JPS599984A - Gallium phosphide green light emitting diode - Google Patents

Gallium phosphide green light emitting diode

Info

Publication number
JPS599984A
JPS599984A JP57119208A JP11920882A JPS599984A JP S599984 A JPS599984 A JP S599984A JP 57119208 A JP57119208 A JP 57119208A JP 11920882 A JP11920882 A JP 11920882A JP S599984 A JPS599984 A JP S599984A
Authority
JP
Japan
Prior art keywords
layer
light emitting
substrate
impurity concentration
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57119208A
Other languages
Japanese (ja)
Inventor
Tadanobu Yamazawa
山沢 忠信
Kentaro Inoue
健太郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP57119208A priority Critical patent/JPS599984A/en
Priority to US06/509,186 priority patent/US4562378A/en
Priority to DE3324220A priority patent/DE3324220C2/en
Publication of JPS599984A publication Critical patent/JPS599984A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain a green LED having high luminance, by sequentially growing an n<+> layer, an N layer, and a P layer on an N type GaP substrate by an epitaxial method. CONSTITUTION:The impurity concentration of an N layer 2 on a substrate 1 is 8X 10<17>cm<-3>. When its light emitting efficiency reaches about 0.42, it is saturated. Meanwhile, S pits, which are the cause of the saturating phenomenon, are quickly increased to 2-3X10<4>cm<-3>. Therefore, the concentration of the layer 2 is selected to be 5-8X 10<17>cm<-3>, which is higher than that of the substrate 1. When Si is added to S, which is a main donor, by 5-6X10<16>cm<-3>, alignment of the N type substrate and the N<+> layer can be readily obtained. Even though an N layers 3 and 4 are laminated thereon, position inversion is not accured. The layer 3 is provided so that the S is scattered at a high temperature and the concentration is decreased. The N layer 4 is a light emitting layer. When NH3 is not introduced, light emitting efficiency is decreased and moved to the side of a short wavelength. When N is 10<18>-10<19>cm<-3>, and central wavelength is 568nm and the light emitting efficiency is about 0.45%. When the N is about 10<16>cm<-3>, the central wavelength is 556nm and the efficiency is 0.15%. Since the Si does not directly contributes to the light emitting it is desirable to remove it. In this constitution, an LED having high emitting efficiency and a long life can be obtained.

Description

【発明の詳細な説明】 本発明は高輝度〕よ燐化ガリクム緑色発光ダイオード(
−関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a high brightness phosphide gallium green light emitting diode (
-Related.

従来燐化ガジクム(又はガリクム燐1()aP)を用イ
タ発光ダイオードにおいて緑色を高効率で発光さu′る
の(二Pn接合のn層温度を低くするとよい事が知られ
ていた。そして例えば東北レビュー57巻6号5ろ7頁
(=よると第1図(=示すようC二n i頓(131L
]41Y 2つ(二分離し階段状の不純物濃度分布(ニ
すると0.5%前後の発光効率が安定して得られたと報
じられている。しかし乍らこのような不純物濃度分布(
:するとスイツデ動作(いわゆるサイリスタとしての動
作)をするものが多いのでその原因を実験で副べたとこ
ろ、単C二pn接合付近のn層の濃度を下げたのでは発
光(二寄与しない纜流等が多くまた不純物の中(二は少
数キイ9ヤとしてトランジスタ動作tひき起こす事がわ
かり、結晶性を確認し乍らn層を成長させる必弗がある
事がわかった。
Conventionally, it was known that in order to emit green light with high efficiency in a light-emitting diode using gallium phosphide (or gallium phosphorus 1()aP), it is better to lower the n-layer temperature of the two-Pn junction. For example, Tohoku Review Vol.
] 41Y Two (2) step-like impurity concentration distribution (2) It is reported that a luminous efficiency of around 0.5% was stably obtained. However, such an impurity concentration distribution (
:Then, many of the devices behave in a swivel mode (so-called thyristor behavior), so when we investigated the cause of this through experiments, we found that lowering the concentration of the n-layer near the single-C2 pn junction caused light emission (such as non-contributing currents, etc.). It was found that a large number of impurities (2 being a small number key 9) caused transistor operation, and that it was necessary to grow an n-layer while confirming the crystallinity.

