG. 1a].

次は、このSiドープn形GaAs結晶成長層2上に、
p形不純物、例えばZnTh含む第2のGaメルトを用
いてZnドープp形GaAs結晶成長層3の液相成長を
行なう。
Next, on this Si-doped n-type GaAs crystal growth layer 2,
A Zn-doped p-type GaAs crystal growth layer 3 is grown in a liquid phase using a second Ga melt containing a p-type impurity, for example, ZnTh.

このようなSi ドープn形GaAs結晶成長層2とZ
nドープp形GaAs結晶戒族長3の液相成長により、
pn接合4が形成される。
Such Si-doped n-type GaAs crystal growth layer 2 and Z
By liquid phase growth of n-doped p-type GaAs crystal Kaikucho 3,
A pn junction 4 is formed.

〔第1図b〕。上述の液相成長によりpn接合4を形成
したGaAs結晶基板1を高温状態に保つと、Znドー
プp形GaAs結晶成長層3中のZnはpn接合4を通
ってSiドープn形GaA s結晶成長層2内へ拡散し
ていく〔第1図C〕。
[Figure 1b]. When the GaAs crystal substrate 1 on which the p-n junction 4 is formed by the liquid phase growth described above is kept at a high temperature, the Zn in the Zn-doped p-type GaAs crystal growth layer 3 passes through the p-n junction 4 and grows the Si-doped n-type GaAs crystal. It diffuses into layer 2 [Fig. 1C].

Siドープn形GaAs結晶成長層2中のSiはZnに
比べ拡散係数か小さいので、pn接合4を通じてのSi
の拡散は無視できる。
Since Si in the Si-doped n-type GaAs crystal growth layer 2 has a smaller diffusion coefficient than Zn, Si does not pass through the p-n junction 4.
The diffusion of is negligible.

高温状態をさらに保てば、pn接合4近傍のSiドープ
n形GaAs結晶成長層2内のZn濃度は次第に増加し
ていき、遂にはここにP形導電性のGaAs拡散層5が
でき、pn接合4′は、SiをドープしたGaAs結晶
成長層2内に形成される〔第1図d〕。
If the high temperature condition is further maintained, the Zn concentration in the Si-doped n-type GaAs crystal growth layer 2 near the pn junction 4 will gradually increase, and finally a P-type conductive GaAs diffusion layer 5 will be formed there, and the pn The junction 4' is formed in the Si-doped GaAs crystal growth layer 2 (FIG. 1d).

n形GaAs結晶基板1の表面にはAu Ge合金を
同じくp形GaAs結晶成長層3の表面にはAu Z
n合金を用いて、それぞれ電極6.7f:形成し発光ダ
イオード8を完成する〔第1図e〕。
The surface of the n-type GaAs crystal substrate 1 is coated with AuGe alloy, and the surface of the p-type GaAs crystal growth layer 3 is coated with AuZ.
Using n-alloy, electrodes 6 and 7f are formed, respectively, to complete the light emitting diode 8 [FIG. 1e].

発光ダイオード8に電流を流すと、第2図に示すように
n形GaAs結晶成長層2からpn接合4′を通じて注
入された電子は、p形GaAs拡散層5で一部が再結合
し、残りの電子はこのp形Ga A s拡散層5を通過
して、Znドープp形GaAs結晶成長層3へ到達し1
.ここで発光再結合、または非発光性再結合する。
When a current is applied to the light emitting diode 8, some of the electrons injected from the n-type GaAs crystal growth layer 2 through the pn junction 4' are recombined in the p-type GaAs diffusion layer 5, as shown in FIG. The electrons pass through this p-type GaAs diffusion layer 5 and reach the Zn-doped p-type GaAs crystal growth layer 3.
.. Here, luminescent recombination or non-luminescent recombination occurs.

