JPH0547996B2 - - Google Patents

Info

Publication number
JPH0547996B2
JPH0547996B2 JP57192678A JP19267882A JPH0547996B2 JP H0547996 B2 JPH0547996 B2 JP H0547996B2 JP 57192678 A JP57192678 A JP 57192678A JP 19267882 A JP19267882 A JP 19267882A JP H0547996 B2 JPH0547996 B2 JP H0547996B2
Authority
JP
Japan
Prior art keywords
layer
melt
light emitting
liquid phase
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57192678A
Other languages
Japanese (ja)
Other versions
JPS5980981A (en
Inventor
Kentaro Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP57192678A priority Critical patent/JPS5980981A/en
Publication of JPS5980981A publication Critical patent/JPS5980981A/en
Priority to JP5001109A priority patent/JPH05335621A/en
Publication of JPH0547996B2 publication Critical patent/JPH0547996B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 本発明は窒素及びシリコンのほとんど含まれな
い高輝度短波長緑色発光をするガリウム燐緑色発
光ダイオードの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a gallium phosphorus green light emitting diode that contains almost no nitrogen and silicon and emits high brightness short wavelength green light.

従来ガリウム燐(Gap)を用いて発光波長
555nmの純緑色を発光する発光ダイオードとして
はpn接合近傍に窒素を混入しない事とn層濃度
を低くする必要があるとされてきた。そして例え
ば特公昭57−31184号公報においては窒素を含む
n層上に窒素を含まないn層を積層してpn接合
をつくるとして第1図a,bに示すように2回の
n層エピタキシヤル成長32,33を施こし不純
物濃度は1016cm-3だが基板側では窒素が多く接合
側では窒素の含まれないn層23を形成してい
る。
Emission wavelength using conventional gallium phosphide (Gap)
It has been said that for a light emitting diode that emits pure green light at 555 nm, it is necessary to avoid mixing nitrogen near the pn junction and to lower the n-layer concentration. For example, in Japanese Patent Publication No. 57-31184, a p-n junction is created by laminating an n-layer not containing nitrogen on an n-layer containing nitrogen, and two n-layer epitaxial processes are performed as shown in Figure 1a and b. Growth 32 and 33 are performed, and the impurity concentration is 10 16 cm -3 , forming an n-layer 23 that contains a lot of nitrogen on the substrate side and does not contain nitrogen on the junction side.

しかし乍ら発明者の研究ではこのようにpn接
合の数+μm近傍に窒素が存在すると短波長光の
吸収が起きやすい事、また基板からすぐ低不純物
層を成長させると界面で結晶性がくずれ、発光に
寄与しない電流や発熱現象が生じやすいこと、お
よび上記文献では主たるドナー不純物にシリコン
を用いているが、ガリウム燐中のシリコンは扱い
にくく一寸した事で発光層の結晶性をこわし寿命
が短かくなる事から好ましくないとの結論を得
た。
However, the inventor's research has shown that when nitrogen exists in the vicinity of the number of pn junctions + μm, absorption of short wavelength light tends to occur, and that if a low impurity layer is grown immediately from the substrate, the crystallinity will collapse at the interface. Currents and heat generation phenomena that do not contribute to light emission are likely to occur, and although silicon is used as the main donor impurity in the above literature, silicon in gallium phosphorus is difficult to handle, and even a small amount of silicon destroys the crystallinity of the light emitting layer, resulting in a short lifespan. Because of this, we concluded that it is not desirable.

本発明は上述の点を考慮してなされたもので、
短波長の光を高発光効率で安定に発光するガリウ
ム燐緑色発光ダイオードの製造方法に関するもの
で、以下本発明を実施例に基づいて詳細に説明す
る。
The present invention has been made in consideration of the above points, and
The present invention relates to a method for manufacturing a gallium phosphorus green light emitting diode that stably emits short wavelength light with high luminous efficiency, and the present invention will be described in detail below based on examples.