本発明は上述の点を考慮してなされたもので、以下本発
明を実施例(二基づいて詳細(二説明する。
The present invention has been made in consideration of the above-mentioned points, and the present invention will be explained in detail based on two embodiments below.

第2図(alは本発明実施例の燐化ガ9ワム緑色発光ダ
イオードの模式図で同図1k11はその発光ダイオード
の不純物濃度分布図である。図(二於てtxtは不純物
濃度が1〜3X10”(1)4のn型基板で引き上げ法
等で製造された単結晶ンスライスしたものである。f2
1f314+はそれぞれ5〜8X1017国−5.1〜
2X10”−″″−1〜5X10”am−’の不純物濃
度のn層(エピタキシャル成長層)で、成長厚みは順(
:40〜50μm115〜25μm、 8〜14μmで
、このうち最表のD1gJi41のみに窒幸がドープし
である。(5)はP層で厚さ25μ7前後、不純物濃度
5〜10×1017cm”’4のものである。
Figure 2 (al is a schematic diagram of a phosphorized green light emitting diode according to an embodiment of the present invention, and Figure 1k11 is an impurity concentration distribution diagram of the light emitting diode. This is a single crystal sliced from a 3×10” (1)4 n-type substrate manufactured by a pulling method, etc. f2
1f314+ is each 5~8X1017 countries -5.1~
The n layer (epitaxially grown layer) has an impurity concentration of 2X10"-""-1 to 5X10"am-', and the growth thickness is in the order (
: 40 to 50 μm, 115 to 25 μm, and 8 to 14 μm, of which only the outermost D1gJi41 is doped with Nitsuyuki. (5) is a P layer with a thickness of about 25 μ7 and an impurity concentration of 5 to 10×10 17 cm''4.

このような発光ダイオードは例えば基板上にシリコンと
イオワを含む薄回メルトを接触させてべのようにエピタ
キシャル成長させる。即ち103[J”C程度の高温か
ら2乃至35℃/分程度の低速度で1怪温すると基板よ
り高い不純物濃度のn層(2)が成長する。その後一定
温度で45乃芋120分保持して再び降温して次のn層
(3)層成長させ再び一定温度で保持する。然るのちア
ンモニアガスを導入してメルトじ窒素を入れると、特に
シリコンが反応して1315N4等の析出物が生じ、メ
ルト内のシ9コンが%′乃至んに除去できる。その後再
び降温してn7頭(41を成長させる。従ってこのn層
(4)(二は窒素は多駄にドープされるがシリコンはわ
ずかじかドープされない。そしてメIレト内(二今度は
亜鉛暑導入してP層(5)を成長させる。
Such a light emitting diode is grown epitaxially, for example, by bringing a thin melt containing silicon and sulfur into contact with each other on a substrate. That is, the n-layer (2) with a higher impurity concentration than the substrate grows when heated from a high temperature of about 103 [J"C to a low temperature of about 2 to 35 °C/min. After that, it is kept at a constant temperature for 45 to 120 minutes. Then, the temperature is lowered again to grow the next n-layer (3) and held at a constant temperature again.Next, when ammonia gas is introduced and nitrogen is added to the melt, silicon in particular reacts and forms precipitates such as 1315N4. occurs, and the silicon in the melt can be removed to %'.Then, the temperature is lowered again and n7 heads (41) are grown.Therefore, this n layer (4) (2 is heavily doped with nitrogen, but The silicon is only slightly doped, and the P layer (5) is grown within the metal layer (with zinc heat introduced twice).

