JPH06224473A - Manufacture of p-n junction containing znse as main ingredient and manufacture of p-n junction device - Google Patents

Manufacture of p-n junction containing znse as main ingredient and manufacture of p-n junction device

Info

Publication number
JPH06224473A
JPH06224473A JP2499993A JP2499993A JPH06224473A JP H06224473 A JPH06224473 A JP H06224473A JP 2499993 A JP2499993 A JP 2499993A JP 2499993 A JP2499993 A JP 2499993A JP H06224473 A JPH06224473 A JP H06224473A
Authority
JP
Japan
Prior art keywords
main component
junction
type
type layer
znse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2499993A
Other languages
Japanese (ja)
Other versions
JPH0783139B2 (en
Inventor
Junichi Nishizawa
潤一 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Research Foundation
Original Assignee
Semiconductor Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Research Foundation filed Critical Semiconductor Research Foundation
Priority to JP2499993A priority Critical patent/JPH0783139B2/en
Publication of JPH06224473A publication Critical patent/JPH06224473A/en
Publication of JPH0783139B2 publication Critical patent/JPH0783139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To manufacture a diode having an excellent crystalline device structure in which p-type, n-type layers have uniform carrier density distributions and a highest efficiency when a blue light emitting diode is manufactured by liquid growth and to obtain a high industrial value. CONSTITUTION:Low resistance p-type layer 1 and n-type layer 2 are formed on a single-crystal substrate 3 containing ZnSe as a main ingredient by an epitaxial growth using a differential-temperature vapor pressure control method with Se as main ingredient of solvent as a p-n junction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、青色発光ダイオード
などを製作するためのZnSeを主成分としたpn接合
の製造方法とpn接合デバイスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a pn junction containing ZnSe as a main component and a method for manufacturing a pn junction device for manufacturing a blue light emitting diode or the like.

【0002】[0002]

【従来の技術】図6は、従来のZnSeを主成分とする
pn接合の形成方法を示している。これは、まず図6
(a)に示すように、一般に高抵抗である高品位のZn
Se単結晶基板11をZn溶液中で熱処理を施すなどし
て低抵抗のn形にし、次に、図6(b)に示すように、
ZnSe単結晶基板11上に、Se溶媒にLiなどのI
a族元素をp形不純物として添加したものを用いた蒸気
圧制御温度差液相成長法によって、p形結晶12をエピ
タキシャル成長させたものである。この場合、n形Zn
Seは、Zn溶媒中で熱処理した際にZn空格子点が減
少することが原因と考えられるが、n形の導電性を示
す。
2. Description of the Related Art FIG. 6 shows a conventional method for forming a pn junction containing ZnSe as a main component. This is first shown in Figure 6.
As shown in (a), high-grade Zn that generally has high resistance
The Se single crystal substrate 11 is made into a low resistance n-type by heat treatment in a Zn solution, and then, as shown in FIG.
On the ZnSe single crystal substrate 11, Se such as Li
The p-type crystal 12 is epitaxially grown by a vapor pressure controlled temperature difference liquid phase epitaxy method using a group a element added as a p-type impurity. In this case, n-type Zn
It is considered that Se is caused by a decrease in Zn vacancy when heat-treated in a Zn solvent, but exhibits n-type conductivity.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、その後
のSeを主成分とする溶媒を用いたp形エピタキシャル
成長の際にn形結晶の一部がSe溶媒による熱処理を受
けるために、その部分のSe空格子が減少して組成が変
化し高抵抗化してしまい、その結果デバイス構造はpi
n構造またはpin- 構造となってしまうため、デバイ
スの電気的特性において高抵抗を示してしまうという問
題があった。
However, in the subsequent p-type epitaxial growth using a solvent containing Se as a main component, a part of the n-type crystal is subjected to heat treatment with the Se solvent, so that the Se vacancy of that part is lost. The number of particles decreases, the composition changes, and the resistance becomes high. As a result, the device structure is pi
Since the n structure or the pin - structure is formed, there is a problem that the electrical characteristics of the device show high resistance.

【0004】また、同じSeを主成分とする溶媒を用い
て蒸気圧制御温度差液相成長法によって成長したp形の
バルク状単結晶を(110)あるいは(111)方位で
碧開するかまたは切り出した基板を、Zn溶液中で低温
熱処理してp形結晶の一部をn形化し、pn接合を形成
する方法なども取られてきたが、拡散法で形成したn層
は、拡散表面から接合面に向かってキャリアの密度分布
や格子欠陥が生じてしまい、n形拡散層は結晶性の制御
が難しく、ダイオードのシリーズ抵抗や発光特性に問題
があった。
Further, a p-type bulk single crystal grown by the vapor pressure controlled temperature difference liquid phase epitaxy method using the same Se-based solvent is cleaved in the (110) or (111) orientation, or A method of forming a pn junction by making a part of a p-type crystal n-type by heat-treating a cut-out substrate in a Zn solution at low temperature has been used. However, the n-layer formed by the diffusion method is Carrier density distribution and lattice defects are generated toward the junction surface, it is difficult to control the crystallinity of the n-type diffusion layer, and there are problems in the series resistance and light emission characteristics of the diode.

【0005】いずれの場合も、ZnSeの溶解度が低温
においてZnよりも大きいSe溶媒を用いて結晶成長す
る方法でp形結晶を得、Zn溶液を用いた熱処理によっ
てn形結晶を得るという、独立した二つの成長方法を組
み合わせた処理によってpn接合を形成するという方法
であることに原因があると思われる。
In either case, p-type crystals are obtained by a method of crystal growth using an Se solvent in which the solubility of ZnSe is larger than Zn at low temperatures, and n-type crystals are obtained by heat treatment using a Zn solution. It is believed that this is due to the method of forming the pn junction by the process of combining the two growth methods.