第2図は本発明実施例のガリウム燐緑色発光ダ
イオードの製造方法を説明するための液相エピタ
キシヤル成長の温度工程図で、第3図はそのよう
にして製造されたガリウム燐緑色発光ダイオード
の不純物濃度図である。まずカーボンボートを用
い1乃至317×1017cm-3の不純物濃度を有するn型
ガリウム燐基板1を融液と共に水素雰囲気中で高
温保持する11。この時硫化水素を約1分間水素
雰囲気中に混ぜて、融液中に主ドナー不純物とな
るイオウを導入したあと、降温して第1のn層の
エピタキシヤル成長をする12。この時形成され
た第1のn層2は1乃至5×1017cm-3と、基板1
と同程度の不純物濃度で、厚みは30乃至50μmで
ある。その後長時間保持13するが、その前半に
おいては上述の段階で導入したイオウが飛散し、
後半の最初においてアンモニアガスを0.1乃至0.4
%の濃度で15乃至30分導入する事により、融液中
にシリコン窒化物(Si3N4)が析出して、その結
果融液のイオウ濃度およびシリコン濃度が低下す
る。好ましくはシリコンは1ppm以下となる様に
窒化物を析出させるのがよい。そして最後に雰囲
気を水素からアルゴンガスに切換えて、反応管等
からのシリコンの混入を防ぎ、アンモニアガスか
ら導入された窒素の飛散をまつて降温し、第2の
n層をエピタキシヤル成長させる14。このよう
にして形成された第2のn層4は0.5乃至5×
1016cm-3で厚みは10乃至20μmである。続いて亜
鉛蒸気を導入して5乃至10×1018cm-3のP層5を
液相エピタキシヤル成長させる15。
FIG. 2 is a temperature process diagram of liquid phase epitaxial growth for explaining the manufacturing method of a gallium phosphorous green light emitting diode according to an embodiment of the present invention, and FIG. It is an impurity concentration diagram. First, an n-type gallium phosphorus substrate 1 having an impurity concentration of 1 to 3 17 ×10 17 cm -3 is held at high temperature in a hydrogen atmosphere together with a melt 11 using a carbon boat. At this time, hydrogen sulfide is mixed in the hydrogen atmosphere for about 1 minute to introduce sulfur, which becomes the main donor impurity, into the melt, and then the temperature is lowered and the first n-layer is epitaxially grown12. The first n-layer 2 formed at this time has a thickness of 1 to 5×10 17 cm -3 and a substrate 1
The thickness is 30 to 50 μm with the same impurity concentration. After that, it is held for a long time 13, but in the first half, the sulfur introduced in the above step scatters,
At the beginning of the second half, add 0.1 to 0.4 ammonia gas.
% concentration for 15 to 30 minutes, silicon nitride (Si 3 N 4 ) is precipitated in the melt, and as a result, the sulfur concentration and silicon concentration of the melt decrease. Preferably, nitride is precipitated so that the silicon content is 1 ppm or less. Finally, the atmosphere is switched from hydrogen to argon gas to prevent silicon from being mixed in from the reaction tube, etc., and the temperature is lowered while the nitrogen introduced from the ammonia gas is allowed to scatter, and the second n-layer is grown epitaxially14. . The second n-layer 4 formed in this way is 0.5 to 5×
10 16 cm -3 and the thickness is 10 to 20 μm. Subsequently, zinc vapor is introduced and a P layer 5 of 5 to 10×10 18 cm −3 is grown by liquid phase epitaxial growth 15 .

以上の如く本発明はn型のガリウム燐基板上に
形成された基板と略等しい不純物濃度の第1のn
層と、第1のn層上に形成された不純物濃度が第
1のn層より1桁以上低く、厚みもうすい第2の
n層と、第2のn層上に形成されたP層とを具備
したガリウム燐緑色発光ダイオードであるから、
各層の結晶性を荒らす事なくpn接合近傍のn層
濃度を下げる事ができるから高発光効率となり、
窒素がほとんどどの層にもないので純緑色の発光
となる。具体的にはチツプコート後の状態で発光
効率0.12%、平均輝度115mcd、発光波長555nm
で高温多湿寿命試験でも従来の約10倍の長時間に
わたり輝度低下がなかつた。
As described above, the present invention provides a first n
a second n-layer formed on the first n-layer and having an impurity concentration lower than the first n-layer by at least one order of magnitude and thinner; and a p-layer formed on the second n-layer. Since it is a gallium phosphorous green light emitting diode equipped with
The n-layer concentration near the p-n junction can be lowered without disturbing the crystallinity of each layer, resulting in high luminous efficiency.
Since there is almost no nitrogen in any layer, the light is pure green. Specifically, after chip coating, the luminous efficiency is 0.12%, the average brightness is 115mcd, and the emission wavelength is 555nm.
Even in high-temperature, high-humidity life tests, there was no decrease in brightness for about 10 times longer than conventional products.