このよう鑞−することで不純物濃度の高いn層(21が
順次成長層の結晶性に影響し、しかも各n層成長後の定
温保持で転位密度が低下する。セしてPn接合(6)近
傍C二窒素以外の不純物が少ないのでスイッチ動作を生
じない。
By soldering in this way, the n-layer (21) with a high impurity concentration affects the crystallinity of the sequentially grown layers, and the dislocation density decreases by holding the temperature at a constant temperature after each n-layer grows. Since there are few impurities other than the nearby C dinitrogen, no switching action occurs.

以上の如(本発明は、n型の燐比ガリウム基板と、その
基板上にエピタキシャル成長させた基板より不純物濃度
の妬いn層と、その不純物濃度の低いn層とPn接合を
形成するP層とを具備した燐化ガジワム緑色発光ダイオ
ードであるから、従来(0,2%〜0.6%)よりはる
かぐ;高い0.45%の発光効率を得る事ができ、しか
も80%輝度低下に1500時間以上(高温大鑞流試験
)という長寿命の素子が得られた。
As described above, the present invention comprises an n-type phosphorous gallium substrate, an n-layer epitaxially grown on the substrate and having an impurity concentration lower than that of the substrate, and a p-layer forming a Pn junction with the n-layer having a lower impurity concentration. Since it is a phosphorized Gadjiwam green light emitting diode with An element with a long life of more than 1 hour (high temperature large-scale flow test) was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の発光ダイオードの模式図ta+と不純物
濃度分布図(1)l、第2図は本発明実施例の燐化ガリ
ワム緑色発光ダイオードの模式図(&)と不純物濃度分
布図(b)である。 fl+・・・基板、 T2++31+43−n層、(5
1−P層。 出願人 三洋礪機株式会社外1名 代理人 弁理士 佐 野 靜 鼾1’+’:’y b;
XN1、Σ′j:ζ];5) 第1図 (CI) 第2図 (C1) (b) [CI’ 1( 不 n基板 、4 ゴ (b) い「 °”4 ・層  j 手  続  補  正  書(自発) 昭和58年 q月 1日 特許庁長官殿 1、事件の表示 昭和57年特許願第119208号 2、発明の名称 燐化ガリウム緑色発光ダイオード 6、補正をする者 事件との関係 特 許 出 願 人 4、代 理 人 住所 守口市京阪本通2丁目18番地 5、補正の対象 明細書全文 明    細    書 1、発明の名称 燐化ガリウム緑色発光ダイオード 2、特許請求の範囲 1)  n型の燐化ガリウム基板と、その基板上にエピ
タキシャル成長させた基板よシネ細物濃度の高いn層と
、その上に積層された不純物濃度の低いn層と、その不
純物濃度の低いn層とPn接合を形成するP層とを具備
した事を特徴とする燐化ガリウム緑色発光ダイオード。 3、発明の詳細な説明 本発明は高輝度な燐化ガリウム緑色発光ダイオードに関
する。 従来燐化ガリウム(又はガリウム燐:GaP)を用いた
発光ダイオードにおいて緑色を高効率で発光させるのに
Pn接合のn層濃度を低くするとよい事が知られていた
。そして例えば東北レビュー67巻6号567頁による
と第1図に示すようにn層(13)(14)を2つに分
離し階段状の不純物濃度分布にすると0.6%前後の発
光効率が安定して得られたと報じられている。しかし乍
らこのような不純物濃度分布にするとスイッチ動作(い
わゆるトランジスタ又はサイリスクとしての動作)をす
るものが多いのでその原因を実験で調べたところ、単に
Pn接合付近のn層の濃度を下げたのではn層中にP反
転する部分が生じ、そのためにnun又はnPnP領域
が形成されてスイッチ動作を生じ、さらに発光に寄与し
ない買流も多い。 本発明は上述の点を考慮してなされたもので、特に基板
と成長層との結晶性を確認し乍らn層を成長させる必要
があることに着目したもので以下本発明を実施例に基づ
いて詳細に説明する。 第2図(a)は本発明実施例の燐化ガリウム緑色発光ダ
イオードの模式図で同図(b)はその発光ダイオードの
不純物濃度分布図である。図に於て(1)は不7−3 細物濃度が1〜ろ×10CI11のn型基板で引き上げ
法等で製造された単結晶をスライスしたものであ17 
−3             16 −310CM、
0.6〜3 X 103の不純物濃度のn層(エピタキ
シャル成長層)で、成長厚みは順に40〜50μm、1
5〜25μm、8〜14μmで、このうち張装のn層(
4)のみに窒素がドープしである。(5)はP層で厚さ
25μm前後、不純物濃度5〜10X10X1017の
ものである。 このような発光ダイオードは例えば基板上にシリコンと
イオウを含む薄層メルトを接触させて次のようにエピタ
キシャル成長させる。即ち1030″′C程度の高温か
ら2乃至6.5°C/分程度の低速度で降温すると基板
より高い不純物濃度のn層(2)が成長する。その後一
定温度で45乃至120分保持して再び降温して次のn
F!(3)を成長させ再び一定温度で保持する。然るの
ちアンモニアガスを導入してメルトに窒素を入れると、
特にシリコンが反応して5iaN4等の析出物が生じ、
メルト1 内のシリコンが−乃至−に除去できる。その後回10 び降温してn層(4)を成長させる。従ってこのn層(
4)には窒素は多分にドープされるがシリコンはわずか
じかドープされない。そしてメルト内に今度は亜鉛を導
入してP層(5)を成長させる。 このようにして製造された発光ダイオードのうち、n層
(2)(31(41についてよシ詳細に説明する。壕ず
最初のn層(2)は不純物濃度が基板(1)と略同−な
1017、−3程度の時は0065%程度の発光効率だ
が、不純物濃度の増加と共に発光効率も増大し、8×1
0 cPIi で0.42%程度となる。しかしその後
は発光効率が飽和現象を示す。一方不純物ビットである
Sピットは5X1017m−3以下では概ね1Qx−2
程度だが、不純物濃度が大きくなると増加し10 cN
 では2〜3×100 となる。 上述した不純物濃度の増大に伴う発光効率の飽和現象は
この8ピツトの急激な増加によるものと考えられる。従
ってこのn層(2)の不純物濃度はn型基板(1)よシ
高い6〜10X10  cm  が好ましく、さらに最
も好ましくは5〜8×10 口 である。 この数値は発光ダイオードのエツチング面一に8微鏡観
察する事でも裏付される。即ちエツチングにおけるエッ
チ速度は結晶面と結晶面のつなぎ目で異なシ、結晶のマ
ツチングが悪いと黒い線が現われる。エッチャントとし
てフッ硝酸を用いた場合、n層(2)の不純物濃度が1
[117z−3程度以下は17CI11−3のときマツ
チングがとれていると判断される。高程々の実験の結果
、主たるドナー不純物としてイオウを用い、シリコンが
5〜6×1016ar3と微量に添加されたときにマツ
チングがとりやすい。 次にn層(3)(4+は上述したn型基板とのマツチン
グがとれfcn層(2)上に形成される層であるから、
低濃度となってもP反転は生じなかった。n層(3)は
比較的高温においてイオウを雰囲気中に飛散させ、濃度
を低下させるためのもので、n層(4)は事実上の発光
層である。アンモニアの導入がないと発光効率は低下す
るが発光波長は短波長側に移る。 窒素のドーグ量が1018〜1019G−3のとき中心
波長568nmとなシ発光効率0.45%程度を得るこ
とができ積極的なドープのないl ’Q 16cm−3
程度のとき5560m0.15%となる。いずれにして
もシリコンは発光に直接寄与しないので除くのがよい。 以上の如く本発明は、n型の燐化ガリウム基板と、その
基板上にエピタキシャル成長させた基板より不純物濃度
の高いn層と、その不純物濃度の低いn層とPn接合を
形成するP層とを具備した燐化ガリウム緑色発光ダイオ
ードであるから、従来(0,2%〜0.6%)よりはる
かに高い0.45%の発光効率を得る事ができ、しかも
80%輝度低下に1500時間以上(高温大電流試験)
という長寿命の素子が得られた。 4、図面の簡単な説明 第1図は従来の発光ダイオードの模式図(a)と不純物