【0006】この発明は、上記問題点に鑑み、p形層,
n形層がそれぞれ均一なキャリア密度分布を持つ良好な
結晶性のデバイス構造となり、青色発光ダイオードなど
を液相成長で製作する場合に最も高い効率のダイオード
が製作可能な、工業的価値の高い、ZnSeを主成分と
したpn接合の製造方法並びにpn接合デバイスの製造
方法を提供せんとするものである。
In view of the above problems, the present invention provides a p-type layer,
The n-type layer has a good crystalline device structure with a uniform carrier density distribution, and the diode with the highest efficiency can be manufactured when a blue light emitting diode or the like is manufactured by liquid phase growth, which has a high industrial value. It is intended to provide a method for manufacturing a pn junction containing ZnSe as a main component and a method for manufacturing a pn junction device.

【0007】[0007]

【課題を解決するための手段】請求項1に記載のpn接
合の製造方法は、ZnSeを主成分とする単結晶基板上
に、低抵抗のp形層とn形層を、Seを溶媒主成分とし
た蒸気圧制御温度差法を用いたエピタキシャル成長によ
って形成して、pn接合とすることを特徴としている。
A method for manufacturing a pn junction according to claim 1 is characterized in that a low resistance p-type layer and an n-type layer, and Se as a solvent main component are formed on a single crystal substrate containing ZnSe as a main component. It is characterized in that a pn junction is formed by epitaxial growth using a vapor pressure controlled temperature difference method as a component.

【0008】請求項2に記載のpn接合の製造方法は、
上記構成に加えて、前記p形及びn形層を、前記Seを
溶媒主成分とした蒸気圧制御温度差法を用いたエピタキ
シャル成長によって成長させるための条件として、p形
層の場合成長温度を900〜1100℃、Znの蒸気圧
を1.7〜13.0atmの範囲とし、n形層の場合成
長温度を1000〜1100℃、Znの蒸気圧を5.0
〜13.0atmの範囲としたことを特徴としている。
A method for manufacturing a pn junction according to claim 2 is
In addition to the above structure, the growth temperature for the p-type layer is set to 900 as a condition for growing the p-type and n-type layers by epitaxial growth using the vapor pressure controlled temperature difference method using Se as a solvent main component. ˜1100 ° C., the vapor pressure of Zn is in the range of 1.7 to 13.0 atm, the growth temperature is 1000 to 1100 ° C., and the vapor pressure of Zn is 5.0 in the case of an n-type layer.
It is characterized in that it is set to a range of 13.0 atm.

【0009】請求項3に記載のpn接合の製造方法は、
上記構成に加えて、前記p形層が、前記Seを溶媒主成
分とした蒸気圧制御温度差法を用いたエピタキシャル成
長の際にp形不純物としてNaまたはNaのSe化合物
を主成分として添加することにより形成されることを特
徴としている。
A method for manufacturing a pn junction according to a third aspect is
In addition to the above structure, the p-type layer is added with Na or an Se compound of Na as a p-type impurity as a main component during epitaxial growth using the vapor pressure controlled temperature difference method using Se as a solvent main component. It is characterized by being formed by.

【0010】この発明によるpn接合の製造方法は、上
記構成に加えて、前記n形層が、前記Seを溶媒主成分
とした蒸気圧制御温度差法を用いたエピタキシャル成長
の際にn形不純物としてGa,Al,Inまたはそれら
のSe化合物を主成分として添加することにより形成さ
れることが好ましい。また、この発明によるpn接合の
製造方法は、上記構成に加えて、前記p形層が、前記S
eを溶媒主成分とした蒸気圧制御温度差法を用いたエピ
タキシャル成長の際に添加される不純物がNa2 Se
で、前記Se溶媒に対しておよそ3〜8×10-3mol
e%の範囲で添加することにより形成されることが好ま
しい。また、この発明によるpn接合の製造方法は、上
記構成に加えて、前記p形層が、前記ZnSeを主成分
とする単結晶基板が、前記pn接合の形成後除去される
ことが好ましい。さらに、この発明によるpn接合の製
造方法は、上記構成に加えて、前記ZnSeを主成分と
した単結晶基板を、面方位が(111)で、電気的に高
抵抗な基板とすることが好ましい。
In the pn junction manufacturing method according to the present invention, in addition to the above-mentioned structure, the n-type layer becomes an n-type impurity during epitaxial growth using a vapor pressure controlled temperature difference method using Se as a solvent main component. It is preferably formed by adding Ga, Al, In or a Se compound thereof as a main component. In addition to the above-mentioned structure, the method for manufacturing a pn junction according to the present invention is characterized in that the p-type layer has
The impurity added during the epitaxial growth using the vapor pressure controlled temperature difference method with e as the main component of the solvent is Na 2 Se.
And about 3 to 8 × 10 −3 mol with respect to the Se solvent.
It is preferably formed by adding in the range of e%. In the pn junction manufacturing method according to the present invention, in addition to the above configuration, it is preferable that the p-type layer and the single crystal substrate containing ZnSe as a main component are removed after the formation of the pn junction. Further, in the method for manufacturing a pn junction according to the present invention, in addition to the above configuration, it is preferable that the single crystal substrate containing ZnSe as a main component is a substrate having a plane orientation of (111) and a high electrical resistance. .