また上述のような発光ダイオードをn型のガリ
ウム燐基板上に第1のn層を液相エピタキシヤル
成長させた後、融液内にSiの窒化物を析出させ、
その後アルゴン雰囲気中で第2のn層を液相エピ
タキシヤル成長させ、その後にP層を形成するの
で、pn接合附近のn層において特にシリコンを
容易に除去し、生産しやすい方法となつた。
Further, after the above-described light emitting diode is grown by liquid phase epitaxial growth of the first n-layer on the n-type gallium phosphorus substrate, Si nitride is precipitated in the melt,
Thereafter, a second n-layer is grown by liquid phase epitaxial growth in an argon atmosphere, and then a p-layer is formed, which makes it easy to remove silicon especially in the n-layer near the pn junction, making it easy to produce.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の温度工程図aと不純物濃度図
b、第2図は本発明実施例のガリウム燐緑色発光
ダイオードの液相エピタキシヤル成長の温度工程
図、第3図は本発明実施例のガリウム燐緑色発光
ダイオードの不純物濃度図である。 1……基板、2……第1のn層、4……第2の
n層、5……P層。
Figure 1 is a conventional temperature process diagram a and impurity concentration diagram b, Figure 2 is a temperature process diagram for liquid phase epitaxial growth of a gallium phosphorous green light emitting diode according to an embodiment of the present invention, and Figure 3 is a diagram of a conventional temperature process diagram of liquid phase epitaxial growth of a gallium phosphorus green light emitting diode according to an embodiment of the present invention. FIG. 3 is an impurity concentration diagram of a gallium phosphorous green light emitting diode. DESCRIPTION OF SYMBOLS 1... Substrate, 2... First n layer, 4... Second n layer, 5... P layer.

Claims (1)

【特許請求の範囲】[Claims] 1 気相から融液中にイオウを導入しながらn型
のガリウム燐基板上に第1のn層を液相エピタキ
シヤル成長させた後、前記融液の温度を保持する
期間の1部に於てのみ前記融液中に窒素を導入し
て窒化イオウと窒化シリコンを析出させ、その後
アルゴン雰囲気中で第2のn層を液相エピタキシ
ヤル成長させ、その後にP層を形成した事を特徴
とするガリウム燐緑色発光ダイオードの製造方
法。
1. After growing a first n-layer on an n-type gallium phosphorous substrate by liquid phase epitaxial growth while introducing sulfur into the melt from the gas phase, during part of the period during which the temperature of the melt is maintained, The method is characterized in that nitrogen is introduced into the melt to precipitate sulfur nitride and silicon nitride, and then a second n-layer is grown by liquid phase epitaxial growth in an argon atmosphere, and then a p-layer is formed. A method for manufacturing a gallium phosphorous green light emitting diode.
JP57192678A 1982-11-01 1982-11-01 Gallium phosphorus green color emitting diode and manufacture thereof Granted JPS5980981A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57192678A JPS5980981A (en) 1982-11-01 1982-11-01 Gallium phosphorus green color emitting diode and manufacture thereof
JP5001109A JPH05335621A (en) 1982-11-01 1993-01-07 Gallium phosphide green light emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP57192678A JPS5980981A (en) 1982-11-01 1982-11-01 Gallium phosphorus green color emitting diode and manufacture thereof
JP5001109A JPH05335621A (en) 1982-11-01 1993-01-07 Gallium phosphide green light emitting diode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5001109A Division JPH05335621A (en) 1982-11-01 1993-01-07 Gallium phosphide green light emitting diode

Publications (2)