一般に、電子注入により、p層で光を発生する発光ダイ
オードにおいて、p層の内部量子効率はP層のキャリヤ
濃度に依存し、キャリア濃度が高いほど内部量子効率は
大きくなる。
Generally, in a light emitting diode that generates light in the p layer by electron injection, the internal quantum efficiency of the p layer depends on the carrier concentration of the p layer, and the higher the carrier concentration, the higher the internal quantum efficiency.

しかし、n層のキャリア濃度を一定にしたままp層のキ
ャリア濃度を高くすると、電子のp層への注入効率が悪
くなり、発光ダイオードの外部量子効率は大きくならな
い。
However, if the carrier concentration of the p-layer is increased while the carrier concentration of the n-layer is kept constant, the efficiency of electron injection into the p-layer deteriorates, and the external quantum efficiency of the light-emitting diode does not increase.

そこで、P層のキャリア濃度を高くし、同時にn層のキ
ャリア濃度を高くすると、今度は結晶欠陥の増加や不純
物自体の効果によるダイオードのリーク電流が増加し、
外部量子効率を大きくすることができない。
Therefore, if the carrier concentration of the P layer is increased and at the same time the carrier concentration of the N layer is increased, the leakage current of the diode increases due to the increase in crystal defects and the effect of the impurity itself.
External quantum efficiency cannot be increased.

発光ダイオード8においては、pn接合4′に隣接する
p層がSiドープGaAs結晶成長層2のZn拡散層5
である。
In the light emitting diode 8, the p layer adjacent to the pn junction 4' is the Zn diffusion layer 5 of the Si-doped GaAs crystal growth layer 2.
It is.

SiドープGaAsエピタキシャル層は結晶性が非常に
よく、非発光性再結合中心も少ない。
The Si-doped GaAs epitaxial layer has very good crystallinity and has few non-radiative recombination centers.

Siドープn形Ga A s成長層2から注入された電
子は、Siドープn形Ga A s結晶成長2のZn拡
散層5で一部発光再結合するが、他の電子はこの層を通
り抜けて、Znドープp形G a A s結晶成長層3
に到達し、ここで発光再結合、非発光性再結合をする。
Some of the electrons injected from the Si-doped n-type GaAs crystal growth layer 2 are radiatively recombined in the Zn diffusion layer 5 of the Si-doped n-type GaAs crystal growth layer 2, but other electrons pass through this layer. , Zn-doped p-type GaAs crystal growth layer 3
At this point, radiative recombination and non-radiative recombination occur.

p形GaAs拡散層5のキャリア濃度はZnドープp形
GaAs成長層3のキャリア濃度よりも小さいので、Z
nドープp形G a A s成長層3が直接pn接合に
隣接する場合よりも電子のp層への注入効率が良くなる
Since the carrier concentration of the p-type GaAs diffusion layer 5 is lower than that of the Zn-doped p-type GaAs growth layer 3, Z
The injection efficiency of electrons into the p layer is better than when the n-doped p-type GaAs growth layer 3 is directly adjacent to the pn junction.

従って、p形GaAs結晶成長層3のZnドープ量及び
p形波散層5のキャリア濃度とその厚さを制御すること
により、外部量子効率の大きいGaAs発光ダイオード
を製作することができる。
Therefore, by controlling the Zn doping amount of the p-type GaAs crystal growth layer 3 and the carrier concentration and thickness of the p-type dispersion layer 5, a GaAs light emitting diode with high external quantum efficiency can be manufactured.

一方、発光の立上り時間はp形GaAs拡散層5のキャ
リア濃度とその厚さ、及びZnl−′−プG a A
s結晶成長層3のキャリア濃度に依存する。
On the other hand, the rise time of light emission depends on the carrier concentration and thickness of the p-type GaAs diffusion layer 5, and the Znl-'-p GaA
It depends on the carrier concentration of the s-crystal growth layer 3.

これらのパラメータがp層に注入された電子の拡散長を
決定する。
These parameters determine the diffusion length of electrons injected into the p-layer.