【0011】請求項8に記載のpn接合デバイスの製造
方法は、前記Seを溶媒主成分とした蒸気圧制御温度差
法を用いたエピタキシャル成長により、前記ZnSeを
主成分とする単結晶基板上に前記p形層を先に前記n形
層を後にそれぞれエピタキシャル成長させ、その後前記
ZnSeを主成分とする単結晶基板を除去してエピタキ
シャル成長層のみを残して、pn接合を形成することを
特徴としている。
A method of manufacturing a pn junction device according to claim 8 is characterized in that the above-mentioned single crystal substrate containing ZnSe as a main component is epitaxially grown by a vapor pressure controlled temperature difference method using Se as a main component on the single crystal substrate. The n-type layer is epitaxially grown first with the p-type layer first, and then the single crystal substrate containing ZnSe as a main component is removed to leave only the epitaxial growth layer to form a pn junction.

【0012】さらに、請求項9に記載の接合デバイスの
製造方法は、前記p形層およびn形層を、前記Seを溶
媒主成分とする蒸気圧制御温度差法を用いたエピタキシ
ャル成長によって前記ZnSeを主成分とする単結晶基
板上に順次成長させることにより、前記pn接合を形成
した後、前記n形層及び前記p形層の一部をエッチング
によって除去し、それぞれにオーミック電極を形成する
ことによって、前記ZnSeを主成分とする単結晶基板
を除去せずにpn接合を形成することを特徴としてい
る。
Further, in the method for manufacturing a junction device according to the ninth aspect, the ZnSe is formed by epitaxially growing the p-type layer and the n-type layer by using a vapor pressure controlled temperature difference method using Se as a solvent main component. After the pn junction is formed by sequentially growing it on a single crystal substrate as a main component, a part of the n-type layer and the p-type layer is removed by etching, and ohmic electrodes are formed on each of them. The pn junction is formed without removing the single crystal substrate containing ZnSe as a main component.

【0013】[0013]

【作用】以上のように、この発明のZnSeを主成分と
したpn接合及びpn接合デバイスは、Zn溶液を使っ
た熱処理法などのように、空格子の増減によってn形低
抵抗化させるのではなく、Zn蒸気圧の最適な制御下
で、Seを主成分とする溶媒を用いてp層上にn層、ま
たはn層上にp層をエピタキシャル成長することによっ
て得られる低抵抗で均一なキャリア密度のn形及びp形
結晶領域によって形成されるZnSeを主成分としたp
n接合及びpn接合デバイスとなる。
As described above, the pn junction and the pn junction device containing ZnSe as a main component according to the present invention are unlikely to have the n-type resistance lowered by the increase or decrease of vacancies like the heat treatment method using a Zn solution. And a low carrier resistance and uniform carrier density obtained by epitaxially growing an n-layer on a p-layer or a p-layer on an n-layer using a solvent containing Se as a main component under optimal control of Zn vapor pressure. Of ZnSe formed by the n-type and p-type crystal regions of
It becomes an n-junction and a pn-junction device.

【0014】また、ZnSeは自己補償効果のために本
来p形結晶が得られにくく、何らかの方法で得られたと
しても抵抗の高い低キャリア密度のものしか得られてい
なかったが、この発明のSeを主成分とする溶媒を用い
た液相成長においては、NaまたはNaのSe化合物を
pタイプドーパントとして用いることで、低抵抗で高キ
ャリア密度のp結晶領域を得ることに成功している。
Moreover, ZnSe was originally difficult to obtain a p-type crystal due to the self-compensation effect, and even if it was obtained by any method, only a low carrier density with high resistance was obtained. In liquid phase growth using a solvent containing as a main component, Na or a Se compound of Na is used as a p-type dopant, and thereby a p-crystalline region having low resistance and high carrier density has been successfully obtained.

【0015】即ち、この発明のZnSeを主成分とした
pn接合及びpn接合デバイスは、p形,n形共に同じ
Seを主成分とする溶媒を用い、蒸気圧制御温度差法を
用いたエピタキシャル成長によってpn接合が形成され
る構造であるため、p形結晶の一部を熱処理拡散などの
方法によってタイプ反転させたり、熱処理低抵抗化した
n形結晶の上にp形結晶を成長させてpn接合を形成さ
せる場合とは異なり、p形,n形層がそれぞれ均一なキ
ャリア密度分布を持つ良好な結晶性のデバイス構造とな
る。
That is, the pn junction and the pn junction device containing ZnSe as a main component of the present invention are formed by epitaxial growth using a vapor pressure controlled temperature difference method using a solvent containing Se which is the same for both p-type and n-type. Since the structure is such that a pn junction is formed, a part of the p-type crystal is type-inverted by a method such as heat treatment diffusion, or the p-type crystal is grown on the heat-treated low-resistance n-type crystal to form a pn junction. Unlike the case of forming, the p-type and n-type layers each have a uniform carrier density distribution and have a good crystallinity device structure.