濃度分布図(b)、第2図は本発明実施例の燐化カリウ
ム緑色発光ダイオードの模式図(a)と不純物濃度分布
図(I))でおる7、 (1)・・・・・・基板、(2+(3) (4)・−・
・・・n層、(5)・・・・・・P層。 出願人 三洋電+;tt +’+:式会社it:ill
臥イ1z即十佐野静央 386
Figure 1 is a schematic diagram ta+ and an impurity concentration distribution diagram (1)l of a conventional light emitting diode, and Figure 2 is a schematic diagram (&) and an impurity concentration distribution diagram (b ). fl+...Substrate, T2++31+43-n layer, (5
1-P layer. Applicant: Sanyo Tsuboki Co., Ltd. and one other representative: Patent attorney: Makoto Sano Snoring 1'+':'y b;
XN1,Σ'j:ζ];5) Figure 1 (CI) Figure 2 (C1) (b) [CI' Amendment (self-motivated) dated May 1, 1980, Commissioner of the Japan Patent Office1, Indication of the case, Patent Application No. 119208 of 1982, Title of the invention: Gallium phosphide green light emitting diode6, Person making the amendment. Related Patent Applicant 4, Agent Address 2-18-5 Keihan Hondori, Moriguchi City, Specification Subject to Amendment 1, Name of Invention Gallium Phosphide Green Light-Emitting Diode 2, Claims 1 ) An n-type gallium phosphide substrate, an n layer epitaxially grown on the substrate, a substrate with a high concentration of cine particles, an n layer with a low impurity concentration laminated thereon, and an n layer with a low impurity concentration. A gallium phosphide green light emitting diode comprising: and a P layer forming a Pn junction. 3. DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high brightness gallium phosphide green light emitting diode. Conventionally, it has been known that in order to emit green light with high efficiency in a light emitting diode using gallium phosphide (or gallium phosphide: GaP), it is better to lower the n-layer concentration of the Pn junction. For example, according to Tohoku Review Vol. 67, No. 6, p. 567, if the n-layer (13) and (14) are separated into two and made into a stepped impurity concentration distribution as shown in Figure 1, the luminous efficiency will be around 0.6%. It is reported to be stable. However, with this type of impurity concentration distribution, many devices perform a switch operation (so-called transistor or silice operation), and when we investigated the cause of this through experiments, we found that it was simply by lowering the concentration of the n layer near the Pn junction. In this case, a P-inverted portion occurs in the n-layer, and therefore a nun or nPnP region is formed to cause a switching operation, and there are also many buybacks that do not contribute to light emission. The present invention was made in consideration of the above-mentioned points, and focused particularly on the need to grow the n-layer while confirming the crystallinity of the substrate and the growth layer. This will be explained in detail based on the following. FIG. 2(a) is a schematic diagram of a gallium phosphide green light-emitting diode according to an embodiment of the present invention, and FIG. 2(b) is an impurity concentration distribution diagram of the light-emitting diode. In the figure, (1) is a slice of a single crystal produced by a pulling method etc. on an n-type substrate with a fines concentration of 1 to 10 CI11.
-3 16 -310CM,
N layer (epitaxially grown layer) with an impurity concentration of 0.6 to 3 × 103, the growth thickness is 40 to 50 μm, 1
5 to 25 μm, 8 to 14 μm, among which the tension n layer (
Only 4) is doped with nitrogen. (5) is a P layer with a thickness of about 25 μm and an impurity concentration of 5 to 10×10×10 17 . Such a light emitting diode, for example, is grown epitaxially as follows by contacting a thin melt layer containing silicon and sulfur on a substrate. That is, when the temperature is lowered from a high temperature of about 1030''C at a low rate of about 2 to 6.5°C/min, an n-layer (2) with a higher impurity concentration than the substrate grows.Then, the temperature is kept at a constant temperature for 45 to 120 minutes. Then the temperature decreases again and the next n