電子の拡散長が長ければ、それだけ発光の立ち上り時間
は長くなる。
The longer the electron diffusion length, the longer the rise time of light emission.

n層のドーパントもp層のドーパントもSiである高出
力のGaAs発光ダイオードでは、電子の拡散長が30
〜50μにも及ぶので発光の立ち上り時間は長くなる。
In a high-power GaAs light emitting diode in which both the n-layer dopant and the p-layer dopant are Si, the electron diffusion length is 30
Since it reaches ~50μ, the rise time of light emission becomes long.

発光ダイオード8ではZnドープp形GaAs結晶成長
層3のキャリア濃度を高くすれば、この層での拡散長は
非常に短くなり、電子の拡散長は主にp形GaAs拡散
層5の厚さにより決定される。
In the light emitting diode 8, if the carrier concentration of the Zn-doped p-type GaAs crystal growth layer 3 is increased, the diffusion length in this layer becomes extremely short, and the electron diffusion length mainly depends on the thickness of the p-type GaAs diffusion layer 5. It is determined.

従って、p形GaAs拡散層5の厚さを薄くすれば、発
光の立ち上り時間を短くすることができるが、あまり薄
くすると外部量子効率が極端に小さくなる。
Therefore, if the thickness of the p-type GaAs diffusion layer 5 is reduced, the rise time of light emission can be shortened, but if it is made too thin, the external quantum efficiency becomes extremely small.

実際に発明者らは本発明のGaAs発光ダイオードの製
造法により、外部量子効率が81ドープ(n層のドーパ
ントも、p層のドーパントもSiである)GaAs発光
ダイオードの外部量子効率と同程度であり、発光の立ち
上り時間が約2Q n5ec(電流密度60A/CI?
L)のGaAs発光ダイオードを得ることができた。
In fact, the inventors found that by using the method of manufacturing a GaAs light emitting diode of the present invention, the external quantum efficiency was comparable to that of a GaAs light emitting diode doped with 81 (both the n-layer dopant and the p-layer dopant are Si). Yes, the rise time of light emission is approximately 2Q n5ec (current density 60A/CI?
A GaAs light emitting diode of L) could be obtained.

上述の本発明のGaAs発光ダイオードの製造法の説明
においては、n形GaAs結晶基板上にまずSi ドー
プn形GaAs結晶の液相成長を行ない、次にこのSi
ドープn形GaAs結晶成長層上にp形GaAs結晶の
液相成長を行い、その後に熱処理によりp形GaAs結
晶成長層中のアクセプタとなる不純物をSiドープn形
GaAs結晶成長層内への内部拡散し、pn接合をこの
SiドープGaAs結晶成長層内に形成することにより
、高出力でしかも立ち上り時間か短かいGaAs発光ダ
イオードを製造したが、これとは逆にp形GaAs結晶
基板から始めても本発明のGaAs発光ダイオードを製
造法は適用できる。
In the above description of the method for manufacturing the GaAs light emitting diode of the present invention, first, an Si-doped n-type GaAs crystal is grown in a liquid phase on an n-type GaAs crystal substrate, and then this Si-doped n-type GaAs crystal is grown in a liquid phase.
Liquid-phase growth of p-type GaAs crystal is performed on the doped n-type GaAs crystal growth layer, and then, by heat treatment, impurities that serve as acceptors in the p-type GaAs crystal growth layer are internally diffused into the Si-doped n-type GaAs crystal growth layer. However, by forming a pn junction within this Si-doped GaAs crystal growth layer, a GaAs light emitting diode with high output and short rise time was manufactured.However, on the contrary, it is possible to produce a GaAs light emitting diode starting from a p-type GaAs crystal substrate. The method of manufacturing the GaAs light emitting diode of the invention can be applied.