【0016】[0016]

【実施例】以下、図示した実施例に基づき本発明を詳細
に説明する。図1は、この発明によって製造されたZn
Seを主成分としたpn接合デバイスの構造の概略図で
ある。1はp形不純物としてNa2 Seを添加してSe
を溶媒主成分として成長したp形エピタキシャル成長層
で、2はn形不純物として例えばGa2 Se3 を添加し
てSeを溶媒主成分として成長したn形エピタキシャル
成長層である。これらのエピタキシャル成長層1,2
は、表面が(111)方位の単結晶基板上に成長される
が、基板結晶はできるだけ欠陥の少ない単結晶でなけれ
ばならず、通常は極めて高抵抗とならざるを得ないの
で、ダイオード用のデバイス形成時には元基板を除去し
た構造になっている。又、本発明のZnSeを主成分と
したpn接合デバイスの製造方法においては、デバイス
形成プロセスにおいて成長層の選択エッチング、選択電
極形成を行うことによって、元基板を除去せずにダイオ
ードを製作するようにしてもよい。
The present invention will be described in detail below with reference to the illustrated embodiments. FIG. 1 shows Zn produced by the present invention.
It is the schematic of the structure of the pn junction device which has Se as a main component. 1 is Se by adding Na 2 Se as a p-type impurity.
Is a p-type epitaxial growth layer grown as a solvent main component, and 2 is an n-type epitaxial growth layer grown as a solvent main component by adding, for example, Ga 2 Se 3 as an n-type impurity. These epitaxial growth layers 1 and 2
Has a surface grown on a (111) -oriented single crystal substrate, but the substrate crystal must be a single crystal with as few defects as possible and usually has a very high resistance. The structure is such that the original substrate is removed during device formation. In the method of manufacturing a pn junction device containing ZnSe as a main component of the present invention, a diode is manufactured without removing the original substrate by performing selective etching of a growth layer and forming a selective electrode in a device forming process. You may

【0017】図1に示すZnSeを主成分としたpn接
合は、n層がSeを主成分とする溶媒からのエピタキシ
ャル成長で形成されるので、Seを主成分とする溶媒に
よるp形層形成に際して接合部において組成の変成・高
抵抗化がなく、p形結晶,n形結晶共に化学量論的組成
の制御された良好な結晶性を有し、成長厚み方向に対し
て均一なキャリア密度を持つエピタキシャル成長層1,
2から構成されるpn接合デバイスが得られ、さらにp
形結晶はキャリア密度1018cm-3代の高キャリア・低
抵抗結晶が得られ、n形結晶もキャリア密度が1017
-3で低抵抗な結晶が得られるため、高効率発光ダイオ
ードなどの製作が可能である。
In the pn junction mainly composed of ZnSe shown in FIG. 1, since the n layer is formed by epitaxial growth from a solvent whose main component is Se, a junction is formed when a p-type layer is formed by a solvent whose main component is Se. Growth of the p-type crystal and n-type crystal with good stoichiometrically controlled crystallinity and uniform carrier density in the growth thickness direction. Layer 1,
A pn-junction device composed of 2 is obtained.
The n-type crystal has a carrier density of 10 18 cm −3 and has high carrier and low resistance. The n-type crystal has a carrier density of 10 17 c.
Since a crystal having a low resistance can be obtained at m -3, it is possible to manufacture a highly efficient light emitting diode or the like.

【0018】図2は、本発明のZnSeを主成分とした
pn接合デバイスの形成手順を示している。成長元基板
を切り出すためのバルク状のZnSe単結晶を得るため
の方法については、本発明者が既に蒸気圧制御温度差法
を提案し、Znの蒸気圧を制御したZnSeの液相成長
法を、特公昭60−37077号公報,特公昭60−4
2199号公報及び特公昭61−28640号公報など
で開示している。これらによればp形または高抵抗の結
晶完全性の優れた基板が得られる。
FIG. 2 shows a procedure for forming a pn junction device containing ZnSe as a main component according to the present invention. Regarding a method for obtaining a bulk ZnSe single crystal for cutting out a growth source substrate, the present inventor has already proposed a vapor pressure control temperature difference method, and a ZnSe liquid phase growth method in which the vapor pressure of Zn is controlled has been proposed. Japanese Patent Publication No. 60-37077, Japanese Patent Publication No. 60-4
No. 2199 and Japanese Patent Publication No. 61-28640. According to these, a p-type or high resistance substrate having excellent crystal perfection can be obtained.

【0019】図2(a)はエピタキシャル成長用の元基
板3を示している。元基板3は、バルク状のZnSe単
結晶からダイヤモンドソーなどで(111)方位で切り
出した後、ブロムメタノールまたは王水などを用いてメ
カノケミカルポリッシュを施すことで、切り出し・研磨
によるダメージ層を完全に取り除いたものを用いる。ま
た、この元基板3はIa 族元素を添加してバルク結晶成
長したp形結晶から切り出した基板であってもよいが、
化学量論的組成の点から、より完全性の高い不純物無添
加の高抵抗基板を用いるのが良い。なお、低品位の結晶
ではn形単結晶も存在するが、そのような結晶上にp形
層を形成してもp形層が変成を受け、高抵抗化またはn
形化してしまう。
FIG. 2A shows the original substrate 3 for epitaxial growth. The original substrate 3 is cut from a bulk ZnSe single crystal with a diamond saw or the like in the (111) orientation, and then subjected to mechanochemical polishing using brom methanol or aqua regia to completely remove the damage layer caused by cutting and polishing. Use the one removed in. The original substrate 3 may be a substrate cut out from a p-type crystal grown by bulk crystal growth by adding a group Ia element.
From the standpoint of stoichiometric composition, it is preferable to use a high-resistance substrate having higher integrity and no impurities added. Although there are n-type single crystals in low-quality crystals, even if a p-type layer is formed on such a crystal, the p-type layer undergoes transformation to increase the resistance or n
It will be shaped.

【0020】先ず、図2(b)に示すように、元基板3
上に高キャリアp形層1を50〜100μmの厚みでエ
ピタキシャル成長させる。このエピタキシャル成長法も
本発明者による特公昭60−570759号公報により
既に開示している方法を基にしているが、p形のエピタ
キシャル成長ではSe溶媒中への添加不純物として、最
も高いキャリア密度が得られるNa2 Seを用いてい
る。
First, as shown in FIG. 2B, the original substrate 3
A high carrier p-type layer 1 is epitaxially grown on the upper layer with a thickness of 50 to 100 μm. This epitaxial growth method is also based on the method already disclosed by Japanese Patent Publication No. 60-570759 by the present inventor, but the highest carrier density is obtained as an impurity added to the Se solvent in p-type epitaxial growth. Na 2 Se is used.