F! (3) is grown and held at a constant temperature again. Then, when ammonia gas is introduced and nitrogen is added to the melt,
In particular, silicon reacts to produce precipitates such as 5iaN4,
The silicon in the melt 1 can be removed quickly. Thereafter, the temperature is lowered 10 times to grow an n-layer (4). Therefore, this n layer (
4) is heavily doped with nitrogen but only slightly with silicon. Next, zinc is introduced into the melt to grow the P layer (5). Of the light emitting diodes manufactured in this way, the n-layer (2) (31 (41) will be explained in detail. When the value of 1017, -3, the luminous efficiency is about 0065%, but as the impurity concentration increases, the luminous efficiency also increases, and becomes 8×1.
At 0 cPIi, it is about 0.42%. However, after that, the luminous efficiency shows a saturation phenomenon. On the other hand, the S pit, which is an impurity bit, is approximately 1Qx-2 below 5X1017m-3.
However, as the impurity concentration increases, it increases to 10 cN.
Then, it becomes 2~3×100. The above-mentioned saturation phenomenon of luminous efficiency with increase in impurity concentration is considered to be due to the rapid increase in the number of 8 pits. Therefore, the impurity concentration of this n-layer (2) is preferably 6 to 10×10 cm, which is higher than that of the n-type substrate (1), and most preferably 5 to 8×10 cm. This value is also confirmed by observing the etched surface of the light emitting diode with eight microscopic lenses. That is, the etch rate during etching differs at the junction between crystal planes, and if the crystals are poorly matched, black lines appear. When fluoronitric acid is used as an etchant, the impurity concentration of the n-layer (2) is 1
[If the value is about 117z-3 or less, it is determined that matching is achieved when the value is 17CI11-3. As a result of extensive experiments, matching is easily achieved when sulfur is used as the main donor impurity and silicon is added in a small amount of 5 to 6×10 16 ar 3 . Next, the n-layers (3) (4+) are layers formed on the fcn layer (2) that are not matched with the n-type substrate mentioned above.
P inversion did not occur even at low concentrations. The n-layer (3) is for scattering sulfur into the atmosphere at a relatively high temperature to reduce its concentration, and the n-layer (4) is effectively a light-emitting layer. Without the introduction of ammonia, the luminous efficiency decreases, but the luminous wavelength shifts to the shorter wavelength side. When the amount of nitrogen doped is 1018 to 1019G-3, a luminous efficiency of about 0.45% with a center wavelength of 568 nm can be obtained, and l'Q 16 cm-3 without active doping.
When it is about 5560m, it becomes 0.15%. In any case, silicon does not directly contribute to light emission, so it is better to remove it. As described above, the present invention comprises an n-type gallium phosphide substrate, an n-layer epitaxially grown on the substrate and having a higher impurity concentration than the substrate, and a p-layer forming a Pn junction with the n-layer having a lower impurity concentration. Since it is a gallium phosphide green light-emitting diode, it can achieve a luminous efficiency of 0.45%, which is much higher than conventional methods (0.2% to 0.6%), and it takes more than 1500 hours to reduce the brightness by 80%. (High temperature high current test)
A long-life device was obtained. 4. Brief explanation of the drawings Fig. 1 is a schematic diagram (a) and an impurity concentration distribution diagram (b) of a conventional light emitting diode, and Fig. 2 is a schematic diagram (a) of a potassium phosphide green light emitting diode according to an embodiment of the present invention. ) and impurity concentration distribution diagram (I)) 7, (1)...Substrate, (2+(3) (4)...
...n layer, (5)...P layer. Applicant Sanyo Den+; tt +'+: Shikisha IT:ill
Gai 1z Soku Tosano Shizuo 386