すなわち、p形G a A s結晶基板上にまずp形G
aAs結晶の液相成長を行ない、次にこのP形GaAs
結晶成長層上にSiド−プn形GaAs結晶の液相成長
を行ない、その後に熱処理によりp形GaAs結晶族長
層中のアクセプタとなる不純物をSi ドープn形Ga
As結晶成長層内へ内部拡散し、pn接合をこのSiド
ープGaAs結晶成長層内に形成する。
That is, first, p-type G is deposited on a p-type GaAs crystal substrate.
Liquid phase growth of aAs crystal is carried out, and then this P-type GaAs
A Si-doped n-type GaAs crystal is liquid-phase grown on the crystal growth layer, and then an impurity that becomes an acceptor in the p-type GaAs crystal family leader layer is removed from the Si-doped n-type GaAs by heat treatment.
It is internally diffused into the As crystal growth layer to form a pn junction within the Si-doped GaAs crystal growth layer.

また、上述の説明においては、アクセプタとなる不純物
としてZnを用いたが、Cd 、 Ge 、 Hg 。
Furthermore, in the above description, Zn was used as an impurity that serves as an acceptor, but Cd, Ge, and Hg may also be used.

Li、Na、Mg等を用いてもよい。Li, Na, Mg, etc. may also be used.

以上詳述したように、本発明による発光ダイオードの製
造法においては、重畳して形成されたSiドープn形G
aAs結晶戒族長とp形GaAs結晶族長層とを熱処理
することにより、p形GaA s結晶成長層中に含まれ
るアクセプグ不純物をSiドープn形GaAs結晶成長
層内へ拡散せしめ、Siドープn形G a A s結晶
成長層内にpn接合を形成せしめるので、高出力でしか
も立ち上り時間の短いGaAs発光ダイオードを製造す
ることができる効果かある。
As described in detail above, in the method for manufacturing a light emitting diode according to the present invention, the Si-doped n-type G
By heat-treating the aAs crystal family leader and the p-type GaAs crystal family leader layer, the acceptance impurity contained in the p-type GaAs crystal growth layer is diffused into the Si-doped n-type GaAs crystal growth layer, and the Si-doped n-type G Since a pn junction is formed in the a As crystal growth layer, it is possible to manufacture a GaAs light emitting diode with high output and short rise time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の方法の製造工程を示す図、第
2図は実施例の方法により製造したChAs発光ダイオ
ードのpn接合近傍の様子を示す図である0 図において、1はn形GaAs結晶基板、2はSiドー
プn形GaAs結晶成長層、3はp形GaAs結晶族長
層、4,4′はpn接合、5はp形GaAs拡散層、6
,7は電極、8はGaAs発光ダイオードである。 なお、図中同一符号はそれぞれ同一または相当部分を示
す。
FIG. 1 is a diagram showing the manufacturing process of the method of the embodiment of the present invention, and FIG. 2 is a diagram showing the state of the vicinity of the pn junction of a ChAs light emitting diode manufactured by the method of the embodiment. 2 is a Si-doped n-type GaAs crystal growth layer, 3 is a p-type GaAs crystal family leader layer, 4 and 4' are p-n junctions, 5 is a p-type GaAs diffusion layer, 6
, 7 are electrodes, and 8 is a GaAs light emitting diode. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] I Sik含む第1のGaメルトより液相成長するS
iドープn形GaAs結晶戒族長とGaAs結晶中でア
クセプタとなる不純物を含む第2のGaメルトより液相
成長するp形GaAs結晶成長層とを重畳させて形成す
る工程、および上記Siドープn形GaAs結晶成長層
と上記p形GaAs結晶成長層とを熱処理することによ
り上記p形GaAs結晶成長層中に含まれるアクセプタ
不純物を上記Siドープn形GaAs結晶戒族長内へ拡
散せしめ、上記Siドープn形GaAs結晶成長層内に
pn接合を形成する工程を備えた発光ダイオードの製造
法。
S grown in liquid phase from the first Ga melt containing I Sik
A step of superimposing an i-doped n-type GaAs crystal layer and a p-type GaAs crystal growth layer grown in a liquid phase from a second Ga melt containing impurities serving as acceptors in the GaAs crystal, and the step of forming the Si-doped n-type By heat-treating the GaAs crystal growth layer and the p-type GaAs crystal growth layer, acceptor impurities contained in the p-type GaAs crystal growth layer are diffused into the Si-doped n-type GaAs crystal leader, and the Si-doped n-type GaAs crystal growth layer is heated. A method for manufacturing a light emitting diode comprising a step of forming a pn junction in a GaAs crystal growth layer.
JP50148848A 1975-12-12 1975-12-12 Hatsukoudai-o-donoseizouhou Expired JPS5831736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50148848A JPS5831736B2 (en) 1975-12-12 1975-12-12 Hatsukoudai-o-donoseizouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50148848A JPS5831736B2 (en) 1975-12-12 1975-12-12 Hatsukoudai-o-donoseizouhou