【0021】図3は、p形結晶成長用のドーパントとし
てNa2 Seを用いて蒸気圧制御温度差法によって高抵
抗基板上にエピタキシャル成長させたp形結晶の、Na
2 Seの添加量とキャリア密度の関係を示す図である。
成長温度は900〜1100℃、Zn蒸気圧を1.7〜
13.0atmの範囲で設定して成長結晶の化学量論的
組成を制御している。
FIG. 3 is a schematic diagram of a p-type crystal Na which is epitaxially grown on a high resistance substrate by a vapor pressure controlled temperature difference method using Na 2 Se as a p-type crystal growth dopant.
It is a figure which shows the relationship between the addition amount of 2 Se, and carrier density.
The growth temperature is 900 to 1100 ° C., and the Zn vapor pressure is 1.7 to
It is set within the range of 13.0 atm to control the stoichiometric composition of the grown crystal.

【0022】図3から判るように、Na2 Seの添加量
によってキャリア密度1015cm-3代からの制御が可能
であるが、Se溶媒の量に対して3〜8×10-3mol
e%の範囲で添加した場合、p形層のキャリア密度は1
〜3×1018cm-3となり、高いキャリア密度が得られ
る。
As can be seen from FIG. 3, the carrier density can be controlled from the 10 15 cm -3 generation depending on the addition amount of Na 2 Se, but it is 3 to 8 × 10 -3 mol with respect to the amount of the Se solvent.
When added in the range of e%, the carrier density of the p-type layer is 1
It is up to 3 × 10 18 cm −3 , and a high carrier density is obtained.

【0023】次に、図2(c)に示すように、高キャリ
アp形層1の上に、n形の不純物としてGa2 Se
3 を、p形結晶の場合と同様にSe溶媒中に添加して、
成長温度950〜1100℃,Zn蒸気圧5.0〜1
3.0atmの範囲で制御して、成長厚み10〜30μ
m程度のn形層2を得るべくエピタキシャル成長を行
う。
Next, as shown in FIG. 2C, Ga 2 Se as an n-type impurity is formed on the high carrier p-type layer 1.
3 was added into the Se solvent as in the case of p-type crystals,
Growth temperature 950 to 1100 ° C, Zn vapor pressure 5.0 to 1
Controlled in the range of 3.0 atm, growth thickness 10 to 30 μm
Epitaxial growth is performed to obtain an n-type layer 2 of about m.

【0024】成長温度1000℃〜1040℃で、Ga
2 Se3 を1〜5×10-2mole%の範囲で添加した
場合、n形層2のキャリア密度は0.5〜2×1015
-3である。また、成長温度1060℃〜1100℃で
同じ範囲の量を添加した場合は、0.5〜6×1017
-3程度のn形結晶が得られる。そして、図2(d)に
示すように、成長後、元基板3を除去してp形結晶,n
形結晶共にエピタキシャル成長によって形成されたデバ
イス成長層1,2のみを残し、ZnSeを主成分とした
pn接合デバイスが実現される。
Ga at a growth temperature of 1000 ° C. to 1040 ° C.
When 2 Se 3 is added in the range of 1 to 5 × 10 -2 mole%, the carrier density of the n-type layer 2 is 0.5 to 2 × 10 15 c.
m -3 . When the growth temperature is 1060 ° C. to 1100 ° C. and the amount in the same range is added, 0.5 to 6 × 10 17 c
An n-type crystal of about m −3 can be obtained. Then, as shown in FIG. 2D, after the growth, the original substrate 3 is removed to remove the p-type crystal, n
A pn junction device containing ZnSe as a main component is realized by leaving only the device growth layers 1 and 2 formed by epitaxial growth of both shaped crystals.

【0025】図4は、pn接合を形成した後、高抵抗基
板3′を除去せずにデバイスを製作するためのプロセス
を示している。図4(a)は、p形層1,n形層2を高
抵抗単結晶基板3′上にエピタキシャル成長させた後、
フォトレジスト4を適当なマスクパターンを用いてn形
層2の表面に残した段階を示している。
FIG. 4 shows a process for fabricating the device after removing the high resistance substrate 3'after forming the pn junction. FIG. 4A shows that after the p-type layer 1 and the n-type layer 2 are epitaxially grown on the high resistance single crystal substrate 3 ',
The step of leaving the photoresist 4 on the surface of the n-type layer 2 by using an appropriate mask pattern is shown.

【0026】図4(b)は、王水やブロムメタノールな
どのZnSeのエッチング液を用いてn形層2からp形
層1の一部にかけて除去した段階を示している。
FIG. 4B shows a stage in which the n-type layer 2 and a part of the p-type layer 1 are removed by using an etching solution of ZnSe such as aqua regia or bromethanol.