Claims (1)

【特許請求の範囲】[Claims] 1)n型の憐1ヒガリウム基板と、その基板上ζ二エピ
タキシャル成長させた基板より不純物濃度の高いn層と
、七の上(:積層された不純物(良度の低いn層と、そ
の不純物濃度の低いn層とpn接合を形成する2層とを
具備した事を特徴とする燐化ガリワム緑f!!、発光ダ
イオード。
1) An n-type hygallium substrate, an n-layer with a higher impurity concentration than the substrate that was grown epitaxially on the substrate, and a laminated impurity (low-quality n-layer and its impurity concentration) A light-emitting diode made of phosphide galliwaum green f!!, characterized in that it comprises an n-layer with a low temperature and two layers forming a p-n junction.
JP57119208A 1982-07-08 1982-07-08 Gallium phosphide green light emitting diode Pending JPS599984A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57119208A JPS599984A (en) 1982-07-08 1982-07-08 Gallium phosphide green light emitting diode
US06/509,186 US4562378A (en) 1982-07-08 1983-06-29 Gallium phosphide light-emitting diode
DE3324220A DE3324220C2 (en) 1982-07-08 1983-07-05 Gallium phosphide light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57119208A JPS599984A (en) 1982-07-08 1982-07-08 Gallium phosphide green light emitting diode