Publication Number Publication Date
JPS5980981A JPS5980981A (en) 1984-05-10
JPH0547996B2 true JPH0547996B2 (en) 1993-07-20

Family

ID=26334274

Family Applications (2)

Application Number Title Priority Date Filing Date
JP57192678A Granted JPS5980981A (en) 1982-11-01 1982-11-01 Gallium phosphorus green color emitting diode and manufacture thereof
JP5001109A Pending JPH05335621A (en) 1982-11-01 1993-01-07 Gallium phosphide green light emitting diode

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP5001109A Pending JPH05335621A (en) 1982-11-01 1993-01-07 Gallium phosphide green light emitting diode

Country Status (1)

Country Link
JP (2) JPS5980981A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922374A (en) * 1982-07-28 1984-02-04 Matsushita Electric Ind Co Ltd Manufacture of green light-emitting diode
JP3163217B2 (en) * 1994-05-31 2001-05-08 シャープ株式会社 Light emitting diode and method of manufacturing the same
JP4032224B2 (en) * 1999-10-29 2008-01-16 信越半導体株式会社 Gallium phosphide light emitting device and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453975A (en) * 1977-10-07 1979-04-27 Toshiba Corp Manufacture for gallium phosphide green light emitting element
JPS5513884A (en) * 1978-07-17 1980-01-31 Shionogi & Co Ltd Aggregation reacting antigen and its manufacture
JPS5694678A (en) * 1979-12-27 1981-07-31 Sanyo Electric Co Ltd Manufacture of lightemitting diode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945234B2 (en) * 1976-10-12 1984-11-05 サンケン電気株式会社 GaP light emitting diode
JPS606552B2 (en) * 1979-02-15 1985-02-19 株式会社東芝 Gallium phosphide green light emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5453975A (en) * 1977-10-07 1979-04-27 Toshiba Corp Manufacture for gallium phosphide green light emitting element
JPS5513884A (en) * 1978-07-17 1980-01-31 Shionogi & Co Ltd Aggregation reacting antigen and its manufacture
JPS5694678A (en) * 1979-12-27 1981-07-31 Sanyo Electric Co Ltd Manufacture of lightemitting diode

Also Published As

Publication number Publication date
JPH05335621A (en) 1993-12-17
JPS5980981A (en) 1984-05-10

Similar Documents

Publication Publication Date Title
USRE29845E (en) GaAs1-x Px electroluminescent device doped with isoelectronic impurities
US3931631A (en) Gallium phosphide light-emitting diodes
US4001056A (en) Epitaxial deposition of iii-v compounds containing isoelectronic impurities
JP3356041B2 (en) Gallium phosphide green light emitting device
US4216484A (en) Method of manufacturing electroluminescent compound semiconductor wafer
JPS581539B2 (en) epitaxial wafer
KR100433039B1 (en) Epitaxial wafer and manufacturing method thereof
US5529938A (en) Method for producing light-emitting diode
JPH0940490A (en) Production of gallium nitride crystal
JPH0547996B2 (en)
JP3792817B2 (en) GaAsP epitaxial wafer and manufacturing method thereof
JPH0883926A (en) Light-emitting diode
JP3633806B2 (en) Epitaxial wafer and light-emitting diode manufactured using the same
JP3111644B2 (en) Gallium arsenide arsenide epitaxial wafer
JPS5816535A (en) Semiconductor device and its manufacture
JPH1065211A (en) Light-emitting diode
JPH08264467A (en) Method of forming nitrogen-doped gap epitaxial layer
JPH04328823A (en) Manufacture of epitaxial wafer for light emitting diode
JP3326261B2 (en) Gallium phosphide green light emitting diode and method of manufacturing the same
JPS5843898B2 (en) Vapor phase growth method for compound semiconductor single crystal thin films
JPS599984A (en) Gallium phosphide green light emitting diode
JP3785705B2 (en) Gallium arsenide mixed crystal epitaxial wafer and light emitting diode
JP2001036137A (en) Epitaxial wafer and light emitting diode
JP3525704B2 (en) Gallium arsenide arsenide epitaxial wafers and light emitting diodes
JPS599983A (en) Manufacture of gallium phosphide green light emitting diode