【0027】図4(c)は、エッチングによって露出し
たp形結晶面とレジスト4を除去したn形結晶面に、電
極5,6となる金属材料をそれぞれ選択蒸着し、Arガ
スなどの不活性ガス中で250℃〜350℃の温度範囲
でシンターを施してオーミック電極を形成した段階を示
している。5はp形結晶のオーミック電極で、Auまた
はAu−Zn合金などから成り、6はn形結晶のオーミ
ック電極で、Alなどから成っている。
In FIG. 4C, a metal material to be electrodes 5 and 6 is selectively vapor-deposited on the p-type crystal plane exposed by etching and the n-type crystal plane from which the resist 4 is removed, and an inert gas such as Ar gas is used. It shows a stage where an ohmic electrode is formed by performing sintering in a temperature range of 250 ° C to 350 ° C in a gas. Reference numeral 5 is a p-type crystal ohmic electrode made of Au or Au-Zn alloy or the like, and 6 is an n-type crystal ohmic electrode made of Al or the like.

【0028】図4(d)は、ダイヤモンドソーなどで図
4(c)の点線Aに沿って切り出した一つのダイオード
チップを示している。このようなプロセスでデバイスを
製作することによつて、基板を除去せずにダイオードを
製作することができる。
FIG. 4 (d) shows one diode chip cut out along a dotted line A in FIG. 4 (c) with a diamond saw or the like. By manufacturing the device by such a process, the diode can be manufactured without removing the substrate.

【0029】上記した実施例によれば、p形結晶,n形
結晶共に最適Zn圧制御下で、どちらもSeを主成分と
する溶媒を用いた不純物添加型の成長であるので、成長
時の空格子点の増減はほとんど無く、後成長の際に前成
長のp形結晶あるいはn形結晶が変成・高抵抗化するこ
とがない。また、特にp形結晶は結晶性においても優れ
ている。
According to the above-mentioned embodiment, both the p-type crystal and the n-type crystal are under the optimum Zn pressure control, and both are impurity-added type growth using a solvent containing Se as a main component. There is almost no increase or decrease in the number of vacancies, and the pre-grown p-type crystal or n-type crystal is not metamorphosed or has a high resistance during post-growth. In addition, p-type crystals are also excellent in crystallinity.

【0030】図5は、成長温度950℃,最適Zn蒸気
圧3.0atmで成長した場合のp形結晶の77Kにお
けるカソードルミネッセンス特性を示している。室温で
青色発光遷移となる2.773eVのエキシトン発光が
最も優勢で、結晶欠陥などによる深い準位での発光遷
移、即ち低エネルギー側での発光ピークは全く観測され
ない。この傾向は、成長温度1100℃,Zn蒸気圧1
3.0atmで成長した場合でも同様であった。
FIG. 5 shows the cathode luminescence characteristics of the p-type crystal at 77K at the growth temperature of 950 ° C. and the optimum Zn vapor pressure of 3.0 atm. The exciton emission at 2.773 eV, which is a blue emission transition at room temperature, is the most dominant, and no emission transition at a deep level due to crystal defects, that is, an emission peak on the low energy side is observed at all. The tendency is that the growth temperature is 1100 ° C and the Zn vapor pressure is 1
The same was true when grown at 3.0 atm.

【0031】この結晶性の良好なp形結晶の上にn形結
晶を成長させることで、p形結晶の良好な結晶性をn形
結晶が受け継ぎ、Zn蒸気圧制御下での成長との相乗効
果によって、より良好な結晶性からなるpn接合デバイ
スが実現できるのである。また、成長温度,不純物の添
加量によってp形結晶,n形結晶共にキャリア密度が制
御できるので、pn,p+ n,p+ - などの種々のデ
バイス構造を製作できる。
By growing an n-type crystal on the p-type crystal having a good crystallinity, the n-type crystal inherits the good crystallinity of the p-type crystal, and synergizes with the growth under the control of Zn vapor pressure. Due to the effect, a pn junction device having better crystallinity can be realized. Further, since the carrier density of both p-type crystal and n-type crystal can be controlled by the growth temperature and the amount of impurities added, various device structures such as pn, p + n and p + n can be manufactured.

【0032】[0032]

【発明の効果】以上述べたように、この発明のZnSe
を主成分としたpn接合デバイスは、p形,n形共に同
じSeを主成分とする溶媒を用い、且つ、蒸気圧制御温
度差法を用いたエピタキシャル成長によってpn接合が
形成されるものであるため、p形結晶の一部を熱処理拡
散などの方法によってタイプ反転させたり、熱処理低抵
抗化したn形結晶の上にp形結晶を成長させてpn接合
を形成させる場合とは異なり、p形層,n形層がそれぞ
れ均一なキャリア密度分布を持つ良好な結晶性のデバイ
ス構造が得られ、青色発光ダイオードなどを液相成長で
製作する場合に最も高効率のダイオードの製作が可能
な、工業的価値の高いものである。
As described above, the ZnSe of the present invention is
The pn junction device containing as a main component uses a solvent having Se as a main component for both p-type and n-type, and a pn junction is formed by epitaxial growth using a vapor pressure controlled temperature difference method. Unlike the case where a part of the p-type crystal is type-inverted by a method such as heat treatment diffusion, or a p-type crystal is grown on an n-type crystal whose resistance has been reduced by heat treatment to form a pn junction. , N-type layers each have a uniform carrier density distribution and a good crystalline device structure can be obtained, which makes it possible to manufacture the most efficient diode when manufacturing a blue light emitting diode or the like by liquid phase growth. It is of high value.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明のZnSeを主成分としたpn接合デ
バイス構造を示す図である。
FIG. 1 is a diagram showing a pn junction device structure containing ZnSe as a main component of the present invention.

【図2】この発明のZnSeを主成分としたpn接合デ
バイスの形成手順を示す図である。
FIG. 2 is a diagram showing a procedure for forming a pn junction device containing ZnSe as a main component of the present invention.

【図3】p形ドーパントの添加量とキャリア密度の関係
を示す図である。
FIG. 3 is a diagram showing the relationship between the amount of p-type dopant added and the carrier density.