Publications (2)

Publication Number Publication Date
JPS5272192A JPS5272192A (en) 1977-06-16
JPS5831736B2 true JPS5831736B2 (en) 1983-07-08

Family

ID=15462079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50148848A Expired JPS5831736B2 (en) 1975-12-12 1975-12-12 Hatsukoudai-o-donoseizouhou

Country Status (1)

Country Link
JP (1) JPS5831736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961428A (en) * 1982-09-30 1984-04-07 東芝ライテック株式会社 Power source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3387163A (en) * 1965-12-20 1968-06-04 Bell Telephone Labor Inc Luminescent semiconductor devices including a compensated zone with a substantially balanced concentration of donors and acceptors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3387163A (en) * 1965-12-20 1968-06-04 Bell Telephone Labor Inc Luminescent semiconductor devices including a compensated zone with a substantially balanced concentration of donors and acceptors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961428A (en) * 1982-09-30 1984-04-07 東芝ライテック株式会社 Power source

Also Published As

Publication number Publication date
JPS5272192A (en) 1977-06-16

Similar Documents

Publication Publication Date Title
US6110757A (en) Method of forming epitaxial wafer for light-emitting device including an active layer having a two-phase structure
USRE29845E (en) GaAs1-x Px electroluminescent device doped with isoelectronic impurities
US3931631A (en) Gallium phosphide light-emitting diodes
US4001056A (en) Epitaxial deposition of iii-v compounds containing isoelectronic impurities
US4417262A (en) Green light emitting device
US6043509A (en) Light-emitting diode having moisture-proof characteristics and high output power
US5888843A (en) Method for making light-emitting diode having improved moisture resistance characteristics
JPS5831736B2 (en) Hatsukoudai-o-donoseizouhou
JPS5846686A (en) Blue light emitting diode
US5032539A (en) Method of manufacturing green light emitting diode
JP2817577B2 (en) GaP pure green light emitting element substrate
JP3633806B2 (en) Epitaxial wafer and light-emitting diode manufactured using the same
JP3762575B2 (en) Light emitting diode
US5432359A (en) Light emitting device with AlAs mixed crystal ratios
JPS584833B2 (en) Method for manufacturing G↓aA↓s light emitting diode
US4284467A (en) Method for making semiconductor material
JP2001320083A (en) AlGaInP LIGHT EMITTING ELEMENT AND EPITAXIAL WAFER THEREFOR
JPH10107314A (en) Semiconductor device and method of manufacturing the same
JP3523412B2 (en) Manufacturing method of GaP: N light emitting diode
US3746943A (en) Semiconductor electronic device
JPS63213378A (en) Manufacture of semiconductor light emitting element
US5382813A (en) Light emission diode comprising a pn junction of p-type and n-type A1-containing ZnS compound semiconductor layers
US6433365B1 (en) Epitaxial wafer and light emitting diode
JP2666525B2 (en) GaAs light emitting diode and method of manufacturing the same
JP2929632B2 (en) Optical device manufacturing method