Publications (1)

Publication Number Publication Date
JPS599984A true JPS599984A (en) 1984-01-19

Family

ID=14755606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57119208A Pending JPS599984A (en) 1982-07-08 1982-07-08 Gallium phosphide green light emitting diode

Country Status (1)

Country Link
JP (1) JPS599984A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245569A (en) * 1988-03-28 1989-09-29 Toshiba Corp Gap green light-emitting element and manufacture thereof
JPH06219279A (en) * 1993-01-27 1994-08-09 Sankosha:Kk Multiple light color lamp signal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661182A (en) * 1979-10-24 1981-05-26 Toshiba Corp Gap green light-emitting element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661182A (en) * 1979-10-24 1981-05-26 Toshiba Corp Gap green light-emitting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245569A (en) * 1988-03-28 1989-09-29 Toshiba Corp Gap green light-emitting element and manufacture thereof
JPH06219279A (en) * 1993-01-27 1994-08-09 Sankosha:Kk Multiple light color lamp signal

Similar Documents

Publication Publication Date Title
JP2872096B2 (en) Vapor phase growth method of low resistance p-type gallium nitride based compound semiconductor
JPH04242985A (en) Gallium nitride group compound semiconductor laser diode
JP3163217B2 (en) Light emitting diode and method of manufacturing the same
JPH055191B2 (en)
JPH1116852A (en) Production of electrode for 3-5 compound semiconductor and 3-5 compound semiconductor device
JPS599984A (en) Gallium phosphide green light emitting diode
JPH01245569A (en) Gap green light-emitting element and manufacture thereof
JP3104218B2 (en) Method for growing nitrogen-doped GaP epitaxial layer
JPH08139358A (en) Epitaxial wafer
JP3633806B2 (en) Epitaxial wafer and light-emitting diode manufactured using the same
JPH05110135A (en) Multilayer epitaxial crystalline structure
JPH05335621A (en) Gallium phosphide green light emitting diode
JPH1065211A (en) Light-emitting diode
CN105513951A (en) Low-resistivity P type gallium nitride material and preparation method thereof
JP2841849B2 (en) Manufacturing method of epitaxial wafer
JP3150016B2 (en) Method for manufacturing semiconductor light emitting device
JPH098353A (en) Epitaxial wafer, production thereof and light emitting diode
JPS5918686A (en) Gallium phosphide light emitting diode
JP3340859B2 (en) Semiconductor light emitting device
JPS5935193B2 (en) light emitting element
JPH0550154B2 (en)
JPH06224473A (en) Manufacture of p-n junction containing znse as main ingredient and manufacture of p-n junction device
JPS6012794B2 (en) Method for producing electroluminescent material
JPH05129655A (en) Sh-led epitaxial wafer
JPH0964416A (en) Epitaxial wafer and manufacture thereof