【図4】pn接合を形成した後、単結晶基板を除去せず
にデバイスを製作するためのプロセスを示す図である。
FIG. 4 is a diagram showing a process for manufacturing a device after removing a single crystal substrate after forming a pn junction.

【図5】p形結晶の77Kにおけるカソードルミネッセ
ンス特性を示す図である。
FIG. 5 is a diagram showing the cathodoluminescence characteristics of a p-type crystal at 77K.

【図6】従来のZnSeを主成分としたpn接合の構造
を示す図である。
FIG. 6 is a diagram showing a structure of a conventional pn junction containing ZnSe as a main component.

【図面の簡単な説明】[Brief description of drawings] 【符号の説明】[Explanation of symbols]

1 p形エピタキシャル成長層 2 n形エピタキシャル成長層 3 単結晶元基板 3′ 単結晶基板 4 フォトレジスト 5 p形結晶のオーミック電極 6 n形結晶のオーミック電極 1 p-type epitaxial growth layer 2 n-type epitaxial growth layer 3 single-crystal original substrate 3'single-crystal substrate 4 photoresist 5 p-type crystal ohmic electrode 6 n-type crystal ohmic electrode

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ZnSeを主成分とする単結晶基板上
に、低抵抗のp形層とn形層を、Seを溶媒主成分とし
た蒸気圧制御温度差法を用いたエピタキシャル成長によ
って形成し、pn接合を形成することを特徴とする、Z
nSeを主成分としたpn接合の製造方法。
1. A low resistance p-type layer and an n-type layer are formed on a single crystal substrate containing ZnSe as a main component by epitaxial growth using a vapor pressure controlled temperature difference method using Se as a solvent main component, Z, characterized by forming a pn junction
A method for manufacturing a pn junction containing nSe as a main component.
【請求項2】 前記p形及びn形層が、前記Seを溶媒
主成分とした蒸気圧制御温度差法を用いたエピタキシャ
ル成長によって成長するための条件として、p形層の場
合成長温度を900〜1100℃、Znの蒸気圧を1.
7〜13.0atmの範囲とし、n形層の場合成長温度
を1000〜1100℃、Znの蒸気圧を5.0〜1
3.0atmの範囲としたことを特徴とする、請求項1
に記載のZnSeを主成分としたpn接合の製造方法。
2. As a condition for growing the p-type and n-type layers by epitaxial growth using the vapor pressure controlled temperature difference method using Se as a solvent main component, the growth temperature is 900 to The vapor pressure of Zn at 1100 ° C. was 1.
The growth temperature is 1000 to 1100 ° C., and the vapor pressure of Zn is 5.0 to 1 in the case of an n-type layer.
A range of 3.0 atm is set, and the range is set to 1.
7. A method for manufacturing a pn junction containing ZnSe as a main component according to item 1.
【請求項3】 前記p形層が、前記Seを溶媒主成分と
した蒸気圧制御温度差法を用いたエピタキシャル成長の
際にp形不純物としてNaまたはNaのSe化合物を主
成分として添加することにより形成されることを特徴と
する、請求項1または2に記載のZnSeを主成分とし
たpn接合の製造方法。
3. The p-type layer is formed by adding Na or a Se compound of Na as a p-type impurity as a main component during epitaxial growth using a vapor pressure controlled temperature difference method using Se as a solvent main component. The method for manufacturing a pn junction containing ZnSe as a main component according to claim 1, wherein the pn junction is formed.
【請求項4】 前記n形層が、前記Seを溶媒主成分と
した蒸気圧制御温度差法を用いたエピタキシャル成長の
際にn形不純物としてGa,Al,In又はそれらのS
e化合物を主成分として添加することにより形成される
ことを特徴とする、請求項1又は2に記載のZnSeを
主成分としたpn接合の製造方法。
4. The n-type layer is Ga, Al, In or their S as an n-type impurity during epitaxial growth using a vapor pressure controlled temperature difference method using Se as a solvent main component.
The method for producing a pn junction containing ZnSe as a main component according to claim 1 or 2, which is formed by adding an e compound as a main component.
【請求項5】 前記p形層が、前記Seを溶媒主成分と
した蒸気圧制御温度差法を用いたエピタキシャル成長の
際に添加される不純物がNa2 Seで、前記Se溶媒主
成分に対しておよそ3〜8×10-3 mole%の範囲
で添加することにより形成されることを特徴とする、請
求項1に記載のZnSeを主成分としたpn接合の製造
方法。
5. The impurity added to the p-type layer during epitaxial growth using the vapor pressure controlled temperature difference method using Se as a solvent main component is Na 2 Se, and the impurity is added to the Se solvent main component. The method for manufacturing a pn junction containing ZnSe as a main component according to claim 1, wherein the pn junction is formed by adding it in a range of approximately 3 to 8 × 10 -3 mole%.
【請求項6】 前記ZnSeを主成分とする単結晶基板
が、前記pn接合の形成後除去されることを特徴とす
る、請求項1ないし5のいずれかに記載のZnSeを主
成分としたpn接合の製造方法。
6. The ZnSe-based pn according to claim 1, wherein the ZnSe-based single-crystal substrate is removed after the formation of the pn junction. Joining manufacturing method.
【請求項7】 前記ZnSeを主成分とした単結晶基板
が、面方位が(111)で、電気的に高抵抗の基板であ
ることを特徴とする、請求項1ないし6のいずれかに記
載のZnSeを主成分としたpn接合の製造方法。
7. The single crystal substrate containing ZnSe as a main component is a substrate having a plane orientation of (111) and an electrically high resistance, according to any one of claims 1 to 6. 2. A method for manufacturing a pn junction containing ZnSe as a main component.
【請求項8】 前記Seを溶媒主成分とした蒸気圧制御
温度差法を用いたエピタキシャル成長により、前記Zn
Seを主成分とする単結晶基板上に、前記p形層を先に
前記n形層を後にそれぞれエピタキシャル成長させ、そ
の後前記ZnSeを主成分とする単結晶基板を除去して
エピタキシャル成長層のみを残して、pn接合を形成す
ることを特徴とする、ZnSeを主成分としたpn接合
デバイスの製造方法。
8. The Zn is formed by epitaxial growth using a vapor pressure controlled temperature difference method using Se as a solvent main component.
On the single-crystal substrate containing Se as a main component, the p-type layer and the n-type layer were epitaxially grown respectively, and then the single-crystal substrate containing ZnSe as a main component was removed to leave only the epitaxial growth layer. , Pn junction is formed, a method for manufacturing a pn junction device containing ZnSe as a main component.
【請求項9】 前記p形層およびn形層を、前記Seを
溶媒主成分とする蒸気圧制御温度差法を用いたエピタキ
シャル成長によって前記ZnSeを主成分とする単結晶
基板上に順次成長させることにより、前記pn接合を形
成した後、前記n形層及び前記p形層の一部をエッチン
グにより除去し、それぞれにオーミック電極を形成する
ことによって、前記ZnSeを主成分とする単結晶基板
を除去せずにpn接合を形成することを特徴とする、Z
nSeを主成分としたpn接合デバイスの製造方法。
9. The p-type layer and the n-type layer are sequentially grown on the single crystal substrate containing ZnSe as a main component by epitaxial growth using a vapor pressure controlled temperature difference method using Se as a solvent main component. After forming the pn junction, the n-type layer and a part of the p-type layer are removed by etching, and ohmic electrodes are formed respectively on the n-type layer and the p-type layer to remove the single crystal substrate containing ZnSe as a main component. Without forming a pn junction, Z
A method for manufacturing a pn junction device containing nSe as a main component.
JP2499993A 1993-01-21 1993-01-21 Method for manufacturing pn junction mainly composed of ZnSe and method for manufacturing pn junction device Expired - Fee Related JPH0783139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2499993A JPH0783139B2 (en) 1993-01-21 1993-01-21 Method for manufacturing pn junction mainly composed of ZnSe and method for manufacturing pn junction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2499993A JPH0783139B2 (en) 1993-01-21 1993-01-21 Method for manufacturing pn junction mainly composed of ZnSe and method for manufacturing pn junction device

Publications (2)

Publication Number Publication Date
JPH06224473A true JPH06224473A (en) 1994-08-12
JPH0783139B2 JPH0783139B2 (en) 1995-09-06

Family

ID=12153677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2499993A Expired - Fee Related JPH0783139B2 (en) 1993-01-21 1993-01-21 Method for manufacturing pn junction mainly composed of ZnSe and method for manufacturing pn junction device

Country Status (1)

Country Link
JP (1) JPH0783139B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000046862A1 (en) * 1999-02-05 2000-08-10 Japan Energy Corporation Photoelectric conversion functional element and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000046862A1 (en) * 1999-02-05 2000-08-10 Japan Energy Corporation Photoelectric conversion functional element and production method thereof
US6791257B1 (en) 1999-02-05 2004-09-14 Japan Energy Corporation Photoelectric conversion functional element and production method thereof

Also Published As

Publication number Publication date
JPH0783139B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
JP3749498B2 (en) Crystal growth substrate and ZnO-based compound semiconductor device
US6791257B1 (en) Photoelectric conversion functional element and production method thereof
EP0805500A1 (en) Blue light emitting device and production method thereof
JP3267983B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2009506529A (en) P-type-intrinsic-n-type light emitting diode manufacturing method using zinc oxide
JPH06105797B2 (en) Semiconductor substrate and manufacturing method thereof
JP3718329B2 (en) GaN compound semiconductor light emitting device
JP4013288B2 (en) Method for producing electrode for group 3-5 compound semiconductor and group 3-5 compound semiconductor device
JP3146874B2 (en) Light emitting diode
JP3324102B2 (en) Manufacturing method of epitaxial wafer
JP3916361B2 (en) Low resistance p-type single crystal ZnS thin film and method for producing the same
JPH06224473A (en) Manufacture of p-n junction containing znse as main ingredient and manufacture of p-n junction device
JP3577463B2 (en) III-nitride semiconductor light emitting diode
JP3111644B2 (en) Gallium arsenide arsenide epitaxial wafer
JP3633806B2 (en) Epitaxial wafer and light-emitting diode manufactured using the same
JP3353703B2 (en) Epitaxial wafer and light emitting diode
JPH0220077A (en) Manufacture of green-light emitting diode
JP2009212112A (en) Epitaxial wafer
JP3693436B2 (en) Light emitting device grown on ZnSe substrate
JP2009260136A (en) Semiconductor light-emitting element and method for manufacturing the same, and epitaxial wafer
JP2000294880A (en) Group-iii nitride semiconductor thin film and its fabrication
JPS6012794B2 (en) Method for producing electroluminescent material
JP4572942B2 (en) Epitaxial wafer manufacturing method and epitaxial wafer
JP5862472B2 (en) Epitaxial wafer manufacturing method and epitaxial wafer
JP2005330132A (en) Group iii nitride semiconductor crystal substrate, its producing method and group iii nitride semiconductor device, its producing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

EXPY Cancellation because of completion of term